kern_clock.c revision 1.58 1 /* $NetBSD: kern_clock.c,v 1.58 2000/05/29 23:48:33 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <vm/vm.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 u_int64_t hardclock_ticks, softclock_ticks;
316 int softclock_running; /* 1 => softclock() is running */
317 static int psdiv, pscnt; /* prof => stat divider */
318 int psratio; /* ratio: prof / stat */
319 int tickfix, tickfixinterval; /* used if tick not really integral */
320 #ifndef NTP
321 static int tickfixcnt; /* accumulated fractional error */
322 #else
323 int fixtick; /* used by NTP for same */
324 int shifthz;
325 #endif
326
327 /*
328 * We might want ldd to load the both words from time at once.
329 * To succeed we need to be quadword aligned.
330 * The sparc already does that, and that it has worked so far is a fluke.
331 */
332 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
333 volatile struct timeval mono_time;
334
335 /*
336 * The callout mechanism is based on the work of Adam M. Costello and
337 * George Varghese, published in a technical report entitled "Redesigning
338 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
339 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
340 *
341 * The original work on the data structures used in this implementation
342 * was published by G. Varghese and A. Lauck in the paper "Hashed and
343 * Hierarchical Timing Wheels: Data Structures for the Efficient
344 * Implementation of a Timer Facility" in the Proceedings of the 11th
345 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
346 * November 1987.
347 */
348 struct callout_queue *callwheel;
349 int callwheelsize, callwheelbits, callwheelmask;
350
351 static struct callout *nextsoftcheck; /* next callout to be checked */
352
353 #ifdef CALLWHEEL_STATS
354 int callwheel_collisions; /* number of hash collisions */
355 int callwheel_maxlength; /* length of the longest hash chain */
356 int *callwheel_sizes; /* per-bucket length count */
357 u_int64_t callwheel_count; /* # callouts currently */
358 u_int64_t callwheel_established; /* # callouts established */
359 u_int64_t callwheel_fired; /* # callouts that fired */
360 u_int64_t callwheel_disestablished; /* # callouts disestablished */
361 u_int64_t callwheel_changed; /* # callouts changed */
362 u_int64_t callwheel_softclocks; /* # times softclock() called */
363 u_int64_t callwheel_softchecks; /* # checks per softclock() */
364 u_int64_t callwheel_softempty; /* # empty buckets seen */
365 #endif /* CALLWHEEL_STATS */
366
367 /*
368 * This value indicates the number of consecutive callouts that
369 * will be checked before we allow interrupts to have a chance
370 * again.
371 */
372 #ifndef MAX_SOFTCLOCK_STEPS
373 #define MAX_SOFTCLOCK_STEPS 100
374 #endif
375
376 /*
377 * Initialize clock frequencies and start both clocks running.
378 */
379 void
380 initclocks()
381 {
382 int i;
383
384 /*
385 * Set divisors to 1 (normal case) and let the machine-specific
386 * code do its bit.
387 */
388 psdiv = pscnt = 1;
389 cpu_initclocks();
390
391 /*
392 * Compute profhz/stathz, and fix profhz if needed.
393 */
394 i = stathz ? stathz : hz;
395 if (profhz == 0)
396 profhz = i;
397 psratio = profhz / i;
398
399 #ifdef NTP
400 switch (hz) {
401 case 1:
402 shifthz = SHIFT_SCALE - 0;
403 break;
404 case 2:
405 shifthz = SHIFT_SCALE - 1;
406 break;
407 case 4:
408 shifthz = SHIFT_SCALE - 2;
409 break;
410 case 8:
411 shifthz = SHIFT_SCALE - 3;
412 break;
413 case 16:
414 shifthz = SHIFT_SCALE - 4;
415 break;
416 case 32:
417 shifthz = SHIFT_SCALE - 5;
418 break;
419 case 60:
420 case 64:
421 shifthz = SHIFT_SCALE - 6;
422 break;
423 case 96:
424 case 100:
425 case 128:
426 shifthz = SHIFT_SCALE - 7;
427 break;
428 case 256:
429 shifthz = SHIFT_SCALE - 8;
430 break;
431 case 512:
432 shifthz = SHIFT_SCALE - 9;
433 break;
434 case 1000:
435 case 1024:
436 shifthz = SHIFT_SCALE - 10;
437 break;
438 case 1200:
439 case 2048:
440 shifthz = SHIFT_SCALE - 11;
441 break;
442 case 4096:
443 shifthz = SHIFT_SCALE - 12;
444 break;
445 case 8192:
446 shifthz = SHIFT_SCALE - 13;
447 break;
448 case 16384:
449 shifthz = SHIFT_SCALE - 14;
450 break;
451 case 32768:
452 shifthz = SHIFT_SCALE - 15;
453 break;
454 case 65536:
455 shifthz = SHIFT_SCALE - 16;
456 break;
457 default:
458 panic("weird hz");
459 }
460 if (fixtick == 0) {
461 /*
462 * Give MD code a chance to set this to a better
463 * value; but, if it doesn't, we should.
464 */
465 fixtick = (1000000 - (hz*tick));
466 }
467 #endif
468 }
469
470 /*
471 * The real-time timer, interrupting hz times per second.
472 */
473 void
474 hardclock(frame)
475 struct clockframe *frame;
476 {
477 struct proc *p;
478 int delta;
479 extern int tickdelta;
480 extern long timedelta;
481 #ifdef NTP
482 int time_update;
483 int ltemp;
484 #endif
485
486 p = curproc;
487 if (p) {
488 struct pstats *pstats;
489
490 /*
491 * Run current process's virtual and profile time, as needed.
492 */
493 pstats = p->p_stats;
494 if (CLKF_USERMODE(frame) &&
495 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
496 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
497 psignal(p, SIGVTALRM);
498 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
499 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
500 psignal(p, SIGPROF);
501 }
502
503 /*
504 * If no separate statistics clock is available, run it from here.
505 */
506 if (stathz == 0)
507 statclock(frame);
508
509 /*
510 * Increment the time-of-day. The increment is normally just
511 * ``tick''. If the machine is one which has a clock frequency
512 * such that ``hz'' would not divide the second evenly into
513 * milliseconds, a periodic adjustment must be applied. Finally,
514 * if we are still adjusting the time (see adjtime()),
515 * ``tickdelta'' may also be added in.
516 */
517 hardclock_ticks++;
518 delta = tick;
519
520 #ifndef NTP
521 if (tickfix) {
522 tickfixcnt += tickfix;
523 if (tickfixcnt >= tickfixinterval) {
524 delta++;
525 tickfixcnt -= tickfixinterval;
526 }
527 }
528 #endif /* !NTP */
529 /* Imprecise 4bsd adjtime() handling */
530 if (timedelta != 0) {
531 delta += tickdelta;
532 timedelta -= tickdelta;
533 }
534
535 #ifdef notyet
536 microset();
537 #endif
538
539 #ifndef NTP
540 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
541 #endif
542 BUMPTIME(&mono_time, delta);
543
544 #ifdef NTP
545 time_update = delta;
546
547 /*
548 * Compute the phase adjustment. If the low-order bits
549 * (time_phase) of the update overflow, bump the high-order bits
550 * (time_update).
551 */
552 time_phase += time_adj;
553 if (time_phase <= -FINEUSEC) {
554 ltemp = -time_phase >> SHIFT_SCALE;
555 time_phase += ltemp << SHIFT_SCALE;
556 time_update -= ltemp;
557 } else if (time_phase >= FINEUSEC) {
558 ltemp = time_phase >> SHIFT_SCALE;
559 time_phase -= ltemp << SHIFT_SCALE;
560 time_update += ltemp;
561 }
562
563 #ifdef HIGHBALL
564 /*
565 * If the HIGHBALL board is installed, we need to adjust the
566 * external clock offset in order to close the hardware feedback
567 * loop. This will adjust the external clock phase and frequency
568 * in small amounts. The additional phase noise and frequency
569 * wander this causes should be minimal. We also need to
570 * discipline the kernel time variable, since the PLL is used to
571 * discipline the external clock. If the Highball board is not
572 * present, we discipline kernel time with the PLL as usual. We
573 * assume that the external clock phase adjustment (time_update)
574 * and kernel phase adjustment (clock_cpu) are less than the
575 * value of tick.
576 */
577 clock_offset.tv_usec += time_update;
578 if (clock_offset.tv_usec >= 1000000) {
579 clock_offset.tv_sec++;
580 clock_offset.tv_usec -= 1000000;
581 }
582 if (clock_offset.tv_usec < 0) {
583 clock_offset.tv_sec--;
584 clock_offset.tv_usec += 1000000;
585 }
586 time.tv_usec += clock_cpu;
587 clock_cpu = 0;
588 #else
589 time.tv_usec += time_update;
590 #endif /* HIGHBALL */
591
592 /*
593 * On rollover of the second the phase adjustment to be used for
594 * the next second is calculated. Also, the maximum error is
595 * increased by the tolerance. If the PPS frequency discipline
596 * code is present, the phase is increased to compensate for the
597 * CPU clock oscillator frequency error.
598 *
599 * On a 32-bit machine and given parameters in the timex.h
600 * header file, the maximum phase adjustment is +-512 ms and
601 * maximum frequency offset is a tad less than) +-512 ppm. On a
602 * 64-bit machine, you shouldn't need to ask.
603 */
604 if (time.tv_usec >= 1000000) {
605 time.tv_usec -= 1000000;
606 time.tv_sec++;
607 time_maxerror += time_tolerance >> SHIFT_USEC;
608
609 /*
610 * Leap second processing. If in leap-insert state at
611 * the end of the day, the system clock is set back one
612 * second; if in leap-delete state, the system clock is
613 * set ahead one second. The microtime() routine or
614 * external clock driver will insure that reported time
615 * is always monotonic. The ugly divides should be
616 * replaced.
617 */
618 switch (time_state) {
619 case TIME_OK:
620 if (time_status & STA_INS)
621 time_state = TIME_INS;
622 else if (time_status & STA_DEL)
623 time_state = TIME_DEL;
624 break;
625
626 case TIME_INS:
627 if (time.tv_sec % 86400 == 0) {
628 time.tv_sec--;
629 time_state = TIME_OOP;
630 }
631 break;
632
633 case TIME_DEL:
634 if ((time.tv_sec + 1) % 86400 == 0) {
635 time.tv_sec++;
636 time_state = TIME_WAIT;
637 }
638 break;
639
640 case TIME_OOP:
641 time_state = TIME_WAIT;
642 break;
643
644 case TIME_WAIT:
645 if (!(time_status & (STA_INS | STA_DEL)))
646 time_state = TIME_OK;
647 break;
648 }
649
650 /*
651 * Compute the phase adjustment for the next second. In
652 * PLL mode, the offset is reduced by a fixed factor
653 * times the time constant. In FLL mode the offset is
654 * used directly. In either mode, the maximum phase
655 * adjustment for each second is clamped so as to spread
656 * the adjustment over not more than the number of
657 * seconds between updates.
658 */
659 if (time_offset < 0) {
660 ltemp = -time_offset;
661 if (!(time_status & STA_FLL))
662 ltemp >>= SHIFT_KG + time_constant;
663 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
664 ltemp = (MAXPHASE / MINSEC) <<
665 SHIFT_UPDATE;
666 time_offset += ltemp;
667 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
668 } else if (time_offset > 0) {
669 ltemp = time_offset;
670 if (!(time_status & STA_FLL))
671 ltemp >>= SHIFT_KG + time_constant;
672 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
673 ltemp = (MAXPHASE / MINSEC) <<
674 SHIFT_UPDATE;
675 time_offset -= ltemp;
676 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
677 } else
678 time_adj = 0;
679
680 /*
681 * Compute the frequency estimate and additional phase
682 * adjustment due to frequency error for the next
683 * second. When the PPS signal is engaged, gnaw on the
684 * watchdog counter and update the frequency computed by
685 * the pll and the PPS signal.
686 */
687 #ifdef PPS_SYNC
688 pps_valid++;
689 if (pps_valid == PPS_VALID) {
690 pps_jitter = MAXTIME;
691 pps_stabil = MAXFREQ;
692 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
693 STA_PPSWANDER | STA_PPSERROR);
694 }
695 ltemp = time_freq + pps_freq;
696 #else
697 ltemp = time_freq;
698 #endif /* PPS_SYNC */
699
700 if (ltemp < 0)
701 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
702 else
703 time_adj += ltemp >> (SHIFT_USEC - shifthz);
704 time_adj += (long)fixtick << shifthz;
705
706 /*
707 * When the CPU clock oscillator frequency is not a
708 * power of 2 in Hz, shifthz is only an approximate
709 * scale factor.
710 *
711 * To determine the adjustment, you can do the following:
712 * bc -q
713 * scale=24
714 * obase=2
715 * idealhz/realhz
716 * where `idealhz' is the next higher power of 2, and `realhz'
717 * is the actual value. You may need to factor this result
718 * into a sequence of 2 multipliers to get better precision.
719 *
720 * Likewise, the error can be calculated with (e.g. for 100Hz):
721 * bc -q
722 * scale=24
723 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
724 * (and then multiply by 1000000 to get ppm).
725 */
726 switch (hz) {
727 case 60:
728 /* A factor of 1.000100010001 gives about 15ppm
729 error. */
730 if (time_adj < 0) {
731 time_adj -= (-time_adj >> 4);
732 time_adj -= (-time_adj >> 8);
733 } else {
734 time_adj += (time_adj >> 4);
735 time_adj += (time_adj >> 8);
736 }
737 break;
738
739 case 96:
740 /* A factor of 1.0101010101 gives about 244ppm error. */
741 if (time_adj < 0) {
742 time_adj -= (-time_adj >> 2);
743 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
744 } else {
745 time_adj += (time_adj >> 2);
746 time_adj += (time_adj >> 4) + (time_adj >> 8);
747 }
748 break;
749
750 case 100:
751 /* A factor of 1.010001111010111 gives about 1ppm
752 error. */
753 if (time_adj < 0) {
754 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
755 time_adj += (-time_adj >> 10);
756 } else {
757 time_adj += (time_adj >> 2) + (time_adj >> 5);
758 time_adj -= (time_adj >> 10);
759 }
760 break;
761
762 case 1000:
763 /* A factor of 1.000001100010100001 gives about 50ppm
764 error. */
765 if (time_adj < 0) {
766 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
767 time_adj -= (-time_adj >> 7);
768 } else {
769 time_adj += (time_adj >> 6) + (time_adj >> 11);
770 time_adj += (time_adj >> 7);
771 }
772 break;
773
774 case 1200:
775 /* A factor of 1.1011010011100001 gives about 64ppm
776 error. */
777 if (time_adj < 0) {
778 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
779 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
780 } else {
781 time_adj += (time_adj >> 1) + (time_adj >> 6);
782 time_adj += (time_adj >> 3) + (time_adj >> 10);
783 }
784 break;
785 }
786
787 #ifdef EXT_CLOCK
788 /*
789 * If an external clock is present, it is necessary to
790 * discipline the kernel time variable anyway, since not
791 * all system components use the microtime() interface.
792 * Here, the time offset between the external clock and
793 * kernel time variable is computed every so often.
794 */
795 clock_count++;
796 if (clock_count > CLOCK_INTERVAL) {
797 clock_count = 0;
798 microtime(&clock_ext);
799 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
800 delta.tv_usec = clock_ext.tv_usec -
801 time.tv_usec;
802 if (delta.tv_usec < 0)
803 delta.tv_sec--;
804 if (delta.tv_usec >= 500000) {
805 delta.tv_usec -= 1000000;
806 delta.tv_sec++;
807 }
808 if (delta.tv_usec < -500000) {
809 delta.tv_usec += 1000000;
810 delta.tv_sec--;
811 }
812 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
813 delta.tv_usec > MAXPHASE) ||
814 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
815 delta.tv_usec < -MAXPHASE)) {
816 time = clock_ext;
817 delta.tv_sec = 0;
818 delta.tv_usec = 0;
819 }
820 #ifdef HIGHBALL
821 clock_cpu = delta.tv_usec;
822 #else /* HIGHBALL */
823 hardupdate(delta.tv_usec);
824 #endif /* HIGHBALL */
825 }
826 #endif /* EXT_CLOCK */
827 }
828
829 #endif /* NTP */
830
831 /*
832 * Process callouts at a very low cpu priority, so we don't keep the
833 * relatively high clock interrupt priority any longer than necessary.
834 */
835 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
836 if (CLKF_BASEPRI(frame)) {
837 /*
838 * Save the overhead of a software interrupt;
839 * it will happen as soon as we return, so do
840 * it now.
841 *
842 * NOTE: If we're at ``base priority'', softclock()
843 * was not already running.
844 */
845 (void)spllowersoftclock();
846 softclock();
847 } else
848 setsoftclock();
849 } else if (softclock_running == 0 &&
850 (softclock_ticks + 1) == hardclock_ticks)
851 softclock_ticks++;
852 }
853
854 /*
855 * Software (low priority) clock interrupt.
856 * Run periodic events from timeout queue.
857 */
858 /*ARGSUSED*/
859 void
860 softclock()
861 {
862 struct callout_queue *bucket;
863 struct callout *c;
864 void (*func) __P((void *));
865 void *arg;
866 int s, idx;
867 int steps = 0;
868
869 s = splhigh();
870 softclock_running = 1;
871
872 #ifdef CALLWHEEL_STATS
873 callwheel_softclocks++;
874 #endif
875
876 while (softclock_ticks != hardclock_ticks) {
877 softclock_ticks++;
878 idx = (int)(softclock_ticks & callwheelmask);
879 bucket = &callwheel[idx];
880 c = TAILQ_FIRST(bucket);
881 #ifdef CALLWHEEL_STATS
882 if (c == NULL)
883 callwheel_softempty++;
884 #endif
885 while (c != NULL) {
886 #ifdef CALLWHEEL_STATS
887 callwheel_softchecks++;
888 #endif
889 if (c->c_time != softclock_ticks) {
890 c = TAILQ_NEXT(c, c_link);
891 if (++steps >= MAX_SOFTCLOCK_STEPS) {
892 nextsoftcheck = c;
893 /* Give interrupts a chance. */
894 splx(s);
895 (void) splhigh();
896 c = nextsoftcheck;
897 steps = 0;
898 }
899 } else {
900 nextsoftcheck = TAILQ_NEXT(c, c_link);
901 TAILQ_REMOVE(bucket, c, c_link);
902 #ifdef CALLWHEEL_STATS
903 callwheel_sizes[idx]--;
904 callwheel_fired++;
905 callwheel_count--;
906 #endif
907 func = c->c_func;
908 arg = c->c_arg;
909 c->c_func = NULL;
910 c->c_flags &= ~CALLOUT_PENDING;
911 splx(s);
912 (*func)(arg);
913 (void) splhigh();
914 steps = 0;
915 c = nextsoftcheck;
916 }
917 }
918 }
919 nextsoftcheck = NULL;
920 softclock_running = 0;
921 splx(s);
922 }
923
924 /*
925 * callout_setsize:
926 *
927 * Determine how many callwheels are necessary and
928 * set hash mask. Called from allocsys().
929 */
930 void
931 callout_setsize()
932 {
933
934 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
935 /* loop */ ;
936 callwheelmask = callwheelsize - 1;
937 }
938
939 /*
940 * callout_startup:
941 *
942 * Initialize the callwheel buckets.
943 */
944 void
945 callout_startup()
946 {
947 int i;
948
949 for (i = 0; i < callwheelsize; i++)
950 TAILQ_INIT(&callwheel[i]);
951 }
952
953 /*
954 * callout_init:
955 *
956 * Initialize a callout structure so that it can be used
957 * by callout_reset() and callout_stop().
958 */
959 void
960 callout_init(c)
961 struct callout *c;
962 {
963
964 memset(c, 0, sizeof(*c));
965 }
966
967 /*
968 * callout_reset:
969 *
970 * Establish or change a timeout.
971 */
972 void
973 callout_reset(c, ticks, func, arg)
974 struct callout *c;
975 int ticks;
976 void (*func) __P((void *));
977 void *arg;
978 {
979 struct callout_queue *bucket;
980 int s;
981
982 if (ticks <= 0)
983 ticks = 1;
984
985 /* Lock out the clock. */
986 s = splhigh();
987
988 /*
989 * If this callout's timer is already running, cancel it
990 * before we modify it.
991 */
992 if (c->c_flags & CALLOUT_PENDING) {
993 callout_stop(c);
994 #ifdef CALLWHEEL_STATS
995 callwheel_changed++;
996 #endif
997 }
998
999 c->c_arg = arg;
1000 c->c_func = func;
1001 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1002 c->c_time = hardclock_ticks + ticks;
1003
1004 bucket = &callwheel[c->c_time & callwheelmask];
1005
1006 #ifdef CALLWHEEL_STATS
1007 if (TAILQ_FIRST(bucket) != NULL)
1008 callwheel_collisions++;
1009 #endif
1010
1011 TAILQ_INSERT_TAIL(bucket, c, c_link);
1012
1013 #ifdef CALLWHEEL_STATS
1014 callwheel_count++;
1015 callwheel_established++;
1016 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1017 callwheel_maxlength =
1018 callwheel_sizes[c->c_time & callwheelmask];
1019 #endif
1020
1021 splx(s);
1022 }
1023
1024 /*
1025 * callout_stop:
1026 *
1027 * Disestablish a timeout.
1028 */
1029 void
1030 callout_stop(c)
1031 struct callout *c;
1032 {
1033 int s;
1034
1035 /* Lock out the clock. */
1036 s = splhigh();
1037
1038 /*
1039 * Don't attempt to delete a callout that's not on the queue.
1040 */
1041 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1042 c->c_flags &= ~CALLOUT_ACTIVE;
1043 splx(s);
1044 return;
1045 }
1046
1047 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1048
1049 if (nextsoftcheck == c)
1050 nextsoftcheck = TAILQ_NEXT(c, c_link);
1051
1052 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1053 #ifdef CALLWHEEL_STATS
1054 callwheel_count--;
1055 callwheel_disestablished++;
1056 callwheel_sizes[c->c_time & callwheelmask]--;
1057 #endif
1058
1059 c->c_func = NULL;
1060
1061 splx(s);
1062 }
1063
1064 #ifdef CALLWHEEL_STATS
1065 /*
1066 * callout_showstats:
1067 *
1068 * Display callout statistics. Call it from DDB.
1069 */
1070 void
1071 callout_showstats()
1072 {
1073 u_int64_t curticks;
1074 int s;
1075
1076 s = splclock();
1077 curticks = softclock_ticks;
1078 splx(s);
1079
1080 printf("Callwheel statistics:\n");
1081 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1082 printf("\tCallouts established: %llu\n", callwheel_established);
1083 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1084 if (callwheel_changed != 0)
1085 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1086 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1087 printf("\tNumber of buckets: %d\n", callwheelsize);
1088 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1089 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1090 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1091 callwheel_softclocks, callwheel_softchecks);
1092 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1093 }
1094 #endif
1095
1096 /*
1097 * Compute number of hz until specified time. Used to compute second
1098 * argument to callout_reset() from an absolute time.
1099 */
1100 int
1101 hzto(tv)
1102 struct timeval *tv;
1103 {
1104 long ticks, sec;
1105 int s;
1106
1107 /*
1108 * If number of microseconds will fit in 32 bit arithmetic,
1109 * then compute number of microseconds to time and scale to
1110 * ticks. Otherwise just compute number of hz in time, rounding
1111 * times greater than representible to maximum value. (We must
1112 * compute in microseconds, because hz can be greater than 1000,
1113 * and thus tick can be less than one millisecond).
1114 *
1115 * Delta times less than 14 hours can be computed ``exactly''.
1116 * (Note that if hz would yeild a non-integral number of us per
1117 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
1118 * than they should be.) Maximum value for any timeout in 10ms
1119 * ticks is 250 days.
1120 */
1121 s = splclock();
1122 sec = tv->tv_sec - time.tv_sec;
1123 if (sec <= 0x7fffffff / 1000000 - 1)
1124 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
1125 (tv->tv_usec - time.tv_usec)) / tick;
1126 else if (sec <= 0x7fffffff / hz)
1127 ticks = sec * hz;
1128 else
1129 ticks = 0x7fffffff;
1130 splx(s);
1131 return (ticks);
1132 }
1133
1134 /*
1135 * Start profiling on a process.
1136 *
1137 * Kernel profiling passes proc0 which never exits and hence
1138 * keeps the profile clock running constantly.
1139 */
1140 void
1141 startprofclock(p)
1142 struct proc *p;
1143 {
1144 int s;
1145
1146 if ((p->p_flag & P_PROFIL) == 0) {
1147 p->p_flag |= P_PROFIL;
1148 if (++profprocs == 1 && stathz != 0) {
1149 s = splstatclock();
1150 psdiv = pscnt = psratio;
1151 setstatclockrate(profhz);
1152 splx(s);
1153 }
1154 }
1155 }
1156
1157 /*
1158 * Stop profiling on a process.
1159 */
1160 void
1161 stopprofclock(p)
1162 struct proc *p;
1163 {
1164 int s;
1165
1166 if (p->p_flag & P_PROFIL) {
1167 p->p_flag &= ~P_PROFIL;
1168 if (--profprocs == 0 && stathz != 0) {
1169 s = splstatclock();
1170 psdiv = pscnt = 1;
1171 setstatclockrate(stathz);
1172 splx(s);
1173 }
1174 }
1175 }
1176
1177 /*
1178 * Statistics clock. Grab profile sample, and if divider reaches 0,
1179 * do process and kernel statistics.
1180 */
1181 void
1182 statclock(frame)
1183 struct clockframe *frame;
1184 {
1185 #ifdef GPROF
1186 struct gmonparam *g;
1187 int i;
1188 #endif
1189 static int schedclk;
1190 struct proc *p;
1191
1192 if (CLKF_USERMODE(frame)) {
1193 p = curproc;
1194 if (p->p_flag & P_PROFIL)
1195 addupc_intr(p, CLKF_PC(frame), 1);
1196 if (--pscnt > 0)
1197 return;
1198 /*
1199 * Came from user mode; CPU was in user state.
1200 * If this process is being profiled record the tick.
1201 */
1202 p->p_uticks++;
1203 if (p->p_nice > NZERO)
1204 cp_time[CP_NICE]++;
1205 else
1206 cp_time[CP_USER]++;
1207 } else {
1208 #ifdef GPROF
1209 /*
1210 * Kernel statistics are just like addupc_intr, only easier.
1211 */
1212 g = &_gmonparam;
1213 if (g->state == GMON_PROF_ON) {
1214 i = CLKF_PC(frame) - g->lowpc;
1215 if (i < g->textsize) {
1216 i /= HISTFRACTION * sizeof(*g->kcount);
1217 g->kcount[i]++;
1218 }
1219 }
1220 #endif
1221 if (--pscnt > 0)
1222 return;
1223 /*
1224 * Came from kernel mode, so we were:
1225 * - handling an interrupt,
1226 * - doing syscall or trap work on behalf of the current
1227 * user process, or
1228 * - spinning in the idle loop.
1229 * Whichever it is, charge the time as appropriate.
1230 * Note that we charge interrupts to the current process,
1231 * regardless of whether they are ``for'' that process,
1232 * so that we know how much of its real time was spent
1233 * in ``non-process'' (i.e., interrupt) work.
1234 */
1235 p = curproc;
1236 if (CLKF_INTR(frame)) {
1237 if (p != NULL)
1238 p->p_iticks++;
1239 cp_time[CP_INTR]++;
1240 } else if (p != NULL) {
1241 p->p_sticks++;
1242 cp_time[CP_SYS]++;
1243 } else
1244 cp_time[CP_IDLE]++;
1245 }
1246 pscnt = psdiv;
1247
1248 if (p != NULL) {
1249 ++p->p_cpticks;
1250 /*
1251 * If no schedclock is provided, call it here at ~~12-25 Hz,
1252 * ~~16 Hz is best
1253 */
1254 if(schedhz == 0)
1255 if ((++schedclk & 3) == 0)
1256 schedclock(p);
1257 }
1258 }
1259
1260
1261 #ifdef NTP /* NTP phase-locked loop in kernel */
1262
1263 /*
1264 * hardupdate() - local clock update
1265 *
1266 * This routine is called by ntp_adjtime() to update the local clock
1267 * phase and frequency. The implementation is of an adaptive-parameter,
1268 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1269 * time and frequency offset estimates for each call. If the kernel PPS
1270 * discipline code is configured (PPS_SYNC), the PPS signal itself
1271 * determines the new time offset, instead of the calling argument.
1272 * Presumably, calls to ntp_adjtime() occur only when the caller
1273 * believes the local clock is valid within some bound (+-128 ms with
1274 * NTP). If the caller's time is far different than the PPS time, an
1275 * argument will ensue, and it's not clear who will lose.
1276 *
1277 * For uncompensated quartz crystal oscillatores and nominal update
1278 * intervals less than 1024 s, operation should be in phase-lock mode
1279 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1280 * intervals greater than thiss, operation should be in frequency-lock
1281 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1282 *
1283 * Note: splclock() is in effect.
1284 */
1285 void
1286 hardupdate(offset)
1287 long offset;
1288 {
1289 long ltemp, mtemp;
1290
1291 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1292 return;
1293 ltemp = offset;
1294 #ifdef PPS_SYNC
1295 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1296 ltemp = pps_offset;
1297 #endif /* PPS_SYNC */
1298
1299 /*
1300 * Scale the phase adjustment and clamp to the operating range.
1301 */
1302 if (ltemp > MAXPHASE)
1303 time_offset = MAXPHASE << SHIFT_UPDATE;
1304 else if (ltemp < -MAXPHASE)
1305 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1306 else
1307 time_offset = ltemp << SHIFT_UPDATE;
1308
1309 /*
1310 * Select whether the frequency is to be controlled and in which
1311 * mode (PLL or FLL). Clamp to the operating range. Ugly
1312 * multiply/divide should be replaced someday.
1313 */
1314 if (time_status & STA_FREQHOLD || time_reftime == 0)
1315 time_reftime = time.tv_sec;
1316 mtemp = time.tv_sec - time_reftime;
1317 time_reftime = time.tv_sec;
1318 if (time_status & STA_FLL) {
1319 if (mtemp >= MINSEC) {
1320 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1321 SHIFT_UPDATE));
1322 if (ltemp < 0)
1323 time_freq -= -ltemp >> SHIFT_KH;
1324 else
1325 time_freq += ltemp >> SHIFT_KH;
1326 }
1327 } else {
1328 if (mtemp < MAXSEC) {
1329 ltemp *= mtemp;
1330 if (ltemp < 0)
1331 time_freq -= -ltemp >> (time_constant +
1332 time_constant + SHIFT_KF -
1333 SHIFT_USEC);
1334 else
1335 time_freq += ltemp >> (time_constant +
1336 time_constant + SHIFT_KF -
1337 SHIFT_USEC);
1338 }
1339 }
1340 if (time_freq > time_tolerance)
1341 time_freq = time_tolerance;
1342 else if (time_freq < -time_tolerance)
1343 time_freq = -time_tolerance;
1344 }
1345
1346 #ifdef PPS_SYNC
1347 /*
1348 * hardpps() - discipline CPU clock oscillator to external PPS signal
1349 *
1350 * This routine is called at each PPS interrupt in order to discipline
1351 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1352 * and leaves it in a handy spot for the hardclock() routine. It
1353 * integrates successive PPS phase differences and calculates the
1354 * frequency offset. This is used in hardclock() to discipline the CPU
1355 * clock oscillator so that intrinsic frequency error is cancelled out.
1356 * The code requires the caller to capture the time and hardware counter
1357 * value at the on-time PPS signal transition.
1358 *
1359 * Note that, on some Unix systems, this routine runs at an interrupt
1360 * priority level higher than the timer interrupt routine hardclock().
1361 * Therefore, the variables used are distinct from the hardclock()
1362 * variables, except for certain exceptions: The PPS frequency pps_freq
1363 * and phase pps_offset variables are determined by this routine and
1364 * updated atomically. The time_tolerance variable can be considered a
1365 * constant, since it is infrequently changed, and then only when the
1366 * PPS signal is disabled. The watchdog counter pps_valid is updated
1367 * once per second by hardclock() and is atomically cleared in this
1368 * routine.
1369 */
1370 void
1371 hardpps(tvp, usec)
1372 struct timeval *tvp; /* time at PPS */
1373 long usec; /* hardware counter at PPS */
1374 {
1375 long u_usec, v_usec, bigtick;
1376 long cal_sec, cal_usec;
1377
1378 /*
1379 * An occasional glitch can be produced when the PPS interrupt
1380 * occurs in the hardclock() routine before the time variable is
1381 * updated. Here the offset is discarded when the difference
1382 * between it and the last one is greater than tick/2, but not
1383 * if the interval since the first discard exceeds 30 s.
1384 */
1385 time_status |= STA_PPSSIGNAL;
1386 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1387 pps_valid = 0;
1388 u_usec = -tvp->tv_usec;
1389 if (u_usec < -500000)
1390 u_usec += 1000000;
1391 v_usec = pps_offset - u_usec;
1392 if (v_usec < 0)
1393 v_usec = -v_usec;
1394 if (v_usec > (tick >> 1)) {
1395 if (pps_glitch > MAXGLITCH) {
1396 pps_glitch = 0;
1397 pps_tf[2] = u_usec;
1398 pps_tf[1] = u_usec;
1399 } else {
1400 pps_glitch++;
1401 u_usec = pps_offset;
1402 }
1403 } else
1404 pps_glitch = 0;
1405
1406 /*
1407 * A three-stage median filter is used to help deglitch the pps
1408 * time. The median sample becomes the time offset estimate; the
1409 * difference between the other two samples becomes the time
1410 * dispersion (jitter) estimate.
1411 */
1412 pps_tf[2] = pps_tf[1];
1413 pps_tf[1] = pps_tf[0];
1414 pps_tf[0] = u_usec;
1415 if (pps_tf[0] > pps_tf[1]) {
1416 if (pps_tf[1] > pps_tf[2]) {
1417 pps_offset = pps_tf[1]; /* 0 1 2 */
1418 v_usec = pps_tf[0] - pps_tf[2];
1419 } else if (pps_tf[2] > pps_tf[0]) {
1420 pps_offset = pps_tf[0]; /* 2 0 1 */
1421 v_usec = pps_tf[2] - pps_tf[1];
1422 } else {
1423 pps_offset = pps_tf[2]; /* 0 2 1 */
1424 v_usec = pps_tf[0] - pps_tf[1];
1425 }
1426 } else {
1427 if (pps_tf[1] < pps_tf[2]) {
1428 pps_offset = pps_tf[1]; /* 2 1 0 */
1429 v_usec = pps_tf[2] - pps_tf[0];
1430 } else if (pps_tf[2] < pps_tf[0]) {
1431 pps_offset = pps_tf[0]; /* 1 0 2 */
1432 v_usec = pps_tf[1] - pps_tf[2];
1433 } else {
1434 pps_offset = pps_tf[2]; /* 1 2 0 */
1435 v_usec = pps_tf[1] - pps_tf[0];
1436 }
1437 }
1438 if (v_usec > MAXTIME)
1439 pps_jitcnt++;
1440 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1441 if (v_usec < 0)
1442 pps_jitter -= -v_usec >> PPS_AVG;
1443 else
1444 pps_jitter += v_usec >> PPS_AVG;
1445 if (pps_jitter > (MAXTIME >> 1))
1446 time_status |= STA_PPSJITTER;
1447
1448 /*
1449 * During the calibration interval adjust the starting time when
1450 * the tick overflows. At the end of the interval compute the
1451 * duration of the interval and the difference of the hardware
1452 * counters at the beginning and end of the interval. This code
1453 * is deliciously complicated by the fact valid differences may
1454 * exceed the value of tick when using long calibration
1455 * intervals and small ticks. Note that the counter can be
1456 * greater than tick if caught at just the wrong instant, but
1457 * the values returned and used here are correct.
1458 */
1459 bigtick = (long)tick << SHIFT_USEC;
1460 pps_usec -= pps_freq;
1461 if (pps_usec >= bigtick)
1462 pps_usec -= bigtick;
1463 if (pps_usec < 0)
1464 pps_usec += bigtick;
1465 pps_time.tv_sec++;
1466 pps_count++;
1467 if (pps_count < (1 << pps_shift))
1468 return;
1469 pps_count = 0;
1470 pps_calcnt++;
1471 u_usec = usec << SHIFT_USEC;
1472 v_usec = pps_usec - u_usec;
1473 if (v_usec >= bigtick >> 1)
1474 v_usec -= bigtick;
1475 if (v_usec < -(bigtick >> 1))
1476 v_usec += bigtick;
1477 if (v_usec < 0)
1478 v_usec = -(-v_usec >> pps_shift);
1479 else
1480 v_usec = v_usec >> pps_shift;
1481 pps_usec = u_usec;
1482 cal_sec = tvp->tv_sec;
1483 cal_usec = tvp->tv_usec;
1484 cal_sec -= pps_time.tv_sec;
1485 cal_usec -= pps_time.tv_usec;
1486 if (cal_usec < 0) {
1487 cal_usec += 1000000;
1488 cal_sec--;
1489 }
1490 pps_time = *tvp;
1491
1492 /*
1493 * Check for lost interrupts, noise, excessive jitter and
1494 * excessive frequency error. The number of timer ticks during
1495 * the interval may vary +-1 tick. Add to this a margin of one
1496 * tick for the PPS signal jitter and maximum frequency
1497 * deviation. If the limits are exceeded, the calibration
1498 * interval is reset to the minimum and we start over.
1499 */
1500 u_usec = (long)tick << 1;
1501 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1502 || (cal_sec == 0 && cal_usec < u_usec))
1503 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1504 pps_errcnt++;
1505 pps_shift = PPS_SHIFT;
1506 pps_intcnt = 0;
1507 time_status |= STA_PPSERROR;
1508 return;
1509 }
1510
1511 /*
1512 * A three-stage median filter is used to help deglitch the pps
1513 * frequency. The median sample becomes the frequency offset
1514 * estimate; the difference between the other two samples
1515 * becomes the frequency dispersion (stability) estimate.
1516 */
1517 pps_ff[2] = pps_ff[1];
1518 pps_ff[1] = pps_ff[0];
1519 pps_ff[0] = v_usec;
1520 if (pps_ff[0] > pps_ff[1]) {
1521 if (pps_ff[1] > pps_ff[2]) {
1522 u_usec = pps_ff[1]; /* 0 1 2 */
1523 v_usec = pps_ff[0] - pps_ff[2];
1524 } else if (pps_ff[2] > pps_ff[0]) {
1525 u_usec = pps_ff[0]; /* 2 0 1 */
1526 v_usec = pps_ff[2] - pps_ff[1];
1527 } else {
1528 u_usec = pps_ff[2]; /* 0 2 1 */
1529 v_usec = pps_ff[0] - pps_ff[1];
1530 }
1531 } else {
1532 if (pps_ff[1] < pps_ff[2]) {
1533 u_usec = pps_ff[1]; /* 2 1 0 */
1534 v_usec = pps_ff[2] - pps_ff[0];
1535 } else if (pps_ff[2] < pps_ff[0]) {
1536 u_usec = pps_ff[0]; /* 1 0 2 */
1537 v_usec = pps_ff[1] - pps_ff[2];
1538 } else {
1539 u_usec = pps_ff[2]; /* 1 2 0 */
1540 v_usec = pps_ff[1] - pps_ff[0];
1541 }
1542 }
1543
1544 /*
1545 * Here the frequency dispersion (stability) is updated. If it
1546 * is less than one-fourth the maximum (MAXFREQ), the frequency
1547 * offset is updated as well, but clamped to the tolerance. It
1548 * will be processed later by the hardclock() routine.
1549 */
1550 v_usec = (v_usec >> 1) - pps_stabil;
1551 if (v_usec < 0)
1552 pps_stabil -= -v_usec >> PPS_AVG;
1553 else
1554 pps_stabil += v_usec >> PPS_AVG;
1555 if (pps_stabil > MAXFREQ >> 2) {
1556 pps_stbcnt++;
1557 time_status |= STA_PPSWANDER;
1558 return;
1559 }
1560 if (time_status & STA_PPSFREQ) {
1561 if (u_usec < 0) {
1562 pps_freq -= -u_usec >> PPS_AVG;
1563 if (pps_freq < -time_tolerance)
1564 pps_freq = -time_tolerance;
1565 u_usec = -u_usec;
1566 } else {
1567 pps_freq += u_usec >> PPS_AVG;
1568 if (pps_freq > time_tolerance)
1569 pps_freq = time_tolerance;
1570 }
1571 }
1572
1573 /*
1574 * Here the calibration interval is adjusted. If the maximum
1575 * time difference is greater than tick / 4, reduce the interval
1576 * by half. If this is not the case for four consecutive
1577 * intervals, double the interval.
1578 */
1579 if (u_usec << pps_shift > bigtick >> 2) {
1580 pps_intcnt = 0;
1581 if (pps_shift > PPS_SHIFT)
1582 pps_shift--;
1583 } else if (pps_intcnt >= 4) {
1584 pps_intcnt = 0;
1585 if (pps_shift < PPS_SHIFTMAX)
1586 pps_shift++;
1587 } else
1588 pps_intcnt++;
1589 }
1590 #endif /* PPS_SYNC */
1591 #endif /* NTP */
1592
1593
1594 /*
1595 * Return information about system clocks.
1596 */
1597 int
1598 sysctl_clockrate(where, sizep)
1599 char *where;
1600 size_t *sizep;
1601 {
1602 struct clockinfo clkinfo;
1603
1604 /*
1605 * Construct clockinfo structure.
1606 */
1607 clkinfo.tick = tick;
1608 clkinfo.tickadj = tickadj;
1609 clkinfo.hz = hz;
1610 clkinfo.profhz = profhz;
1611 clkinfo.stathz = stathz ? stathz : hz;
1612 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1613 }
1614