kern_clock.c revision 1.63 1 /* $NetBSD: kern_clock.c,v 1.63 2000/08/01 04:57:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 u_int64_t hardclock_ticks, softclock_ticks;
316 int softclock_running; /* 1 => softclock() is running */
317 static int psdiv, pscnt; /* prof => stat divider */
318 int psratio; /* ratio: prof / stat */
319 int tickfix, tickfixinterval; /* used if tick not really integral */
320 #ifndef NTP
321 static int tickfixcnt; /* accumulated fractional error */
322 #else
323 int fixtick; /* used by NTP for same */
324 int shifthz;
325 #endif
326
327 /*
328 * We might want ldd to load the both words from time at once.
329 * To succeed we need to be quadword aligned.
330 * The sparc already does that, and that it has worked so far is a fluke.
331 */
332 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
333 volatile struct timeval mono_time;
334
335 /*
336 * The callout mechanism is based on the work of Adam M. Costello and
337 * George Varghese, published in a technical report entitled "Redesigning
338 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
339 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
340 *
341 * The original work on the data structures used in this implementation
342 * was published by G. Varghese and A. Lauck in the paper "Hashed and
343 * Hierarchical Timing Wheels: Data Structures for the Efficient
344 * Implementation of a Timer Facility" in the Proceedings of the 11th
345 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
346 * November 1987.
347 */
348 struct callout_queue *callwheel;
349 int callwheelsize, callwheelbits, callwheelmask;
350
351 static struct callout *nextsoftcheck; /* next callout to be checked */
352
353 #ifdef CALLWHEEL_STATS
354 int callwheel_collisions; /* number of hash collisions */
355 int callwheel_maxlength; /* length of the longest hash chain */
356 int *callwheel_sizes; /* per-bucket length count */
357 u_int64_t callwheel_count; /* # callouts currently */
358 u_int64_t callwheel_established; /* # callouts established */
359 u_int64_t callwheel_fired; /* # callouts that fired */
360 u_int64_t callwheel_disestablished; /* # callouts disestablished */
361 u_int64_t callwheel_changed; /* # callouts changed */
362 u_int64_t callwheel_softclocks; /* # times softclock() called */
363 u_int64_t callwheel_softchecks; /* # checks per softclock() */
364 u_int64_t callwheel_softempty; /* # empty buckets seen */
365 #endif /* CALLWHEEL_STATS */
366
367 /*
368 * This value indicates the number of consecutive callouts that
369 * will be checked before we allow interrupts to have a chance
370 * again.
371 */
372 #ifndef MAX_SOFTCLOCK_STEPS
373 #define MAX_SOFTCLOCK_STEPS 100
374 #endif
375
376 /*
377 * Initialize clock frequencies and start both clocks running.
378 */
379 void
380 initclocks(void)
381 {
382 int i;
383
384 /*
385 * Set divisors to 1 (normal case) and let the machine-specific
386 * code do its bit.
387 */
388 psdiv = pscnt = 1;
389 cpu_initclocks();
390
391 /*
392 * Compute profhz/stathz, and fix profhz if needed.
393 */
394 i = stathz ? stathz : hz;
395 if (profhz == 0)
396 profhz = i;
397 psratio = profhz / i;
398
399 #ifdef NTP
400 switch (hz) {
401 case 1:
402 shifthz = SHIFT_SCALE - 0;
403 break;
404 case 2:
405 shifthz = SHIFT_SCALE - 1;
406 break;
407 case 4:
408 shifthz = SHIFT_SCALE - 2;
409 break;
410 case 8:
411 shifthz = SHIFT_SCALE - 3;
412 break;
413 case 16:
414 shifthz = SHIFT_SCALE - 4;
415 break;
416 case 32:
417 shifthz = SHIFT_SCALE - 5;
418 break;
419 case 60:
420 case 64:
421 shifthz = SHIFT_SCALE - 6;
422 break;
423 case 96:
424 case 100:
425 case 128:
426 shifthz = SHIFT_SCALE - 7;
427 break;
428 case 256:
429 shifthz = SHIFT_SCALE - 8;
430 break;
431 case 512:
432 shifthz = SHIFT_SCALE - 9;
433 break;
434 case 1000:
435 case 1024:
436 shifthz = SHIFT_SCALE - 10;
437 break;
438 case 1200:
439 case 2048:
440 shifthz = SHIFT_SCALE - 11;
441 break;
442 case 4096:
443 shifthz = SHIFT_SCALE - 12;
444 break;
445 case 8192:
446 shifthz = SHIFT_SCALE - 13;
447 break;
448 case 16384:
449 shifthz = SHIFT_SCALE - 14;
450 break;
451 case 32768:
452 shifthz = SHIFT_SCALE - 15;
453 break;
454 case 65536:
455 shifthz = SHIFT_SCALE - 16;
456 break;
457 default:
458 panic("weird hz");
459 }
460 if (fixtick == 0) {
461 /*
462 * Give MD code a chance to set this to a better
463 * value; but, if it doesn't, we should.
464 */
465 fixtick = (1000000 - (hz*tick));
466 }
467 #endif
468 }
469
470 /*
471 * The real-time timer, interrupting hz times per second.
472 */
473 void
474 hardclock(struct clockframe *frame)
475 {
476 struct proc *p;
477 int delta;
478 extern int tickdelta;
479 extern long timedelta;
480 #ifdef NTP
481 int time_update;
482 int ltemp;
483 #endif
484
485 p = curproc;
486 if (p) {
487 struct pstats *pstats;
488
489 /*
490 * Run current process's virtual and profile time, as needed.
491 */
492 pstats = p->p_stats;
493 if (CLKF_USERMODE(frame) &&
494 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
495 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
496 psignal(p, SIGVTALRM);
497 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
498 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
499 psignal(p, SIGPROF);
500 }
501
502 /*
503 * If no separate statistics clock is available, run it from here.
504 */
505 if (stathz == 0)
506 statclock(frame);
507
508 #if defined(MULTIPROCESSOR)
509 /*
510 * If we are not the primary CPU, we're not allowed to do
511 * any more work.
512 */
513 if (CPU_IS_PRIMARY(curcpu()) == 0)
514 return;
515 #endif
516
517 /*
518 * Increment the time-of-day. The increment is normally just
519 * ``tick''. If the machine is one which has a clock frequency
520 * such that ``hz'' would not divide the second evenly into
521 * milliseconds, a periodic adjustment must be applied. Finally,
522 * if we are still adjusting the time (see adjtime()),
523 * ``tickdelta'' may also be added in.
524 */
525 hardclock_ticks++;
526 delta = tick;
527
528 #ifndef NTP
529 if (tickfix) {
530 tickfixcnt += tickfix;
531 if (tickfixcnt >= tickfixinterval) {
532 delta++;
533 tickfixcnt -= tickfixinterval;
534 }
535 }
536 #endif /* !NTP */
537 /* Imprecise 4bsd adjtime() handling */
538 if (timedelta != 0) {
539 delta += tickdelta;
540 timedelta -= tickdelta;
541 }
542
543 #ifdef notyet
544 microset();
545 #endif
546
547 #ifndef NTP
548 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
549 #endif
550 BUMPTIME(&mono_time, delta);
551
552 #ifdef NTP
553 time_update = delta;
554
555 /*
556 * Compute the phase adjustment. If the low-order bits
557 * (time_phase) of the update overflow, bump the high-order bits
558 * (time_update).
559 */
560 time_phase += time_adj;
561 if (time_phase <= -FINEUSEC) {
562 ltemp = -time_phase >> SHIFT_SCALE;
563 time_phase += ltemp << SHIFT_SCALE;
564 time_update -= ltemp;
565 } else if (time_phase >= FINEUSEC) {
566 ltemp = time_phase >> SHIFT_SCALE;
567 time_phase -= ltemp << SHIFT_SCALE;
568 time_update += ltemp;
569 }
570
571 #ifdef HIGHBALL
572 /*
573 * If the HIGHBALL board is installed, we need to adjust the
574 * external clock offset in order to close the hardware feedback
575 * loop. This will adjust the external clock phase and frequency
576 * in small amounts. The additional phase noise and frequency
577 * wander this causes should be minimal. We also need to
578 * discipline the kernel time variable, since the PLL is used to
579 * discipline the external clock. If the Highball board is not
580 * present, we discipline kernel time with the PLL as usual. We
581 * assume that the external clock phase adjustment (time_update)
582 * and kernel phase adjustment (clock_cpu) are less than the
583 * value of tick.
584 */
585 clock_offset.tv_usec += time_update;
586 if (clock_offset.tv_usec >= 1000000) {
587 clock_offset.tv_sec++;
588 clock_offset.tv_usec -= 1000000;
589 }
590 if (clock_offset.tv_usec < 0) {
591 clock_offset.tv_sec--;
592 clock_offset.tv_usec += 1000000;
593 }
594 time.tv_usec += clock_cpu;
595 clock_cpu = 0;
596 #else
597 time.tv_usec += time_update;
598 #endif /* HIGHBALL */
599
600 /*
601 * On rollover of the second the phase adjustment to be used for
602 * the next second is calculated. Also, the maximum error is
603 * increased by the tolerance. If the PPS frequency discipline
604 * code is present, the phase is increased to compensate for the
605 * CPU clock oscillator frequency error.
606 *
607 * On a 32-bit machine and given parameters in the timex.h
608 * header file, the maximum phase adjustment is +-512 ms and
609 * maximum frequency offset is a tad less than) +-512 ppm. On a
610 * 64-bit machine, you shouldn't need to ask.
611 */
612 if (time.tv_usec >= 1000000) {
613 time.tv_usec -= 1000000;
614 time.tv_sec++;
615 time_maxerror += time_tolerance >> SHIFT_USEC;
616
617 /*
618 * Leap second processing. If in leap-insert state at
619 * the end of the day, the system clock is set back one
620 * second; if in leap-delete state, the system clock is
621 * set ahead one second. The microtime() routine or
622 * external clock driver will insure that reported time
623 * is always monotonic. The ugly divides should be
624 * replaced.
625 */
626 switch (time_state) {
627 case TIME_OK:
628 if (time_status & STA_INS)
629 time_state = TIME_INS;
630 else if (time_status & STA_DEL)
631 time_state = TIME_DEL;
632 break;
633
634 case TIME_INS:
635 if (time.tv_sec % 86400 == 0) {
636 time.tv_sec--;
637 time_state = TIME_OOP;
638 }
639 break;
640
641 case TIME_DEL:
642 if ((time.tv_sec + 1) % 86400 == 0) {
643 time.tv_sec++;
644 time_state = TIME_WAIT;
645 }
646 break;
647
648 case TIME_OOP:
649 time_state = TIME_WAIT;
650 break;
651
652 case TIME_WAIT:
653 if (!(time_status & (STA_INS | STA_DEL)))
654 time_state = TIME_OK;
655 break;
656 }
657
658 /*
659 * Compute the phase adjustment for the next second. In
660 * PLL mode, the offset is reduced by a fixed factor
661 * times the time constant. In FLL mode the offset is
662 * used directly. In either mode, the maximum phase
663 * adjustment for each second is clamped so as to spread
664 * the adjustment over not more than the number of
665 * seconds between updates.
666 */
667 if (time_offset < 0) {
668 ltemp = -time_offset;
669 if (!(time_status & STA_FLL))
670 ltemp >>= SHIFT_KG + time_constant;
671 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
672 ltemp = (MAXPHASE / MINSEC) <<
673 SHIFT_UPDATE;
674 time_offset += ltemp;
675 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
676 } else if (time_offset > 0) {
677 ltemp = time_offset;
678 if (!(time_status & STA_FLL))
679 ltemp >>= SHIFT_KG + time_constant;
680 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
681 ltemp = (MAXPHASE / MINSEC) <<
682 SHIFT_UPDATE;
683 time_offset -= ltemp;
684 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
685 } else
686 time_adj = 0;
687
688 /*
689 * Compute the frequency estimate and additional phase
690 * adjustment due to frequency error for the next
691 * second. When the PPS signal is engaged, gnaw on the
692 * watchdog counter and update the frequency computed by
693 * the pll and the PPS signal.
694 */
695 #ifdef PPS_SYNC
696 pps_valid++;
697 if (pps_valid == PPS_VALID) {
698 pps_jitter = MAXTIME;
699 pps_stabil = MAXFREQ;
700 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
701 STA_PPSWANDER | STA_PPSERROR);
702 }
703 ltemp = time_freq + pps_freq;
704 #else
705 ltemp = time_freq;
706 #endif /* PPS_SYNC */
707
708 if (ltemp < 0)
709 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
710 else
711 time_adj += ltemp >> (SHIFT_USEC - shifthz);
712 time_adj += (long)fixtick << shifthz;
713
714 /*
715 * When the CPU clock oscillator frequency is not a
716 * power of 2 in Hz, shifthz is only an approximate
717 * scale factor.
718 *
719 * To determine the adjustment, you can do the following:
720 * bc -q
721 * scale=24
722 * obase=2
723 * idealhz/realhz
724 * where `idealhz' is the next higher power of 2, and `realhz'
725 * is the actual value. You may need to factor this result
726 * into a sequence of 2 multipliers to get better precision.
727 *
728 * Likewise, the error can be calculated with (e.g. for 100Hz):
729 * bc -q
730 * scale=24
731 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
732 * (and then multiply by 1000000 to get ppm).
733 */
734 switch (hz) {
735 case 60:
736 /* A factor of 1.000100010001 gives about 15ppm
737 error. */
738 if (time_adj < 0) {
739 time_adj -= (-time_adj >> 4);
740 time_adj -= (-time_adj >> 8);
741 } else {
742 time_adj += (time_adj >> 4);
743 time_adj += (time_adj >> 8);
744 }
745 break;
746
747 case 96:
748 /* A factor of 1.0101010101 gives about 244ppm error. */
749 if (time_adj < 0) {
750 time_adj -= (-time_adj >> 2);
751 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
752 } else {
753 time_adj += (time_adj >> 2);
754 time_adj += (time_adj >> 4) + (time_adj >> 8);
755 }
756 break;
757
758 case 100:
759 /* A factor of 1.010001111010111 gives about 1ppm
760 error. */
761 if (time_adj < 0) {
762 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
763 time_adj += (-time_adj >> 10);
764 } else {
765 time_adj += (time_adj >> 2) + (time_adj >> 5);
766 time_adj -= (time_adj >> 10);
767 }
768 break;
769
770 case 1000:
771 /* A factor of 1.000001100010100001 gives about 50ppm
772 error. */
773 if (time_adj < 0) {
774 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
775 time_adj -= (-time_adj >> 7);
776 } else {
777 time_adj += (time_adj >> 6) + (time_adj >> 11);
778 time_adj += (time_adj >> 7);
779 }
780 break;
781
782 case 1200:
783 /* A factor of 1.1011010011100001 gives about 64ppm
784 error. */
785 if (time_adj < 0) {
786 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
787 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
788 } else {
789 time_adj += (time_adj >> 1) + (time_adj >> 6);
790 time_adj += (time_adj >> 3) + (time_adj >> 10);
791 }
792 break;
793 }
794
795 #ifdef EXT_CLOCK
796 /*
797 * If an external clock is present, it is necessary to
798 * discipline the kernel time variable anyway, since not
799 * all system components use the microtime() interface.
800 * Here, the time offset between the external clock and
801 * kernel time variable is computed every so often.
802 */
803 clock_count++;
804 if (clock_count > CLOCK_INTERVAL) {
805 clock_count = 0;
806 microtime(&clock_ext);
807 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
808 delta.tv_usec = clock_ext.tv_usec -
809 time.tv_usec;
810 if (delta.tv_usec < 0)
811 delta.tv_sec--;
812 if (delta.tv_usec >= 500000) {
813 delta.tv_usec -= 1000000;
814 delta.tv_sec++;
815 }
816 if (delta.tv_usec < -500000) {
817 delta.tv_usec += 1000000;
818 delta.tv_sec--;
819 }
820 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
821 delta.tv_usec > MAXPHASE) ||
822 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
823 delta.tv_usec < -MAXPHASE)) {
824 time = clock_ext;
825 delta.tv_sec = 0;
826 delta.tv_usec = 0;
827 }
828 #ifdef HIGHBALL
829 clock_cpu = delta.tv_usec;
830 #else /* HIGHBALL */
831 hardupdate(delta.tv_usec);
832 #endif /* HIGHBALL */
833 }
834 #endif /* EXT_CLOCK */
835 }
836
837 #endif /* NTP */
838
839 /*
840 * Process callouts at a very low cpu priority, so we don't keep the
841 * relatively high clock interrupt priority any longer than necessary.
842 */
843 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
844 if (CLKF_BASEPRI(frame)) {
845 /*
846 * Save the overhead of a software interrupt;
847 * it will happen as soon as we return, so do
848 * it now.
849 *
850 * NOTE: If we're at ``base priority'', softclock()
851 * was not already running.
852 */
853 (void)spllowersoftclock();
854 softclock();
855 } else
856 setsoftclock();
857 } else if (softclock_running == 0 &&
858 (softclock_ticks + 1) == hardclock_ticks)
859 softclock_ticks++;
860 }
861
862 /*
863 * Software (low priority) clock interrupt.
864 * Run periodic events from timeout queue.
865 */
866 /*ARGSUSED*/
867 void
868 softclock(void)
869 {
870 struct callout_queue *bucket;
871 struct callout *c;
872 void (*func)(void *);
873 void *arg;
874 int s, idx;
875 int steps = 0;
876
877 s = splhigh();
878 softclock_running = 1;
879
880 #ifdef CALLWHEEL_STATS
881 callwheel_softclocks++;
882 #endif
883
884 while (softclock_ticks != hardclock_ticks) {
885 softclock_ticks++;
886 idx = (int)(softclock_ticks & callwheelmask);
887 bucket = &callwheel[idx];
888 c = TAILQ_FIRST(bucket);
889 #ifdef CALLWHEEL_STATS
890 if (c == NULL)
891 callwheel_softempty++;
892 #endif
893 while (c != NULL) {
894 #ifdef CALLWHEEL_STATS
895 callwheel_softchecks++;
896 #endif
897 if (c->c_time != softclock_ticks) {
898 c = TAILQ_NEXT(c, c_link);
899 if (++steps >= MAX_SOFTCLOCK_STEPS) {
900 nextsoftcheck = c;
901 /* Give interrupts a chance. */
902 splx(s);
903 (void) splhigh();
904 c = nextsoftcheck;
905 steps = 0;
906 }
907 } else {
908 nextsoftcheck = TAILQ_NEXT(c, c_link);
909 TAILQ_REMOVE(bucket, c, c_link);
910 #ifdef CALLWHEEL_STATS
911 callwheel_sizes[idx]--;
912 callwheel_fired++;
913 callwheel_count--;
914 #endif
915 func = c->c_func;
916 arg = c->c_arg;
917 c->c_func = NULL;
918 c->c_flags &= ~CALLOUT_PENDING;
919 splx(s);
920 (*func)(arg);
921 (void) splhigh();
922 steps = 0;
923 c = nextsoftcheck;
924 }
925 }
926 }
927 nextsoftcheck = NULL;
928 softclock_running = 0;
929 splx(s);
930 }
931
932 /*
933 * callout_setsize:
934 *
935 * Determine how many callwheels are necessary and
936 * set hash mask. Called from allocsys().
937 */
938 void
939 callout_setsize(void)
940 {
941
942 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
943 /* loop */ ;
944 callwheelmask = callwheelsize - 1;
945 }
946
947 /*
948 * callout_startup:
949 *
950 * Initialize the callwheel buckets.
951 */
952 void
953 callout_startup(void)
954 {
955 int i;
956
957 for (i = 0; i < callwheelsize; i++)
958 TAILQ_INIT(&callwheel[i]);
959 }
960
961 /*
962 * callout_init:
963 *
964 * Initialize a callout structure so that it can be used
965 * by callout_reset() and callout_stop().
966 */
967 void
968 callout_init(struct callout *c)
969 {
970
971 memset(c, 0, sizeof(*c));
972 }
973
974 /*
975 * callout_reset:
976 *
977 * Establish or change a timeout.
978 */
979 void
980 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
981 {
982 struct callout_queue *bucket;
983 int s;
984
985 if (ticks <= 0)
986 ticks = 1;
987
988 /* Lock out the clock. */
989 s = splhigh();
990
991 /*
992 * If this callout's timer is already running, cancel it
993 * before we modify it.
994 */
995 if (c->c_flags & CALLOUT_PENDING) {
996 callout_stop(c);
997 #ifdef CALLWHEEL_STATS
998 callwheel_changed++;
999 #endif
1000 }
1001
1002 c->c_arg = arg;
1003 c->c_func = func;
1004 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1005 c->c_time = hardclock_ticks + ticks;
1006
1007 bucket = &callwheel[c->c_time & callwheelmask];
1008
1009 #ifdef CALLWHEEL_STATS
1010 if (TAILQ_FIRST(bucket) != NULL)
1011 callwheel_collisions++;
1012 #endif
1013
1014 TAILQ_INSERT_TAIL(bucket, c, c_link);
1015
1016 #ifdef CALLWHEEL_STATS
1017 callwheel_count++;
1018 callwheel_established++;
1019 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1020 callwheel_maxlength =
1021 callwheel_sizes[c->c_time & callwheelmask];
1022 #endif
1023
1024 splx(s);
1025 }
1026
1027 /*
1028 * callout_stop:
1029 *
1030 * Disestablish a timeout.
1031 */
1032 void
1033 callout_stop(struct callout *c)
1034 {
1035 int s;
1036
1037 /* Lock out the clock. */
1038 s = splhigh();
1039
1040 /*
1041 * Don't attempt to delete a callout that's not on the queue.
1042 */
1043 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1044 c->c_flags &= ~CALLOUT_ACTIVE;
1045 splx(s);
1046 return;
1047 }
1048
1049 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1050
1051 if (nextsoftcheck == c)
1052 nextsoftcheck = TAILQ_NEXT(c, c_link);
1053
1054 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1055 #ifdef CALLWHEEL_STATS
1056 callwheel_count--;
1057 callwheel_disestablished++;
1058 callwheel_sizes[c->c_time & callwheelmask]--;
1059 #endif
1060
1061 c->c_func = NULL;
1062
1063 splx(s);
1064 }
1065
1066 #ifdef CALLWHEEL_STATS
1067 /*
1068 * callout_showstats:
1069 *
1070 * Display callout statistics. Call it from DDB.
1071 */
1072 void
1073 callout_showstats(void)
1074 {
1075 u_int64_t curticks;
1076 int s;
1077
1078 s = splclock();
1079 curticks = softclock_ticks;
1080 splx(s);
1081
1082 printf("Callwheel statistics:\n");
1083 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1084 printf("\tCallouts established: %llu\n", callwheel_established);
1085 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1086 if (callwheel_changed != 0)
1087 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1088 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1089 printf("\tNumber of buckets: %d\n", callwheelsize);
1090 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1091 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1092 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1093 callwheel_softclocks, callwheel_softchecks);
1094 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1095 }
1096 #endif
1097
1098 /*
1099 * Compute number of hz until specified time. Used to compute second
1100 * argument to callout_reset() from an absolute time.
1101 */
1102 int
1103 hzto(struct timeval *tv)
1104 {
1105 unsigned long ticks;
1106 long sec, usec;
1107 int s;
1108
1109 /*
1110 * If the number of usecs in the whole seconds part of the time
1111 * difference fits in a long, then the total number of usecs will
1112 * fit in an unsigned long. Compute the total and convert it to
1113 * ticks, rounding up and adding 1 to allow for the current tick
1114 * to expire. Rounding also depends on unsigned long arithmetic
1115 * to avoid overflow.
1116 *
1117 * Otherwise, if the number of ticks in the whole seconds part of
1118 * the time difference fits in a long, then convert the parts to
1119 * ticks separately and add, using similar rounding methods and
1120 * overflow avoidance. This method would work in the previous
1121 * case, but it is slightly slower and assume that hz is integral.
1122 *
1123 * Otherwise, round the time difference down to the maximum
1124 * representable value.
1125 *
1126 * If ints are 32-bit, then the maximum value for any timeout in
1127 * 10ms ticks is 248 days.
1128 */
1129 s = splclock();
1130 sec = tv->tv_sec - time.tv_sec;
1131 usec = tv->tv_usec - time.tv_usec;
1132 splx(s);
1133
1134 if (usec < 0) {
1135 sec--;
1136 usec += 1000000;
1137 }
1138
1139 if (sec < 0 || (sec == 0 && usec <= 0)) {
1140 /*
1141 * Would expire now or in the past. Return 0 ticks.
1142 * This is different from the legacy hzto() interface,
1143 * and callers need to check for it.
1144 */
1145 ticks = 0;
1146 } else if (sec <= (LONG_MAX / 1000000))
1147 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1148 / tick) + 1;
1149 else if (sec <= (LONG_MAX / hz))
1150 ticks = (sec * hz) +
1151 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1152 else
1153 ticks = LONG_MAX;
1154
1155 if (ticks > INT_MAX)
1156 ticks = INT_MAX;
1157
1158 return ((int)ticks);
1159 }
1160
1161 /*
1162 * Start profiling on a process.
1163 *
1164 * Kernel profiling passes proc0 which never exits and hence
1165 * keeps the profile clock running constantly.
1166 */
1167 void
1168 startprofclock(struct proc *p)
1169 {
1170 int s;
1171
1172 if ((p->p_flag & P_PROFIL) == 0) {
1173 p->p_flag |= P_PROFIL;
1174 if (++profprocs == 1 && stathz != 0) {
1175 s = splstatclock();
1176 psdiv = pscnt = psratio;
1177 setstatclockrate(profhz);
1178 splx(s);
1179 }
1180 }
1181 }
1182
1183 /*
1184 * Stop profiling on a process.
1185 */
1186 void
1187 stopprofclock(struct proc *p)
1188 {
1189 int s;
1190
1191 if (p->p_flag & P_PROFIL) {
1192 p->p_flag &= ~P_PROFIL;
1193 if (--profprocs == 0 && stathz != 0) {
1194 s = splstatclock();
1195 psdiv = pscnt = 1;
1196 setstatclockrate(stathz);
1197 splx(s);
1198 }
1199 }
1200 }
1201
1202 /*
1203 * Statistics clock. Grab profile sample, and if divider reaches 0,
1204 * do process and kernel statistics.
1205 */
1206 void
1207 statclock(struct clockframe *frame)
1208 {
1209 #ifdef GPROF
1210 struct gmonparam *g;
1211 int i;
1212 #endif
1213 struct cpu_info *ci = curcpu();
1214 struct schedstate_percpu *spc = &ci->ci_schedstate;
1215 struct proc *p;
1216
1217 if (CLKF_USERMODE(frame)) {
1218 p = curproc;
1219 if (p->p_flag & P_PROFIL)
1220 addupc_intr(p, CLKF_PC(frame), 1);
1221 if (--pscnt > 0)
1222 return;
1223 /*
1224 * Came from user mode; CPU was in user state.
1225 * If this process is being profiled record the tick.
1226 */
1227 p->p_uticks++;
1228 if (p->p_nice > NZERO)
1229 spc->spc_cp_time[CP_NICE]++;
1230 else
1231 spc->spc_cp_time[CP_USER]++;
1232 } else {
1233 #ifdef GPROF
1234 /*
1235 * Kernel statistics are just like addupc_intr, only easier.
1236 */
1237 g = &_gmonparam;
1238 if (g->state == GMON_PROF_ON) {
1239 i = CLKF_PC(frame) - g->lowpc;
1240 if (i < g->textsize) {
1241 i /= HISTFRACTION * sizeof(*g->kcount);
1242 g->kcount[i]++;
1243 }
1244 }
1245 #endif
1246 if (--pscnt > 0)
1247 return;
1248 /*
1249 * Came from kernel mode, so we were:
1250 * - handling an interrupt,
1251 * - doing syscall or trap work on behalf of the current
1252 * user process, or
1253 * - spinning in the idle loop.
1254 * Whichever it is, charge the time as appropriate.
1255 * Note that we charge interrupts to the current process,
1256 * regardless of whether they are ``for'' that process,
1257 * so that we know how much of its real time was spent
1258 * in ``non-process'' (i.e., interrupt) work.
1259 */
1260 p = curproc;
1261 if (CLKF_INTR(frame)) {
1262 if (p != NULL)
1263 p->p_iticks++;
1264 spc->spc_cp_time[CP_INTR]++;
1265 } else if (p != NULL) {
1266 p->p_sticks++;
1267 spc->spc_cp_time[CP_SYS]++;
1268 } else
1269 spc->spc_cp_time[CP_IDLE]++;
1270 }
1271 pscnt = psdiv;
1272
1273 if (p != NULL) {
1274 ++p->p_cpticks;
1275 /*
1276 * If no separate schedclock is provided, call it here
1277 * at ~~12-25 Hz, ~~16 Hz is best
1278 */
1279 if (schedhz == 0)
1280 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1281 schedclock(p);
1282 }
1283 }
1284
1285
1286 #ifdef NTP /* NTP phase-locked loop in kernel */
1287
1288 /*
1289 * hardupdate() - local clock update
1290 *
1291 * This routine is called by ntp_adjtime() to update the local clock
1292 * phase and frequency. The implementation is of an adaptive-parameter,
1293 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1294 * time and frequency offset estimates for each call. If the kernel PPS
1295 * discipline code is configured (PPS_SYNC), the PPS signal itself
1296 * determines the new time offset, instead of the calling argument.
1297 * Presumably, calls to ntp_adjtime() occur only when the caller
1298 * believes the local clock is valid within some bound (+-128 ms with
1299 * NTP). If the caller's time is far different than the PPS time, an
1300 * argument will ensue, and it's not clear who will lose.
1301 *
1302 * For uncompensated quartz crystal oscillatores and nominal update
1303 * intervals less than 1024 s, operation should be in phase-lock mode
1304 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1305 * intervals greater than thiss, operation should be in frequency-lock
1306 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1307 *
1308 * Note: splclock() is in effect.
1309 */
1310 void
1311 hardupdate(long offset)
1312 {
1313 long ltemp, mtemp;
1314
1315 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1316 return;
1317 ltemp = offset;
1318 #ifdef PPS_SYNC
1319 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1320 ltemp = pps_offset;
1321 #endif /* PPS_SYNC */
1322
1323 /*
1324 * Scale the phase adjustment and clamp to the operating range.
1325 */
1326 if (ltemp > MAXPHASE)
1327 time_offset = MAXPHASE << SHIFT_UPDATE;
1328 else if (ltemp < -MAXPHASE)
1329 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1330 else
1331 time_offset = ltemp << SHIFT_UPDATE;
1332
1333 /*
1334 * Select whether the frequency is to be controlled and in which
1335 * mode (PLL or FLL). Clamp to the operating range. Ugly
1336 * multiply/divide should be replaced someday.
1337 */
1338 if (time_status & STA_FREQHOLD || time_reftime == 0)
1339 time_reftime = time.tv_sec;
1340 mtemp = time.tv_sec - time_reftime;
1341 time_reftime = time.tv_sec;
1342 if (time_status & STA_FLL) {
1343 if (mtemp >= MINSEC) {
1344 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1345 SHIFT_UPDATE));
1346 if (ltemp < 0)
1347 time_freq -= -ltemp >> SHIFT_KH;
1348 else
1349 time_freq += ltemp >> SHIFT_KH;
1350 }
1351 } else {
1352 if (mtemp < MAXSEC) {
1353 ltemp *= mtemp;
1354 if (ltemp < 0)
1355 time_freq -= -ltemp >> (time_constant +
1356 time_constant + SHIFT_KF -
1357 SHIFT_USEC);
1358 else
1359 time_freq += ltemp >> (time_constant +
1360 time_constant + SHIFT_KF -
1361 SHIFT_USEC);
1362 }
1363 }
1364 if (time_freq > time_tolerance)
1365 time_freq = time_tolerance;
1366 else if (time_freq < -time_tolerance)
1367 time_freq = -time_tolerance;
1368 }
1369
1370 #ifdef PPS_SYNC
1371 /*
1372 * hardpps() - discipline CPU clock oscillator to external PPS signal
1373 *
1374 * This routine is called at each PPS interrupt in order to discipline
1375 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1376 * and leaves it in a handy spot for the hardclock() routine. It
1377 * integrates successive PPS phase differences and calculates the
1378 * frequency offset. This is used in hardclock() to discipline the CPU
1379 * clock oscillator so that intrinsic frequency error is cancelled out.
1380 * The code requires the caller to capture the time and hardware counter
1381 * value at the on-time PPS signal transition.
1382 *
1383 * Note that, on some Unix systems, this routine runs at an interrupt
1384 * priority level higher than the timer interrupt routine hardclock().
1385 * Therefore, the variables used are distinct from the hardclock()
1386 * variables, except for certain exceptions: The PPS frequency pps_freq
1387 * and phase pps_offset variables are determined by this routine and
1388 * updated atomically. The time_tolerance variable can be considered a
1389 * constant, since it is infrequently changed, and then only when the
1390 * PPS signal is disabled. The watchdog counter pps_valid is updated
1391 * once per second by hardclock() and is atomically cleared in this
1392 * routine.
1393 */
1394 void
1395 hardpps(struct timeval *tvp, /* time at PPS */
1396 long usec /* hardware counter at PPS */)
1397 {
1398 long u_usec, v_usec, bigtick;
1399 long cal_sec, cal_usec;
1400
1401 /*
1402 * An occasional glitch can be produced when the PPS interrupt
1403 * occurs in the hardclock() routine before the time variable is
1404 * updated. Here the offset is discarded when the difference
1405 * between it and the last one is greater than tick/2, but not
1406 * if the interval since the first discard exceeds 30 s.
1407 */
1408 time_status |= STA_PPSSIGNAL;
1409 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1410 pps_valid = 0;
1411 u_usec = -tvp->tv_usec;
1412 if (u_usec < -500000)
1413 u_usec += 1000000;
1414 v_usec = pps_offset - u_usec;
1415 if (v_usec < 0)
1416 v_usec = -v_usec;
1417 if (v_usec > (tick >> 1)) {
1418 if (pps_glitch > MAXGLITCH) {
1419 pps_glitch = 0;
1420 pps_tf[2] = u_usec;
1421 pps_tf[1] = u_usec;
1422 } else {
1423 pps_glitch++;
1424 u_usec = pps_offset;
1425 }
1426 } else
1427 pps_glitch = 0;
1428
1429 /*
1430 * A three-stage median filter is used to help deglitch the pps
1431 * time. The median sample becomes the time offset estimate; the
1432 * difference between the other two samples becomes the time
1433 * dispersion (jitter) estimate.
1434 */
1435 pps_tf[2] = pps_tf[1];
1436 pps_tf[1] = pps_tf[0];
1437 pps_tf[0] = u_usec;
1438 if (pps_tf[0] > pps_tf[1]) {
1439 if (pps_tf[1] > pps_tf[2]) {
1440 pps_offset = pps_tf[1]; /* 0 1 2 */
1441 v_usec = pps_tf[0] - pps_tf[2];
1442 } else if (pps_tf[2] > pps_tf[0]) {
1443 pps_offset = pps_tf[0]; /* 2 0 1 */
1444 v_usec = pps_tf[2] - pps_tf[1];
1445 } else {
1446 pps_offset = pps_tf[2]; /* 0 2 1 */
1447 v_usec = pps_tf[0] - pps_tf[1];
1448 }
1449 } else {
1450 if (pps_tf[1] < pps_tf[2]) {
1451 pps_offset = pps_tf[1]; /* 2 1 0 */
1452 v_usec = pps_tf[2] - pps_tf[0];
1453 } else if (pps_tf[2] < pps_tf[0]) {
1454 pps_offset = pps_tf[0]; /* 1 0 2 */
1455 v_usec = pps_tf[1] - pps_tf[2];
1456 } else {
1457 pps_offset = pps_tf[2]; /* 1 2 0 */
1458 v_usec = pps_tf[1] - pps_tf[0];
1459 }
1460 }
1461 if (v_usec > MAXTIME)
1462 pps_jitcnt++;
1463 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1464 if (v_usec < 0)
1465 pps_jitter -= -v_usec >> PPS_AVG;
1466 else
1467 pps_jitter += v_usec >> PPS_AVG;
1468 if (pps_jitter > (MAXTIME >> 1))
1469 time_status |= STA_PPSJITTER;
1470
1471 /*
1472 * During the calibration interval adjust the starting time when
1473 * the tick overflows. At the end of the interval compute the
1474 * duration of the interval and the difference of the hardware
1475 * counters at the beginning and end of the interval. This code
1476 * is deliciously complicated by the fact valid differences may
1477 * exceed the value of tick when using long calibration
1478 * intervals and small ticks. Note that the counter can be
1479 * greater than tick if caught at just the wrong instant, but
1480 * the values returned and used here are correct.
1481 */
1482 bigtick = (long)tick << SHIFT_USEC;
1483 pps_usec -= pps_freq;
1484 if (pps_usec >= bigtick)
1485 pps_usec -= bigtick;
1486 if (pps_usec < 0)
1487 pps_usec += bigtick;
1488 pps_time.tv_sec++;
1489 pps_count++;
1490 if (pps_count < (1 << pps_shift))
1491 return;
1492 pps_count = 0;
1493 pps_calcnt++;
1494 u_usec = usec << SHIFT_USEC;
1495 v_usec = pps_usec - u_usec;
1496 if (v_usec >= bigtick >> 1)
1497 v_usec -= bigtick;
1498 if (v_usec < -(bigtick >> 1))
1499 v_usec += bigtick;
1500 if (v_usec < 0)
1501 v_usec = -(-v_usec >> pps_shift);
1502 else
1503 v_usec = v_usec >> pps_shift;
1504 pps_usec = u_usec;
1505 cal_sec = tvp->tv_sec;
1506 cal_usec = tvp->tv_usec;
1507 cal_sec -= pps_time.tv_sec;
1508 cal_usec -= pps_time.tv_usec;
1509 if (cal_usec < 0) {
1510 cal_usec += 1000000;
1511 cal_sec--;
1512 }
1513 pps_time = *tvp;
1514
1515 /*
1516 * Check for lost interrupts, noise, excessive jitter and
1517 * excessive frequency error. The number of timer ticks during
1518 * the interval may vary +-1 tick. Add to this a margin of one
1519 * tick for the PPS signal jitter and maximum frequency
1520 * deviation. If the limits are exceeded, the calibration
1521 * interval is reset to the minimum and we start over.
1522 */
1523 u_usec = (long)tick << 1;
1524 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1525 || (cal_sec == 0 && cal_usec < u_usec))
1526 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1527 pps_errcnt++;
1528 pps_shift = PPS_SHIFT;
1529 pps_intcnt = 0;
1530 time_status |= STA_PPSERROR;
1531 return;
1532 }
1533
1534 /*
1535 * A three-stage median filter is used to help deglitch the pps
1536 * frequency. The median sample becomes the frequency offset
1537 * estimate; the difference between the other two samples
1538 * becomes the frequency dispersion (stability) estimate.
1539 */
1540 pps_ff[2] = pps_ff[1];
1541 pps_ff[1] = pps_ff[0];
1542 pps_ff[0] = v_usec;
1543 if (pps_ff[0] > pps_ff[1]) {
1544 if (pps_ff[1] > pps_ff[2]) {
1545 u_usec = pps_ff[1]; /* 0 1 2 */
1546 v_usec = pps_ff[0] - pps_ff[2];
1547 } else if (pps_ff[2] > pps_ff[0]) {
1548 u_usec = pps_ff[0]; /* 2 0 1 */
1549 v_usec = pps_ff[2] - pps_ff[1];
1550 } else {
1551 u_usec = pps_ff[2]; /* 0 2 1 */
1552 v_usec = pps_ff[0] - pps_ff[1];
1553 }
1554 } else {
1555 if (pps_ff[1] < pps_ff[2]) {
1556 u_usec = pps_ff[1]; /* 2 1 0 */
1557 v_usec = pps_ff[2] - pps_ff[0];
1558 } else if (pps_ff[2] < pps_ff[0]) {
1559 u_usec = pps_ff[0]; /* 1 0 2 */
1560 v_usec = pps_ff[1] - pps_ff[2];
1561 } else {
1562 u_usec = pps_ff[2]; /* 1 2 0 */
1563 v_usec = pps_ff[1] - pps_ff[0];
1564 }
1565 }
1566
1567 /*
1568 * Here the frequency dispersion (stability) is updated. If it
1569 * is less than one-fourth the maximum (MAXFREQ), the frequency
1570 * offset is updated as well, but clamped to the tolerance. It
1571 * will be processed later by the hardclock() routine.
1572 */
1573 v_usec = (v_usec >> 1) - pps_stabil;
1574 if (v_usec < 0)
1575 pps_stabil -= -v_usec >> PPS_AVG;
1576 else
1577 pps_stabil += v_usec >> PPS_AVG;
1578 if (pps_stabil > MAXFREQ >> 2) {
1579 pps_stbcnt++;
1580 time_status |= STA_PPSWANDER;
1581 return;
1582 }
1583 if (time_status & STA_PPSFREQ) {
1584 if (u_usec < 0) {
1585 pps_freq -= -u_usec >> PPS_AVG;
1586 if (pps_freq < -time_tolerance)
1587 pps_freq = -time_tolerance;
1588 u_usec = -u_usec;
1589 } else {
1590 pps_freq += u_usec >> PPS_AVG;
1591 if (pps_freq > time_tolerance)
1592 pps_freq = time_tolerance;
1593 }
1594 }
1595
1596 /*
1597 * Here the calibration interval is adjusted. If the maximum
1598 * time difference is greater than tick / 4, reduce the interval
1599 * by half. If this is not the case for four consecutive
1600 * intervals, double the interval.
1601 */
1602 if (u_usec << pps_shift > bigtick >> 2) {
1603 pps_intcnt = 0;
1604 if (pps_shift > PPS_SHIFT)
1605 pps_shift--;
1606 } else if (pps_intcnt >= 4) {
1607 pps_intcnt = 0;
1608 if (pps_shift < PPS_SHIFTMAX)
1609 pps_shift++;
1610 } else
1611 pps_intcnt++;
1612 }
1613 #endif /* PPS_SYNC */
1614 #endif /* NTP */
1615
1616 /*
1617 * Return information about system clocks.
1618 */
1619 int
1620 sysctl_clockrate(void *where, size_t *sizep)
1621 {
1622 struct clockinfo clkinfo;
1623
1624 /*
1625 * Construct clockinfo structure.
1626 */
1627 clkinfo.tick = tick;
1628 clkinfo.tickadj = tickadj;
1629 clkinfo.hz = hz;
1630 clkinfo.profhz = profhz;
1631 clkinfo.stathz = stathz ? stathz : hz;
1632 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1633 }
1634