kern_clock.c revision 1.56 1 /* $NetBSD: kern_clock.c,v 1.56 2000/05/29 14:58:59 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <vm/vm.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 u_int64_t hardclock_ticks, softclock_ticks;
316 int softclock_running; /* 1 => softclock() is running */
317 static int psdiv, pscnt; /* prof => stat divider */
318 int psratio; /* ratio: prof / stat */
319 int tickfix, tickfixinterval; /* used if tick not really integral */
320 #ifndef NTP
321 static int tickfixcnt; /* accumulated fractional error */
322 #else
323 int fixtick; /* used by NTP for same */
324 int shifthz;
325 #endif
326
327 /*
328 * We might want ldd to load the both words from time at once.
329 * To succeed we need to be quadword aligned.
330 * The sparc already does that, and that it has worked so far is a fluke.
331 */
332 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
333 volatile struct timeval mono_time;
334
335 /*
336 * The callout mechanism is based on the work of Adam M. Costello and
337 * George Varghese, published in a technical report entitled "Redesigning
338 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
339 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
340 *
341 * The original work on the data structures used in this implementation
342 * was published by G. Varghese and A. Lauck in the paper "Hashed and
343 * Hierarchical Timing Wheels: Data Structures for the Efficient
344 * Implementation of a Timer Facility" in the Proceedings of the 11th
345 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
346 * November 1987.
347 */
348 struct callout_queue *callwheel;
349 int callwheelsize, callwheelbits, callwheelmask;
350
351 static struct callout *nextsoftcheck; /* next callout to be checked */
352
353 #ifdef CALLWHEEL_STATS
354 int callwheel_collisions; /* number of hash collisions */
355 int callwheel_maxlength; /* length of the longest hash chain */
356 int *callwheel_sizes; /* per-bucket length count */
357 u_int64_t callwheel_count; /* # callouts currently */
358 u_int64_t callwheel_established; /* # callouts established */
359 u_int64_t callwheel_fired; /* # callouts that fired */
360 u_int64_t callwheel_disestablished; /* # callouts disestablished */
361 u_int64_t callwheel_changed; /* # callouts changed */
362 u_int64_t callwheel_softclocks; /* # times softclock() called */
363 u_int64_t callwheel_softchecks; /* # checks per softclock() */
364 u_int64_t callwheel_softempty; /* # empty buckets seen */
365 #endif /* CALLWHEEL_STATS */
366
367 /*
368 * This value indicates the number of consecutive callouts that
369 * will be checked before we allow interrupts to have a chance
370 * again.
371 */
372 #ifndef MAX_SOFTCLOCK_STEPS
373 #define MAX_SOFTCLOCK_STEPS 100
374 #endif
375
376 /*
377 * Initialize clock frequencies and start both clocks running.
378 */
379 void
380 initclocks()
381 {
382 int i;
383
384 /*
385 * Set divisors to 1 (normal case) and let the machine-specific
386 * code do its bit.
387 */
388 psdiv = pscnt = 1;
389 cpu_initclocks();
390
391 /*
392 * Compute profhz/stathz, and fix profhz if needed.
393 */
394 i = stathz ? stathz : hz;
395 if (profhz == 0)
396 profhz = i;
397 psratio = profhz / i;
398
399 #ifdef NTP
400 switch (hz) {
401 case 60:
402 case 64:
403 shifthz = SHIFT_SCALE - 6;
404 break;
405 case 96:
406 case 100:
407 case 128:
408 shifthz = SHIFT_SCALE - 7;
409 break;
410 case 256:
411 shifthz = SHIFT_SCALE - 8;
412 break;
413 case 512:
414 shifthz = SHIFT_SCALE - 9;
415 break;
416 case 1000:
417 case 1024:
418 shifthz = SHIFT_SCALE - 10;
419 break;
420 default:
421 panic("weird hz");
422 }
423 if (fixtick == 0) {
424 /*
425 * Give MD code a chance to set this to a better
426 * value; but, if it doesn't, we should.
427 */
428 fixtick = (1000000 - (hz*tick));
429 }
430 #endif
431 }
432
433 /*
434 * The real-time timer, interrupting hz times per second.
435 */
436 void
437 hardclock(frame)
438 struct clockframe *frame;
439 {
440 struct proc *p;
441 int delta;
442 extern int tickdelta;
443 extern long timedelta;
444 #ifdef NTP
445 int time_update;
446 int ltemp;
447 #endif
448
449 p = curproc;
450 if (p) {
451 struct pstats *pstats;
452
453 /*
454 * Run current process's virtual and profile time, as needed.
455 */
456 pstats = p->p_stats;
457 if (CLKF_USERMODE(frame) &&
458 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
459 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
460 psignal(p, SIGVTALRM);
461 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
462 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
463 psignal(p, SIGPROF);
464 }
465
466 /*
467 * If no separate statistics clock is available, run it from here.
468 */
469 if (stathz == 0)
470 statclock(frame);
471
472 /*
473 * Increment the time-of-day. The increment is normally just
474 * ``tick''. If the machine is one which has a clock frequency
475 * such that ``hz'' would not divide the second evenly into
476 * milliseconds, a periodic adjustment must be applied. Finally,
477 * if we are still adjusting the time (see adjtime()),
478 * ``tickdelta'' may also be added in.
479 */
480 hardclock_ticks++;
481 delta = tick;
482
483 #ifndef NTP
484 if (tickfix) {
485 tickfixcnt += tickfix;
486 if (tickfixcnt >= tickfixinterval) {
487 delta++;
488 tickfixcnt -= tickfixinterval;
489 }
490 }
491 #endif /* !NTP */
492 /* Imprecise 4bsd adjtime() handling */
493 if (timedelta != 0) {
494 delta += tickdelta;
495 timedelta -= tickdelta;
496 }
497
498 #ifdef notyet
499 microset();
500 #endif
501
502 #ifndef NTP
503 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
504 #endif
505 BUMPTIME(&mono_time, delta);
506
507 #ifdef NTP
508 time_update = delta;
509
510 /*
511 * Compute the phase adjustment. If the low-order bits
512 * (time_phase) of the update overflow, bump the high-order bits
513 * (time_update).
514 */
515 time_phase += time_adj;
516 if (time_phase <= -FINEUSEC) {
517 ltemp = -time_phase >> SHIFT_SCALE;
518 time_phase += ltemp << SHIFT_SCALE;
519 time_update -= ltemp;
520 } else if (time_phase >= FINEUSEC) {
521 ltemp = time_phase >> SHIFT_SCALE;
522 time_phase -= ltemp << SHIFT_SCALE;
523 time_update += ltemp;
524 }
525
526 #ifdef HIGHBALL
527 /*
528 * If the HIGHBALL board is installed, we need to adjust the
529 * external clock offset in order to close the hardware feedback
530 * loop. This will adjust the external clock phase and frequency
531 * in small amounts. The additional phase noise and frequency
532 * wander this causes should be minimal. We also need to
533 * discipline the kernel time variable, since the PLL is used to
534 * discipline the external clock. If the Highball board is not
535 * present, we discipline kernel time with the PLL as usual. We
536 * assume that the external clock phase adjustment (time_update)
537 * and kernel phase adjustment (clock_cpu) are less than the
538 * value of tick.
539 */
540 clock_offset.tv_usec += time_update;
541 if (clock_offset.tv_usec >= 1000000) {
542 clock_offset.tv_sec++;
543 clock_offset.tv_usec -= 1000000;
544 }
545 if (clock_offset.tv_usec < 0) {
546 clock_offset.tv_sec--;
547 clock_offset.tv_usec += 1000000;
548 }
549 time.tv_usec += clock_cpu;
550 clock_cpu = 0;
551 #else
552 time.tv_usec += time_update;
553 #endif /* HIGHBALL */
554
555 /*
556 * On rollover of the second the phase adjustment to be used for
557 * the next second is calculated. Also, the maximum error is
558 * increased by the tolerance. If the PPS frequency discipline
559 * code is present, the phase is increased to compensate for the
560 * CPU clock oscillator frequency error.
561 *
562 * On a 32-bit machine and given parameters in the timex.h
563 * header file, the maximum phase adjustment is +-512 ms and
564 * maximum frequency offset is a tad less than) +-512 ppm. On a
565 * 64-bit machine, you shouldn't need to ask.
566 */
567 if (time.tv_usec >= 1000000) {
568 time.tv_usec -= 1000000;
569 time.tv_sec++;
570 time_maxerror += time_tolerance >> SHIFT_USEC;
571
572 /*
573 * Leap second processing. If in leap-insert state at
574 * the end of the day, the system clock is set back one
575 * second; if in leap-delete state, the system clock is
576 * set ahead one second. The microtime() routine or
577 * external clock driver will insure that reported time
578 * is always monotonic. The ugly divides should be
579 * replaced.
580 */
581 switch (time_state) {
582 case TIME_OK:
583 if (time_status & STA_INS)
584 time_state = TIME_INS;
585 else if (time_status & STA_DEL)
586 time_state = TIME_DEL;
587 break;
588
589 case TIME_INS:
590 if (time.tv_sec % 86400 == 0) {
591 time.tv_sec--;
592 time_state = TIME_OOP;
593 }
594 break;
595
596 case TIME_DEL:
597 if ((time.tv_sec + 1) % 86400 == 0) {
598 time.tv_sec++;
599 time_state = TIME_WAIT;
600 }
601 break;
602
603 case TIME_OOP:
604 time_state = TIME_WAIT;
605 break;
606
607 case TIME_WAIT:
608 if (!(time_status & (STA_INS | STA_DEL)))
609 time_state = TIME_OK;
610 break;
611 }
612
613 /*
614 * Compute the phase adjustment for the next second. In
615 * PLL mode, the offset is reduced by a fixed factor
616 * times the time constant. In FLL mode the offset is
617 * used directly. In either mode, the maximum phase
618 * adjustment for each second is clamped so as to spread
619 * the adjustment over not more than the number of
620 * seconds between updates.
621 */
622 if (time_offset < 0) {
623 ltemp = -time_offset;
624 if (!(time_status & STA_FLL))
625 ltemp >>= SHIFT_KG + time_constant;
626 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
627 ltemp = (MAXPHASE / MINSEC) <<
628 SHIFT_UPDATE;
629 time_offset += ltemp;
630 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
631 } else if (time_offset > 0) {
632 ltemp = time_offset;
633 if (!(time_status & STA_FLL))
634 ltemp >>= SHIFT_KG + time_constant;
635 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
636 ltemp = (MAXPHASE / MINSEC) <<
637 SHIFT_UPDATE;
638 time_offset -= ltemp;
639 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
640 } else
641 time_adj = 0;
642
643 /*
644 * Compute the frequency estimate and additional phase
645 * adjustment due to frequency error for the next
646 * second. When the PPS signal is engaged, gnaw on the
647 * watchdog counter and update the frequency computed by
648 * the pll and the PPS signal.
649 */
650 #ifdef PPS_SYNC
651 pps_valid++;
652 if (pps_valid == PPS_VALID) {
653 pps_jitter = MAXTIME;
654 pps_stabil = MAXFREQ;
655 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
656 STA_PPSWANDER | STA_PPSERROR);
657 }
658 ltemp = time_freq + pps_freq;
659 #else
660 ltemp = time_freq;
661 #endif /* PPS_SYNC */
662
663 if (ltemp < 0)
664 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
665 else
666 time_adj += ltemp >> (SHIFT_USEC - shifthz);
667 time_adj += (long)fixtick << shifthz;
668
669 /*
670 * When the CPU clock oscillator frequency is not a
671 * power of 2 in Hz, shifthz is only an approximate
672 * scale factor.
673 *
674 * To determine the adjustment, you can do the following:
675 * bc -q
676 * scale=24
677 * obase=2
678 * idealhz/realhz
679 * where `idealhz' is the next higher power of 2, and `realhz'
680 * is the actual value.
681 *
682 * Likewise, the error can be calculated with (e.g. for 100Hz):
683 * bc -q
684 * scale=24
685 * ((1+2^-2+2^-5)*realhz-idealhz)/idealhz
686 * (and then multiply by 100 to get %).
687 */
688 switch (hz) {
689 case 96:
690 /* A factor of 1.0101010101 gives about 244ppm error. */
691 if (time_adj < 0) {
692 time_adj -= (-time_adj >> 2);
693 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
694 } else {
695 time_adj += (time_adj >> 2);
696 time_adj += (time_adj >> 4) + (time_adj >> 8);
697 }
698 break;
699
700 case 100:
701 /* A factor of 1.010001111010111 gives about 1ppm
702 error. */
703 if (time_adj < 0) {
704 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
705 time_adj += (-time_adj >> 10);
706 } else {
707 time_adj += (time_adj >> 2) + (time_adj >> 5);
708 time_adj -= (time_adj >> 10);
709 }
710 break;
711
712 case 60:
713 /* A factor of 1.00010001 gives about 244ppm error. */
714 if (time_adj < 0)
715 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
716 else
717 time_adj += (time_adj >> 4) + (time_adj >> 8);
718 break;
719
720 case 1000:
721 /* A factor of 1.000001100010100001 gives about 50ppm
722 error. */
723 if (time_adj < 0) {
724 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
725 time_adj -= (-time_adj >> 7);
726 } else {
727 time_adj += (time_adj >> 6) + (time_adj >> 11);
728 time_adj += (time_adj >> 7);
729 }
730 break;
731
732 case 1200:
733 /* A factor of 1.1011010011100001 gives about 64ppm
734 error. */
735 if (time_adj < 0) {
736 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
737 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
738 } else {
739 time_adj += (time_adj >> 1) + (time_adj >> 6);
740 time_adj += (time_adj >> 3) + (time_adj >> 10);
741 }
742 break;
743 }
744
745 #ifdef EXT_CLOCK
746 /*
747 * If an external clock is present, it is necessary to
748 * discipline the kernel time variable anyway, since not
749 * all system components use the microtime() interface.
750 * Here, the time offset between the external clock and
751 * kernel time variable is computed every so often.
752 */
753 clock_count++;
754 if (clock_count > CLOCK_INTERVAL) {
755 clock_count = 0;
756 microtime(&clock_ext);
757 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
758 delta.tv_usec = clock_ext.tv_usec -
759 time.tv_usec;
760 if (delta.tv_usec < 0)
761 delta.tv_sec--;
762 if (delta.tv_usec >= 500000) {
763 delta.tv_usec -= 1000000;
764 delta.tv_sec++;
765 }
766 if (delta.tv_usec < -500000) {
767 delta.tv_usec += 1000000;
768 delta.tv_sec--;
769 }
770 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
771 delta.tv_usec > MAXPHASE) ||
772 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
773 delta.tv_usec < -MAXPHASE)) {
774 time = clock_ext;
775 delta.tv_sec = 0;
776 delta.tv_usec = 0;
777 }
778 #ifdef HIGHBALL
779 clock_cpu = delta.tv_usec;
780 #else /* HIGHBALL */
781 hardupdate(delta.tv_usec);
782 #endif /* HIGHBALL */
783 }
784 #endif /* EXT_CLOCK */
785 }
786
787 #endif /* NTP */
788
789 /*
790 * Process callouts at a very low cpu priority, so we don't keep the
791 * relatively high clock interrupt priority any longer than necessary.
792 */
793 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
794 if (CLKF_BASEPRI(frame)) {
795 /*
796 * Save the overhead of a software interrupt;
797 * it will happen as soon as we return, so do
798 * it now.
799 *
800 * NOTE: If we're at ``base priority'', softclock()
801 * was not already running.
802 */
803 (void)spllowersoftclock();
804 softclock();
805 } else
806 setsoftclock();
807 } else if (softclock_running == 0 &&
808 (softclock_ticks + 1) == hardclock_ticks)
809 softclock_ticks++;
810 }
811
812 /*
813 * Software (low priority) clock interrupt.
814 * Run periodic events from timeout queue.
815 */
816 /*ARGSUSED*/
817 void
818 softclock()
819 {
820 struct callout_queue *bucket;
821 struct callout *c;
822 void (*func) __P((void *));
823 void *arg;
824 int s, idx;
825 int steps = 0;
826
827 s = splhigh();
828 softclock_running = 1;
829
830 #ifdef CALLWHEEL_STATS
831 callwheel_softclocks++;
832 #endif
833
834 while (softclock_ticks != hardclock_ticks) {
835 softclock_ticks++;
836 idx = (int)(softclock_ticks & callwheelmask);
837 bucket = &callwheel[idx];
838 c = TAILQ_FIRST(bucket);
839 #ifdef CALLWHEEL_STATS
840 if (c == NULL)
841 callwheel_softempty++;
842 #endif
843 while (c != NULL) {
844 #ifdef CALLWHEEL_STATS
845 callwheel_softchecks++;
846 #endif
847 if (c->c_time != softclock_ticks) {
848 c = TAILQ_NEXT(c, c_link);
849 if (++steps >= MAX_SOFTCLOCK_STEPS) {
850 nextsoftcheck = c;
851 /* Give interrupts a chance. */
852 splx(s);
853 (void) splhigh();
854 c = nextsoftcheck;
855 steps = 0;
856 }
857 } else {
858 nextsoftcheck = TAILQ_NEXT(c, c_link);
859 TAILQ_REMOVE(bucket, c, c_link);
860 #ifdef CALLWHEEL_STATS
861 callwheel_sizes[idx]--;
862 callwheel_fired++;
863 callwheel_count--;
864 #endif
865 func = c->c_func;
866 arg = c->c_arg;
867 c->c_func = NULL;
868 c->c_flags &= ~CALLOUT_PENDING;
869 splx(s);
870 (*func)(arg);
871 (void) splhigh();
872 steps = 0;
873 c = nextsoftcheck;
874 }
875 }
876 }
877 nextsoftcheck = NULL;
878 softclock_running = 0;
879 splx(s);
880 }
881
882 /*
883 * callout_setsize:
884 *
885 * Determine how many callwheels are necessary and
886 * set hash mask. Called from allocsys().
887 */
888 void
889 callout_setsize()
890 {
891
892 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
893 /* loop */ ;
894 callwheelmask = callwheelsize - 1;
895 }
896
897 /*
898 * callout_startup:
899 *
900 * Initialize the callwheel buckets.
901 */
902 void
903 callout_startup()
904 {
905 int i;
906
907 for (i = 0; i < callwheelsize; i++)
908 TAILQ_INIT(&callwheel[i]);
909 }
910
911 /*
912 * callout_init:
913 *
914 * Initialize a callout structure so that it can be used
915 * by callout_reset() and callout_stop().
916 */
917 void
918 callout_init(c)
919 struct callout *c;
920 {
921
922 memset(c, 0, sizeof(*c));
923 }
924
925 /*
926 * callout_reset:
927 *
928 * Establish or change a timeout.
929 */
930 void
931 callout_reset(c, ticks, func, arg)
932 struct callout *c;
933 int ticks;
934 void (*func) __P((void *));
935 void *arg;
936 {
937 struct callout_queue *bucket;
938 int s;
939
940 if (ticks <= 0)
941 ticks = 1;
942
943 /* Lock out the clock. */
944 s = splhigh();
945
946 /*
947 * If this callout's timer is already running, cancel it
948 * before we modify it.
949 */
950 if (c->c_flags & CALLOUT_PENDING) {
951 callout_stop(c);
952 #ifdef CALLWHEEL_STATS
953 callwheel_changed++;
954 #endif
955 }
956
957 c->c_arg = arg;
958 c->c_func = func;
959 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
960 c->c_time = hardclock_ticks + ticks;
961
962 bucket = &callwheel[c->c_time & callwheelmask];
963
964 #ifdef CALLWHEEL_STATS
965 if (TAILQ_FIRST(bucket) != NULL)
966 callwheel_collisions++;
967 #endif
968
969 TAILQ_INSERT_TAIL(bucket, c, c_link);
970
971 #ifdef CALLWHEEL_STATS
972 callwheel_count++;
973 callwheel_established++;
974 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
975 callwheel_maxlength =
976 callwheel_sizes[c->c_time & callwheelmask];
977 #endif
978
979 splx(s);
980 }
981
982 /*
983 * callout_stop:
984 *
985 * Disestablish a timeout.
986 */
987 void
988 callout_stop(c)
989 struct callout *c;
990 {
991 int s;
992
993 /* Lock out the clock. */
994 s = splhigh();
995
996 /*
997 * Don't attempt to delete a callout that's not on the queue.
998 */
999 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1000 c->c_flags &= ~CALLOUT_ACTIVE;
1001 splx(s);
1002 return;
1003 }
1004
1005 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1006
1007 if (nextsoftcheck == c)
1008 nextsoftcheck = TAILQ_NEXT(c, c_link);
1009
1010 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1011 #ifdef CALLWHEEL_STATS
1012 callwheel_count--;
1013 callwheel_disestablished++;
1014 callwheel_sizes[c->c_time & callwheelmask]--;
1015 #endif
1016
1017 c->c_func = NULL;
1018
1019 splx(s);
1020 }
1021
1022 #ifdef CALLWHEEL_STATS
1023 /*
1024 * callout_showstats:
1025 *
1026 * Display callout statistics. Call it from DDB.
1027 */
1028 void
1029 callout_showstats()
1030 {
1031 u_int64_t curticks;
1032 int s;
1033
1034 s = splclock();
1035 curticks = softclock_ticks;
1036 splx(s);
1037
1038 printf("Callwheel statistics:\n");
1039 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1040 printf("\tCallouts established: %llu\n", callwheel_established);
1041 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1042 if (callwheel_changed != 0)
1043 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1044 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1045 printf("\tNumber of buckets: %d\n", callwheelsize);
1046 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1047 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1048 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1049 callwheel_softclocks, callwheel_softchecks);
1050 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1051 }
1052 #endif
1053
1054 /*
1055 * Compute number of hz until specified time. Used to compute second
1056 * argument to callout_reset() from an absolute time.
1057 */
1058 int
1059 hzto(tv)
1060 struct timeval *tv;
1061 {
1062 long ticks, sec;
1063 int s;
1064
1065 /*
1066 * If number of microseconds will fit in 32 bit arithmetic,
1067 * then compute number of microseconds to time and scale to
1068 * ticks. Otherwise just compute number of hz in time, rounding
1069 * times greater than representible to maximum value. (We must
1070 * compute in microseconds, because hz can be greater than 1000,
1071 * and thus tick can be less than one millisecond).
1072 *
1073 * Delta times less than 14 hours can be computed ``exactly''.
1074 * (Note that if hz would yeild a non-integral number of us per
1075 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
1076 * than they should be.) Maximum value for any timeout in 10ms
1077 * ticks is 250 days.
1078 */
1079 s = splclock();
1080 sec = tv->tv_sec - time.tv_sec;
1081 if (sec <= 0x7fffffff / 1000000 - 1)
1082 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
1083 (tv->tv_usec - time.tv_usec)) / tick;
1084 else if (sec <= 0x7fffffff / hz)
1085 ticks = sec * hz;
1086 else
1087 ticks = 0x7fffffff;
1088 splx(s);
1089 return (ticks);
1090 }
1091
1092 /*
1093 * Start profiling on a process.
1094 *
1095 * Kernel profiling passes proc0 which never exits and hence
1096 * keeps the profile clock running constantly.
1097 */
1098 void
1099 startprofclock(p)
1100 struct proc *p;
1101 {
1102 int s;
1103
1104 if ((p->p_flag & P_PROFIL) == 0) {
1105 p->p_flag |= P_PROFIL;
1106 if (++profprocs == 1 && stathz != 0) {
1107 s = splstatclock();
1108 psdiv = pscnt = psratio;
1109 setstatclockrate(profhz);
1110 splx(s);
1111 }
1112 }
1113 }
1114
1115 /*
1116 * Stop profiling on a process.
1117 */
1118 void
1119 stopprofclock(p)
1120 struct proc *p;
1121 {
1122 int s;
1123
1124 if (p->p_flag & P_PROFIL) {
1125 p->p_flag &= ~P_PROFIL;
1126 if (--profprocs == 0 && stathz != 0) {
1127 s = splstatclock();
1128 psdiv = pscnt = 1;
1129 setstatclockrate(stathz);
1130 splx(s);
1131 }
1132 }
1133 }
1134
1135 /*
1136 * Statistics clock. Grab profile sample, and if divider reaches 0,
1137 * do process and kernel statistics.
1138 */
1139 void
1140 statclock(frame)
1141 struct clockframe *frame;
1142 {
1143 #ifdef GPROF
1144 struct gmonparam *g;
1145 int i;
1146 #endif
1147 static int schedclk;
1148 struct proc *p;
1149
1150 if (CLKF_USERMODE(frame)) {
1151 p = curproc;
1152 if (p->p_flag & P_PROFIL)
1153 addupc_intr(p, CLKF_PC(frame), 1);
1154 if (--pscnt > 0)
1155 return;
1156 /*
1157 * Came from user mode; CPU was in user state.
1158 * If this process is being profiled record the tick.
1159 */
1160 p->p_uticks++;
1161 if (p->p_nice > NZERO)
1162 cp_time[CP_NICE]++;
1163 else
1164 cp_time[CP_USER]++;
1165 } else {
1166 #ifdef GPROF
1167 /*
1168 * Kernel statistics are just like addupc_intr, only easier.
1169 */
1170 g = &_gmonparam;
1171 if (g->state == GMON_PROF_ON) {
1172 i = CLKF_PC(frame) - g->lowpc;
1173 if (i < g->textsize) {
1174 i /= HISTFRACTION * sizeof(*g->kcount);
1175 g->kcount[i]++;
1176 }
1177 }
1178 #endif
1179 if (--pscnt > 0)
1180 return;
1181 /*
1182 * Came from kernel mode, so we were:
1183 * - handling an interrupt,
1184 * - doing syscall or trap work on behalf of the current
1185 * user process, or
1186 * - spinning in the idle loop.
1187 * Whichever it is, charge the time as appropriate.
1188 * Note that we charge interrupts to the current process,
1189 * regardless of whether they are ``for'' that process,
1190 * so that we know how much of its real time was spent
1191 * in ``non-process'' (i.e., interrupt) work.
1192 */
1193 p = curproc;
1194 if (CLKF_INTR(frame)) {
1195 if (p != NULL)
1196 p->p_iticks++;
1197 cp_time[CP_INTR]++;
1198 } else if (p != NULL) {
1199 p->p_sticks++;
1200 cp_time[CP_SYS]++;
1201 } else
1202 cp_time[CP_IDLE]++;
1203 }
1204 pscnt = psdiv;
1205
1206 if (p != NULL) {
1207 ++p->p_cpticks;
1208 /*
1209 * If no schedclock is provided, call it here at ~~12-25 Hz,
1210 * ~~16 Hz is best
1211 */
1212 if(schedhz == 0)
1213 if ((++schedclk & 3) == 0)
1214 schedclock(p);
1215 }
1216 }
1217
1218
1219 #ifdef NTP /* NTP phase-locked loop in kernel */
1220
1221 /*
1222 * hardupdate() - local clock update
1223 *
1224 * This routine is called by ntp_adjtime() to update the local clock
1225 * phase and frequency. The implementation is of an adaptive-parameter,
1226 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1227 * time and frequency offset estimates for each call. If the kernel PPS
1228 * discipline code is configured (PPS_SYNC), the PPS signal itself
1229 * determines the new time offset, instead of the calling argument.
1230 * Presumably, calls to ntp_adjtime() occur only when the caller
1231 * believes the local clock is valid within some bound (+-128 ms with
1232 * NTP). If the caller's time is far different than the PPS time, an
1233 * argument will ensue, and it's not clear who will lose.
1234 *
1235 * For uncompensated quartz crystal oscillatores and nominal update
1236 * intervals less than 1024 s, operation should be in phase-lock mode
1237 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1238 * intervals greater than thiss, operation should be in frequency-lock
1239 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1240 *
1241 * Note: splclock() is in effect.
1242 */
1243 void
1244 hardupdate(offset)
1245 long offset;
1246 {
1247 long ltemp, mtemp;
1248
1249 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1250 return;
1251 ltemp = offset;
1252 #ifdef PPS_SYNC
1253 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1254 ltemp = pps_offset;
1255 #endif /* PPS_SYNC */
1256
1257 /*
1258 * Scale the phase adjustment and clamp to the operating range.
1259 */
1260 if (ltemp > MAXPHASE)
1261 time_offset = MAXPHASE << SHIFT_UPDATE;
1262 else if (ltemp < -MAXPHASE)
1263 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1264 else
1265 time_offset = ltemp << SHIFT_UPDATE;
1266
1267 /*
1268 * Select whether the frequency is to be controlled and in which
1269 * mode (PLL or FLL). Clamp to the operating range. Ugly
1270 * multiply/divide should be replaced someday.
1271 */
1272 if (time_status & STA_FREQHOLD || time_reftime == 0)
1273 time_reftime = time.tv_sec;
1274 mtemp = time.tv_sec - time_reftime;
1275 time_reftime = time.tv_sec;
1276 if (time_status & STA_FLL) {
1277 if (mtemp >= MINSEC) {
1278 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1279 SHIFT_UPDATE));
1280 if (ltemp < 0)
1281 time_freq -= -ltemp >> SHIFT_KH;
1282 else
1283 time_freq += ltemp >> SHIFT_KH;
1284 }
1285 } else {
1286 if (mtemp < MAXSEC) {
1287 ltemp *= mtemp;
1288 if (ltemp < 0)
1289 time_freq -= -ltemp >> (time_constant +
1290 time_constant + SHIFT_KF -
1291 SHIFT_USEC);
1292 else
1293 time_freq += ltemp >> (time_constant +
1294 time_constant + SHIFT_KF -
1295 SHIFT_USEC);
1296 }
1297 }
1298 if (time_freq > time_tolerance)
1299 time_freq = time_tolerance;
1300 else if (time_freq < -time_tolerance)
1301 time_freq = -time_tolerance;
1302 }
1303
1304 #ifdef PPS_SYNC
1305 /*
1306 * hardpps() - discipline CPU clock oscillator to external PPS signal
1307 *
1308 * This routine is called at each PPS interrupt in order to discipline
1309 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1310 * and leaves it in a handy spot for the hardclock() routine. It
1311 * integrates successive PPS phase differences and calculates the
1312 * frequency offset. This is used in hardclock() to discipline the CPU
1313 * clock oscillator so that intrinsic frequency error is cancelled out.
1314 * The code requires the caller to capture the time and hardware counter
1315 * value at the on-time PPS signal transition.
1316 *
1317 * Note that, on some Unix systems, this routine runs at an interrupt
1318 * priority level higher than the timer interrupt routine hardclock().
1319 * Therefore, the variables used are distinct from the hardclock()
1320 * variables, except for certain exceptions: The PPS frequency pps_freq
1321 * and phase pps_offset variables are determined by this routine and
1322 * updated atomically. The time_tolerance variable can be considered a
1323 * constant, since it is infrequently changed, and then only when the
1324 * PPS signal is disabled. The watchdog counter pps_valid is updated
1325 * once per second by hardclock() and is atomically cleared in this
1326 * routine.
1327 */
1328 void
1329 hardpps(tvp, usec)
1330 struct timeval *tvp; /* time at PPS */
1331 long usec; /* hardware counter at PPS */
1332 {
1333 long u_usec, v_usec, bigtick;
1334 long cal_sec, cal_usec;
1335
1336 /*
1337 * An occasional glitch can be produced when the PPS interrupt
1338 * occurs in the hardclock() routine before the time variable is
1339 * updated. Here the offset is discarded when the difference
1340 * between it and the last one is greater than tick/2, but not
1341 * if the interval since the first discard exceeds 30 s.
1342 */
1343 time_status |= STA_PPSSIGNAL;
1344 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1345 pps_valid = 0;
1346 u_usec = -tvp->tv_usec;
1347 if (u_usec < -500000)
1348 u_usec += 1000000;
1349 v_usec = pps_offset - u_usec;
1350 if (v_usec < 0)
1351 v_usec = -v_usec;
1352 if (v_usec > (tick >> 1)) {
1353 if (pps_glitch > MAXGLITCH) {
1354 pps_glitch = 0;
1355 pps_tf[2] = u_usec;
1356 pps_tf[1] = u_usec;
1357 } else {
1358 pps_glitch++;
1359 u_usec = pps_offset;
1360 }
1361 } else
1362 pps_glitch = 0;
1363
1364 /*
1365 * A three-stage median filter is used to help deglitch the pps
1366 * time. The median sample becomes the time offset estimate; the
1367 * difference between the other two samples becomes the time
1368 * dispersion (jitter) estimate.
1369 */
1370 pps_tf[2] = pps_tf[1];
1371 pps_tf[1] = pps_tf[0];
1372 pps_tf[0] = u_usec;
1373 if (pps_tf[0] > pps_tf[1]) {
1374 if (pps_tf[1] > pps_tf[2]) {
1375 pps_offset = pps_tf[1]; /* 0 1 2 */
1376 v_usec = pps_tf[0] - pps_tf[2];
1377 } else if (pps_tf[2] > pps_tf[0]) {
1378 pps_offset = pps_tf[0]; /* 2 0 1 */
1379 v_usec = pps_tf[2] - pps_tf[1];
1380 } else {
1381 pps_offset = pps_tf[2]; /* 0 2 1 */
1382 v_usec = pps_tf[0] - pps_tf[1];
1383 }
1384 } else {
1385 if (pps_tf[1] < pps_tf[2]) {
1386 pps_offset = pps_tf[1]; /* 2 1 0 */
1387 v_usec = pps_tf[2] - pps_tf[0];
1388 } else if (pps_tf[2] < pps_tf[0]) {
1389 pps_offset = pps_tf[0]; /* 1 0 2 */
1390 v_usec = pps_tf[1] - pps_tf[2];
1391 } else {
1392 pps_offset = pps_tf[2]; /* 1 2 0 */
1393 v_usec = pps_tf[1] - pps_tf[0];
1394 }
1395 }
1396 if (v_usec > MAXTIME)
1397 pps_jitcnt++;
1398 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1399 if (v_usec < 0)
1400 pps_jitter -= -v_usec >> PPS_AVG;
1401 else
1402 pps_jitter += v_usec >> PPS_AVG;
1403 if (pps_jitter > (MAXTIME >> 1))
1404 time_status |= STA_PPSJITTER;
1405
1406 /*
1407 * During the calibration interval adjust the starting time when
1408 * the tick overflows. At the end of the interval compute the
1409 * duration of the interval and the difference of the hardware
1410 * counters at the beginning and end of the interval. This code
1411 * is deliciously complicated by the fact valid differences may
1412 * exceed the value of tick when using long calibration
1413 * intervals and small ticks. Note that the counter can be
1414 * greater than tick if caught at just the wrong instant, but
1415 * the values returned and used here are correct.
1416 */
1417 bigtick = (long)tick << SHIFT_USEC;
1418 pps_usec -= pps_freq;
1419 if (pps_usec >= bigtick)
1420 pps_usec -= bigtick;
1421 if (pps_usec < 0)
1422 pps_usec += bigtick;
1423 pps_time.tv_sec++;
1424 pps_count++;
1425 if (pps_count < (1 << pps_shift))
1426 return;
1427 pps_count = 0;
1428 pps_calcnt++;
1429 u_usec = usec << SHIFT_USEC;
1430 v_usec = pps_usec - u_usec;
1431 if (v_usec >= bigtick >> 1)
1432 v_usec -= bigtick;
1433 if (v_usec < -(bigtick >> 1))
1434 v_usec += bigtick;
1435 if (v_usec < 0)
1436 v_usec = -(-v_usec >> pps_shift);
1437 else
1438 v_usec = v_usec >> pps_shift;
1439 pps_usec = u_usec;
1440 cal_sec = tvp->tv_sec;
1441 cal_usec = tvp->tv_usec;
1442 cal_sec -= pps_time.tv_sec;
1443 cal_usec -= pps_time.tv_usec;
1444 if (cal_usec < 0) {
1445 cal_usec += 1000000;
1446 cal_sec--;
1447 }
1448 pps_time = *tvp;
1449
1450 /*
1451 * Check for lost interrupts, noise, excessive jitter and
1452 * excessive frequency error. The number of timer ticks during
1453 * the interval may vary +-1 tick. Add to this a margin of one
1454 * tick for the PPS signal jitter and maximum frequency
1455 * deviation. If the limits are exceeded, the calibration
1456 * interval is reset to the minimum and we start over.
1457 */
1458 u_usec = (long)tick << 1;
1459 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1460 || (cal_sec == 0 && cal_usec < u_usec))
1461 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1462 pps_errcnt++;
1463 pps_shift = PPS_SHIFT;
1464 pps_intcnt = 0;
1465 time_status |= STA_PPSERROR;
1466 return;
1467 }
1468
1469 /*
1470 * A three-stage median filter is used to help deglitch the pps
1471 * frequency. The median sample becomes the frequency offset
1472 * estimate; the difference between the other two samples
1473 * becomes the frequency dispersion (stability) estimate.
1474 */
1475 pps_ff[2] = pps_ff[1];
1476 pps_ff[1] = pps_ff[0];
1477 pps_ff[0] = v_usec;
1478 if (pps_ff[0] > pps_ff[1]) {
1479 if (pps_ff[1] > pps_ff[2]) {
1480 u_usec = pps_ff[1]; /* 0 1 2 */
1481 v_usec = pps_ff[0] - pps_ff[2];
1482 } else if (pps_ff[2] > pps_ff[0]) {
1483 u_usec = pps_ff[0]; /* 2 0 1 */
1484 v_usec = pps_ff[2] - pps_ff[1];
1485 } else {
1486 u_usec = pps_ff[2]; /* 0 2 1 */
1487 v_usec = pps_ff[0] - pps_ff[1];
1488 }
1489 } else {
1490 if (pps_ff[1] < pps_ff[2]) {
1491 u_usec = pps_ff[1]; /* 2 1 0 */
1492 v_usec = pps_ff[2] - pps_ff[0];
1493 } else if (pps_ff[2] < pps_ff[0]) {
1494 u_usec = pps_ff[0]; /* 1 0 2 */
1495 v_usec = pps_ff[1] - pps_ff[2];
1496 } else {
1497 u_usec = pps_ff[2]; /* 1 2 0 */
1498 v_usec = pps_ff[1] - pps_ff[0];
1499 }
1500 }
1501
1502 /*
1503 * Here the frequency dispersion (stability) is updated. If it
1504 * is less than one-fourth the maximum (MAXFREQ), the frequency
1505 * offset is updated as well, but clamped to the tolerance. It
1506 * will be processed later by the hardclock() routine.
1507 */
1508 v_usec = (v_usec >> 1) - pps_stabil;
1509 if (v_usec < 0)
1510 pps_stabil -= -v_usec >> PPS_AVG;
1511 else
1512 pps_stabil += v_usec >> PPS_AVG;
1513 if (pps_stabil > MAXFREQ >> 2) {
1514 pps_stbcnt++;
1515 time_status |= STA_PPSWANDER;
1516 return;
1517 }
1518 if (time_status & STA_PPSFREQ) {
1519 if (u_usec < 0) {
1520 pps_freq -= -u_usec >> PPS_AVG;
1521 if (pps_freq < -time_tolerance)
1522 pps_freq = -time_tolerance;
1523 u_usec = -u_usec;
1524 } else {
1525 pps_freq += u_usec >> PPS_AVG;
1526 if (pps_freq > time_tolerance)
1527 pps_freq = time_tolerance;
1528 }
1529 }
1530
1531 /*
1532 * Here the calibration interval is adjusted. If the maximum
1533 * time difference is greater than tick / 4, reduce the interval
1534 * by half. If this is not the case for four consecutive
1535 * intervals, double the interval.
1536 */
1537 if (u_usec << pps_shift > bigtick >> 2) {
1538 pps_intcnt = 0;
1539 if (pps_shift > PPS_SHIFT)
1540 pps_shift--;
1541 } else if (pps_intcnt >= 4) {
1542 pps_intcnt = 0;
1543 if (pps_shift < PPS_SHIFTMAX)
1544 pps_shift++;
1545 } else
1546 pps_intcnt++;
1547 }
1548 #endif /* PPS_SYNC */
1549 #endif /* NTP */
1550
1551
1552 /*
1553 * Return information about system clocks.
1554 */
1555 int
1556 sysctl_clockrate(where, sizep)
1557 char *where;
1558 size_t *sizep;
1559 {
1560 struct clockinfo clkinfo;
1561
1562 /*
1563 * Construct clockinfo structure.
1564 */
1565 clkinfo.tick = tick;
1566 clkinfo.tickadj = tickadj;
1567 clkinfo.hz = hz;
1568 clkinfo.profhz = profhz;
1569 clkinfo.stathz = stathz ? stathz : hz;
1570 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1571 }
1572