kern_clock.c revision 1.68 1 /* $NetBSD: kern_clock.c,v 1.68 2000/08/22 16:44:51 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 int softclock_running; /* 1 => softclock() is running */
316 static int psdiv, pscnt; /* prof => stat divider */
317 int psratio; /* ratio: prof / stat */
318 int tickfix, tickfixinterval; /* used if tick not really integral */
319 #ifndef NTP
320 static int tickfixcnt; /* accumulated fractional error */
321 #else
322 int fixtick; /* used by NTP for same */
323 int shifthz;
324 #endif
325
326 /*
327 * We might want ldd to load the both words from time at once.
328 * To succeed we need to be quadword aligned.
329 * The sparc already does that, and that it has worked so far is a fluke.
330 */
331 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
332 volatile struct timeval mono_time;
333
334 /*
335 * The callout mechanism is based on the work of Adam M. Costello and
336 * George Varghese, published in a technical report entitled "Redesigning
337 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
338 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
339 *
340 * The original work on the data structures used in this implementation
341 * was published by G. Varghese and A. Lauck in the paper "Hashed and
342 * Hierarchical Timing Wheels: Data Structures for the Efficient
343 * Implementation of a Timer Facility" in the Proceedings of the 11th
344 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
345 * November 1987.
346 */
347 struct callout_queue *callwheel;
348 int callwheelsize, callwheelbits, callwheelmask;
349
350 static struct callout *nextsoftcheck; /* next callout to be checked */
351
352 #ifdef CALLWHEEL_STATS
353 int callwheel_collisions; /* number of hash collisions */
354 int callwheel_maxlength; /* length of the longest hash chain */
355 int *callwheel_sizes; /* per-bucket length count */
356 u_int64_t callwheel_count; /* # callouts currently */
357 u_int64_t callwheel_established; /* # callouts established */
358 u_int64_t callwheel_fired; /* # callouts that fired */
359 u_int64_t callwheel_disestablished; /* # callouts disestablished */
360 u_int64_t callwheel_changed; /* # callouts changed */
361 u_int64_t callwheel_softclocks; /* # times softclock() called */
362 u_int64_t callwheel_softchecks; /* # checks per softclock() */
363 u_int64_t callwheel_softempty; /* # empty buckets seen */
364 #endif /* CALLWHEEL_STATS */
365
366 /*
367 * This value indicates the number of consecutive callouts that
368 * will be checked before we allow interrupts to have a chance
369 * again.
370 */
371 #ifndef MAX_SOFTCLOCK_STEPS
372 #define MAX_SOFTCLOCK_STEPS 100
373 #endif
374
375 struct simplelock callwheel_slock;
376
377 #define CALLWHEEL_LOCK(s) \
378 do { \
379 s = splclock(); \
380 simple_lock(&callwheel_slock); \
381 } while (0)
382
383 #define CALLWHEEL_UNLOCK(s) \
384 do { \
385 simple_unlock(&callwheel_slock); \
386 splx(s); \
387 } while (0)
388
389 static void callout_stop_locked(struct callout *);
390
391 /*
392 * These are both protected by callwheel_lock.
393 * XXX SHOULD BE STATIC!!
394 */
395 u_int64_t hardclock_ticks, softclock_ticks;
396
397 /*
398 * Initialize clock frequencies and start both clocks running.
399 */
400 void
401 initclocks(void)
402 {
403 int i;
404
405 /*
406 * Set divisors to 1 (normal case) and let the machine-specific
407 * code do its bit.
408 */
409 psdiv = pscnt = 1;
410 cpu_initclocks();
411
412 /*
413 * Compute profhz/stathz, and fix profhz if needed.
414 */
415 i = stathz ? stathz : hz;
416 if (profhz == 0)
417 profhz = i;
418 psratio = profhz / i;
419
420 #ifdef NTP
421 switch (hz) {
422 case 1:
423 shifthz = SHIFT_SCALE - 0;
424 break;
425 case 2:
426 shifthz = SHIFT_SCALE - 1;
427 break;
428 case 4:
429 shifthz = SHIFT_SCALE - 2;
430 break;
431 case 8:
432 shifthz = SHIFT_SCALE - 3;
433 break;
434 case 16:
435 shifthz = SHIFT_SCALE - 4;
436 break;
437 case 32:
438 shifthz = SHIFT_SCALE - 5;
439 break;
440 case 60:
441 case 64:
442 shifthz = SHIFT_SCALE - 6;
443 break;
444 case 96:
445 case 100:
446 case 128:
447 shifthz = SHIFT_SCALE - 7;
448 break;
449 case 256:
450 shifthz = SHIFT_SCALE - 8;
451 break;
452 case 512:
453 shifthz = SHIFT_SCALE - 9;
454 break;
455 case 1000:
456 case 1024:
457 shifthz = SHIFT_SCALE - 10;
458 break;
459 case 1200:
460 case 2048:
461 shifthz = SHIFT_SCALE - 11;
462 break;
463 case 4096:
464 shifthz = SHIFT_SCALE - 12;
465 break;
466 case 8192:
467 shifthz = SHIFT_SCALE - 13;
468 break;
469 case 16384:
470 shifthz = SHIFT_SCALE - 14;
471 break;
472 case 32768:
473 shifthz = SHIFT_SCALE - 15;
474 break;
475 case 65536:
476 shifthz = SHIFT_SCALE - 16;
477 break;
478 default:
479 panic("weird hz");
480 }
481 if (fixtick == 0) {
482 /*
483 * Give MD code a chance to set this to a better
484 * value; but, if it doesn't, we should.
485 */
486 fixtick = (1000000 - (hz*tick));
487 }
488 #endif
489 }
490
491 /*
492 * The real-time timer, interrupting hz times per second.
493 */
494 void
495 hardclock(struct clockframe *frame)
496 {
497 struct proc *p;
498 int delta;
499 extern int tickdelta;
500 extern long timedelta;
501 #ifdef NTP
502 int time_update;
503 int ltemp;
504 #endif
505
506 p = curproc;
507 if (p) {
508 struct pstats *pstats;
509
510 /*
511 * Run current process's virtual and profile time, as needed.
512 */
513 pstats = p->p_stats;
514 if (CLKF_USERMODE(frame) &&
515 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
516 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
517 psignal(p, SIGVTALRM);
518 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
519 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
520 psignal(p, SIGPROF);
521 }
522
523 /*
524 * If no separate statistics clock is available, run it from here.
525 */
526 if (stathz == 0)
527 statclock(frame);
528
529 #if defined(MULTIPROCESSOR)
530 /*
531 * If we are not the primary CPU, we're not allowed to do
532 * any more work.
533 */
534 if (CPU_IS_PRIMARY(curcpu()) == 0)
535 return;
536 #endif
537
538 /*
539 * Increment the time-of-day. The increment is normally just
540 * ``tick''. If the machine is one which has a clock frequency
541 * such that ``hz'' would not divide the second evenly into
542 * milliseconds, a periodic adjustment must be applied. Finally,
543 * if we are still adjusting the time (see adjtime()),
544 * ``tickdelta'' may also be added in.
545 */
546 delta = tick;
547
548 #ifndef NTP
549 if (tickfix) {
550 tickfixcnt += tickfix;
551 if (tickfixcnt >= tickfixinterval) {
552 delta++;
553 tickfixcnt -= tickfixinterval;
554 }
555 }
556 #endif /* !NTP */
557 /* Imprecise 4bsd adjtime() handling */
558 if (timedelta != 0) {
559 delta += tickdelta;
560 timedelta -= tickdelta;
561 }
562
563 #ifdef notyet
564 microset();
565 #endif
566
567 #ifndef NTP
568 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
569 #endif
570 BUMPTIME(&mono_time, delta);
571
572 #ifdef NTP
573 time_update = delta;
574
575 /*
576 * Compute the phase adjustment. If the low-order bits
577 * (time_phase) of the update overflow, bump the high-order bits
578 * (time_update).
579 */
580 time_phase += time_adj;
581 if (time_phase <= -FINEUSEC) {
582 ltemp = -time_phase >> SHIFT_SCALE;
583 time_phase += ltemp << SHIFT_SCALE;
584 time_update -= ltemp;
585 } else if (time_phase >= FINEUSEC) {
586 ltemp = time_phase >> SHIFT_SCALE;
587 time_phase -= ltemp << SHIFT_SCALE;
588 time_update += ltemp;
589 }
590
591 #ifdef HIGHBALL
592 /*
593 * If the HIGHBALL board is installed, we need to adjust the
594 * external clock offset in order to close the hardware feedback
595 * loop. This will adjust the external clock phase and frequency
596 * in small amounts. The additional phase noise and frequency
597 * wander this causes should be minimal. We also need to
598 * discipline the kernel time variable, since the PLL is used to
599 * discipline the external clock. If the Highball board is not
600 * present, we discipline kernel time with the PLL as usual. We
601 * assume that the external clock phase adjustment (time_update)
602 * and kernel phase adjustment (clock_cpu) are less than the
603 * value of tick.
604 */
605 clock_offset.tv_usec += time_update;
606 if (clock_offset.tv_usec >= 1000000) {
607 clock_offset.tv_sec++;
608 clock_offset.tv_usec -= 1000000;
609 }
610 if (clock_offset.tv_usec < 0) {
611 clock_offset.tv_sec--;
612 clock_offset.tv_usec += 1000000;
613 }
614 time.tv_usec += clock_cpu;
615 clock_cpu = 0;
616 #else
617 time.tv_usec += time_update;
618 #endif /* HIGHBALL */
619
620 /*
621 * On rollover of the second the phase adjustment to be used for
622 * the next second is calculated. Also, the maximum error is
623 * increased by the tolerance. If the PPS frequency discipline
624 * code is present, the phase is increased to compensate for the
625 * CPU clock oscillator frequency error.
626 *
627 * On a 32-bit machine and given parameters in the timex.h
628 * header file, the maximum phase adjustment is +-512 ms and
629 * maximum frequency offset is a tad less than) +-512 ppm. On a
630 * 64-bit machine, you shouldn't need to ask.
631 */
632 if (time.tv_usec >= 1000000) {
633 time.tv_usec -= 1000000;
634 time.tv_sec++;
635 time_maxerror += time_tolerance >> SHIFT_USEC;
636
637 /*
638 * Leap second processing. If in leap-insert state at
639 * the end of the day, the system clock is set back one
640 * second; if in leap-delete state, the system clock is
641 * set ahead one second. The microtime() routine or
642 * external clock driver will insure that reported time
643 * is always monotonic. The ugly divides should be
644 * replaced.
645 */
646 switch (time_state) {
647 case TIME_OK:
648 if (time_status & STA_INS)
649 time_state = TIME_INS;
650 else if (time_status & STA_DEL)
651 time_state = TIME_DEL;
652 break;
653
654 case TIME_INS:
655 if (time.tv_sec % 86400 == 0) {
656 time.tv_sec--;
657 time_state = TIME_OOP;
658 }
659 break;
660
661 case TIME_DEL:
662 if ((time.tv_sec + 1) % 86400 == 0) {
663 time.tv_sec++;
664 time_state = TIME_WAIT;
665 }
666 break;
667
668 case TIME_OOP:
669 time_state = TIME_WAIT;
670 break;
671
672 case TIME_WAIT:
673 if (!(time_status & (STA_INS | STA_DEL)))
674 time_state = TIME_OK;
675 break;
676 }
677
678 /*
679 * Compute the phase adjustment for the next second. In
680 * PLL mode, the offset is reduced by a fixed factor
681 * times the time constant. In FLL mode the offset is
682 * used directly. In either mode, the maximum phase
683 * adjustment for each second is clamped so as to spread
684 * the adjustment over not more than the number of
685 * seconds between updates.
686 */
687 if (time_offset < 0) {
688 ltemp = -time_offset;
689 if (!(time_status & STA_FLL))
690 ltemp >>= SHIFT_KG + time_constant;
691 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
692 ltemp = (MAXPHASE / MINSEC) <<
693 SHIFT_UPDATE;
694 time_offset += ltemp;
695 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
696 } else if (time_offset > 0) {
697 ltemp = time_offset;
698 if (!(time_status & STA_FLL))
699 ltemp >>= SHIFT_KG + time_constant;
700 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
701 ltemp = (MAXPHASE / MINSEC) <<
702 SHIFT_UPDATE;
703 time_offset -= ltemp;
704 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
705 } else
706 time_adj = 0;
707
708 /*
709 * Compute the frequency estimate and additional phase
710 * adjustment due to frequency error for the next
711 * second. When the PPS signal is engaged, gnaw on the
712 * watchdog counter and update the frequency computed by
713 * the pll and the PPS signal.
714 */
715 #ifdef PPS_SYNC
716 pps_valid++;
717 if (pps_valid == PPS_VALID) {
718 pps_jitter = MAXTIME;
719 pps_stabil = MAXFREQ;
720 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
721 STA_PPSWANDER | STA_PPSERROR);
722 }
723 ltemp = time_freq + pps_freq;
724 #else
725 ltemp = time_freq;
726 #endif /* PPS_SYNC */
727
728 if (ltemp < 0)
729 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
730 else
731 time_adj += ltemp >> (SHIFT_USEC - shifthz);
732 time_adj += (long)fixtick << shifthz;
733
734 /*
735 * When the CPU clock oscillator frequency is not a
736 * power of 2 in Hz, shifthz is only an approximate
737 * scale factor.
738 *
739 * To determine the adjustment, you can do the following:
740 * bc -q
741 * scale=24
742 * obase=2
743 * idealhz/realhz
744 * where `idealhz' is the next higher power of 2, and `realhz'
745 * is the actual value. You may need to factor this result
746 * into a sequence of 2 multipliers to get better precision.
747 *
748 * Likewise, the error can be calculated with (e.g. for 100Hz):
749 * bc -q
750 * scale=24
751 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
752 * (and then multiply by 1000000 to get ppm).
753 */
754 switch (hz) {
755 case 60:
756 /* A factor of 1.000100010001 gives about 15ppm
757 error. */
758 if (time_adj < 0) {
759 time_adj -= (-time_adj >> 4);
760 time_adj -= (-time_adj >> 8);
761 } else {
762 time_adj += (time_adj >> 4);
763 time_adj += (time_adj >> 8);
764 }
765 break;
766
767 case 96:
768 /* A factor of 1.0101010101 gives about 244ppm error. */
769 if (time_adj < 0) {
770 time_adj -= (-time_adj >> 2);
771 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
772 } else {
773 time_adj += (time_adj >> 2);
774 time_adj += (time_adj >> 4) + (time_adj >> 8);
775 }
776 break;
777
778 case 100:
779 /* A factor of 1.010001111010111 gives about 1ppm
780 error. */
781 if (time_adj < 0) {
782 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
783 time_adj += (-time_adj >> 10);
784 } else {
785 time_adj += (time_adj >> 2) + (time_adj >> 5);
786 time_adj -= (time_adj >> 10);
787 }
788 break;
789
790 case 1000:
791 /* A factor of 1.000001100010100001 gives about 50ppm
792 error. */
793 if (time_adj < 0) {
794 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
795 time_adj -= (-time_adj >> 7);
796 } else {
797 time_adj += (time_adj >> 6) + (time_adj >> 11);
798 time_adj += (time_adj >> 7);
799 }
800 break;
801
802 case 1200:
803 /* A factor of 1.1011010011100001 gives about 64ppm
804 error. */
805 if (time_adj < 0) {
806 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
807 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
808 } else {
809 time_adj += (time_adj >> 1) + (time_adj >> 6);
810 time_adj += (time_adj >> 3) + (time_adj >> 10);
811 }
812 break;
813 }
814
815 #ifdef EXT_CLOCK
816 /*
817 * If an external clock is present, it is necessary to
818 * discipline the kernel time variable anyway, since not
819 * all system components use the microtime() interface.
820 * Here, the time offset between the external clock and
821 * kernel time variable is computed every so often.
822 */
823 clock_count++;
824 if (clock_count > CLOCK_INTERVAL) {
825 clock_count = 0;
826 microtime(&clock_ext);
827 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
828 delta.tv_usec = clock_ext.tv_usec -
829 time.tv_usec;
830 if (delta.tv_usec < 0)
831 delta.tv_sec--;
832 if (delta.tv_usec >= 500000) {
833 delta.tv_usec -= 1000000;
834 delta.tv_sec++;
835 }
836 if (delta.tv_usec < -500000) {
837 delta.tv_usec += 1000000;
838 delta.tv_sec--;
839 }
840 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
841 delta.tv_usec > MAXPHASE) ||
842 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
843 delta.tv_usec < -MAXPHASE)) {
844 time = clock_ext;
845 delta.tv_sec = 0;
846 delta.tv_usec = 0;
847 }
848 #ifdef HIGHBALL
849 clock_cpu = delta.tv_usec;
850 #else /* HIGHBALL */
851 hardupdate(delta.tv_usec);
852 #endif /* HIGHBALL */
853 }
854 #endif /* EXT_CLOCK */
855 }
856
857 #endif /* NTP */
858
859 /*
860 * Process callouts at a very low cpu priority, so we don't keep the
861 * relatively high clock interrupt priority any longer than necessary.
862 */
863 simple_lock(&callwheel_slock); /* already at splclock() */
864 hardclock_ticks++;
865 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
866 simple_unlock(&callwheel_slock);
867 if (CLKF_BASEPRI(frame)) {
868 /*
869 * Save the overhead of a software interrupt;
870 * it will happen as soon as we return, so do
871 * it now.
872 *
873 * NOTE: If we're at ``base priority'', softclock()
874 * was not already running.
875 */
876 spllowersoftclock();
877 softclock();
878 } else
879 setsoftclock();
880 return;
881 } else if (softclock_running == 0 &&
882 (softclock_ticks + 1) == hardclock_ticks) {
883 softclock_ticks++;
884 }
885 simple_unlock(&callwheel_slock);
886 }
887
888 /*
889 * Software (low priority) clock interrupt.
890 * Run periodic events from timeout queue.
891 */
892 /*ARGSUSED*/
893 void
894 softclock(void)
895 {
896 struct callout_queue *bucket;
897 struct callout *c;
898 void (*func)(void *);
899 void *arg;
900 int s, idx;
901 int steps = 0;
902
903 CALLWHEEL_LOCK(s);
904
905 softclock_running = 1;
906
907 #ifdef CALLWHEEL_STATS
908 callwheel_softclocks++;
909 #endif
910
911 while (softclock_ticks != hardclock_ticks) {
912 softclock_ticks++;
913 idx = (int)(softclock_ticks & callwheelmask);
914 bucket = &callwheel[idx];
915 c = TAILQ_FIRST(bucket);
916 #ifdef CALLWHEEL_STATS
917 if (c == NULL)
918 callwheel_softempty++;
919 #endif
920 while (c != NULL) {
921 #ifdef CALLWHEEL_STATS
922 callwheel_softchecks++;
923 #endif
924 if (c->c_time != softclock_ticks) {
925 c = TAILQ_NEXT(c, c_link);
926 if (++steps >= MAX_SOFTCLOCK_STEPS) {
927 nextsoftcheck = c;
928 /* Give interrupts a chance. */
929 CALLWHEEL_UNLOCK(s);
930 CALLWHEEL_LOCK(s);
931 c = nextsoftcheck;
932 steps = 0;
933 }
934 } else {
935 nextsoftcheck = TAILQ_NEXT(c, c_link);
936 TAILQ_REMOVE(bucket, c, c_link);
937 #ifdef CALLWHEEL_STATS
938 callwheel_sizes[idx]--;
939 callwheel_fired++;
940 callwheel_count--;
941 #endif
942 func = c->c_func;
943 arg = c->c_arg;
944 c->c_func = NULL;
945 c->c_flags &= ~CALLOUT_PENDING;
946 CALLWHEEL_UNLOCK(s);
947 (*func)(arg);
948 CALLWHEEL_LOCK(s);
949 steps = 0;
950 c = nextsoftcheck;
951 }
952 }
953 }
954 nextsoftcheck = NULL;
955 softclock_running = 0;
956 CALLWHEEL_UNLOCK(s);
957 }
958
959 /*
960 * callout_setsize:
961 *
962 * Determine how many callwheels are necessary and
963 * set hash mask. Called from allocsys().
964 */
965 void
966 callout_setsize(void)
967 {
968
969 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
970 /* loop */ ;
971 callwheelmask = callwheelsize - 1;
972 }
973
974 /*
975 * callout_startup:
976 *
977 * Initialize the callwheel buckets.
978 */
979 void
980 callout_startup(void)
981 {
982 int i;
983
984 for (i = 0; i < callwheelsize; i++)
985 TAILQ_INIT(&callwheel[i]);
986
987 simple_lock_init(&callwheel_slock);
988 }
989
990 /*
991 * callout_init:
992 *
993 * Initialize a callout structure so that it can be used
994 * by callout_reset() and callout_stop().
995 */
996 void
997 callout_init(struct callout *c)
998 {
999
1000 memset(c, 0, sizeof(*c));
1001 }
1002
1003 /*
1004 * callout_reset:
1005 *
1006 * Establish or change a timeout.
1007 */
1008 void
1009 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1010 {
1011 struct callout_queue *bucket;
1012 int s;
1013
1014 if (ticks <= 0)
1015 ticks = 1;
1016
1017 CALLWHEEL_LOCK(s);
1018
1019 /*
1020 * If this callout's timer is already running, cancel it
1021 * before we modify it.
1022 */
1023 if (c->c_flags & CALLOUT_PENDING) {
1024 callout_stop_locked(c); /* Already locked */
1025 #ifdef CALLWHEEL_STATS
1026 callwheel_changed++;
1027 #endif
1028 }
1029
1030 c->c_arg = arg;
1031 c->c_func = func;
1032 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1033 c->c_time = hardclock_ticks + ticks;
1034
1035 bucket = &callwheel[c->c_time & callwheelmask];
1036
1037 #ifdef CALLWHEEL_STATS
1038 if (TAILQ_FIRST(bucket) != NULL)
1039 callwheel_collisions++;
1040 #endif
1041
1042 TAILQ_INSERT_TAIL(bucket, c, c_link);
1043
1044 #ifdef CALLWHEEL_STATS
1045 callwheel_count++;
1046 callwheel_established++;
1047 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1048 callwheel_maxlength =
1049 callwheel_sizes[c->c_time & callwheelmask];
1050 #endif
1051
1052 CALLWHEEL_UNLOCK(s);
1053 }
1054
1055 /*
1056 * callout_stop_locked:
1057 *
1058 * Disestablish a timeout. Callwheel is locked.
1059 */
1060 static void
1061 callout_stop_locked(struct callout *c)
1062 {
1063
1064 /*
1065 * Don't attempt to delete a callout that's not on the queue.
1066 */
1067 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1068 c->c_flags &= ~CALLOUT_ACTIVE;
1069 return;
1070 }
1071
1072 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1073
1074 if (nextsoftcheck == c)
1075 nextsoftcheck = TAILQ_NEXT(c, c_link);
1076
1077 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1078 #ifdef CALLWHEEL_STATS
1079 callwheel_count--;
1080 callwheel_disestablished++;
1081 callwheel_sizes[c->c_time & callwheelmask]--;
1082 #endif
1083
1084 c->c_func = NULL;
1085 }
1086
1087 /*
1088 * callout_stop:
1089 *
1090 * Disestablish a timeout. Callwheel is unlocked. This is
1091 * the standard entry point.
1092 */
1093 void
1094 callout_stop(struct callout *c)
1095 {
1096 int s;
1097
1098 CALLWHEEL_LOCK(s);
1099 callout_stop_locked(c);
1100 CALLWHEEL_UNLOCK(s);
1101 }
1102
1103 #ifdef CALLWHEEL_STATS
1104 /*
1105 * callout_showstats:
1106 *
1107 * Display callout statistics. Call it from DDB.
1108 */
1109 void
1110 callout_showstats(void)
1111 {
1112 u_int64_t curticks;
1113 int s;
1114
1115 s = splclock();
1116 curticks = softclock_ticks;
1117 splx(s);
1118
1119 printf("Callwheel statistics:\n");
1120 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1121 printf("\tCallouts established: %llu\n", callwheel_established);
1122 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1123 if (callwheel_changed != 0)
1124 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1125 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1126 printf("\tNumber of buckets: %d\n", callwheelsize);
1127 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1128 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1129 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1130 callwheel_softclocks, callwheel_softchecks);
1131 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1132 }
1133 #endif
1134
1135 /*
1136 * Compute number of hz until specified time. Used to compute second
1137 * argument to callout_reset() from an absolute time.
1138 */
1139 int
1140 hzto(struct timeval *tv)
1141 {
1142 unsigned long ticks;
1143 long sec, usec;
1144 int s;
1145
1146 /*
1147 * If the number of usecs in the whole seconds part of the time
1148 * difference fits in a long, then the total number of usecs will
1149 * fit in an unsigned long. Compute the total and convert it to
1150 * ticks, rounding up and adding 1 to allow for the current tick
1151 * to expire. Rounding also depends on unsigned long arithmetic
1152 * to avoid overflow.
1153 *
1154 * Otherwise, if the number of ticks in the whole seconds part of
1155 * the time difference fits in a long, then convert the parts to
1156 * ticks separately and add, using similar rounding methods and
1157 * overflow avoidance. This method would work in the previous
1158 * case, but it is slightly slower and assume that hz is integral.
1159 *
1160 * Otherwise, round the time difference down to the maximum
1161 * representable value.
1162 *
1163 * If ints are 32-bit, then the maximum value for any timeout in
1164 * 10ms ticks is 248 days.
1165 */
1166 s = splclock();
1167 sec = tv->tv_sec - time.tv_sec;
1168 usec = tv->tv_usec - time.tv_usec;
1169 splx(s);
1170
1171 if (usec < 0) {
1172 sec--;
1173 usec += 1000000;
1174 }
1175
1176 if (sec < 0 || (sec == 0 && usec <= 0)) {
1177 /*
1178 * Would expire now or in the past. Return 0 ticks.
1179 * This is different from the legacy hzto() interface,
1180 * and callers need to check for it.
1181 */
1182 ticks = 0;
1183 } else if (sec <= (LONG_MAX / 1000000))
1184 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1185 / tick) + 1;
1186 else if (sec <= (LONG_MAX / hz))
1187 ticks = (sec * hz) +
1188 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1189 else
1190 ticks = LONG_MAX;
1191
1192 if (ticks > INT_MAX)
1193 ticks = INT_MAX;
1194
1195 return ((int)ticks);
1196 }
1197
1198 /*
1199 * Start profiling on a process.
1200 *
1201 * Kernel profiling passes proc0 which never exits and hence
1202 * keeps the profile clock running constantly.
1203 */
1204 void
1205 startprofclock(struct proc *p)
1206 {
1207 int s;
1208
1209 if ((p->p_flag & P_PROFIL) == 0) {
1210 p->p_flag |= P_PROFIL;
1211 if (++profprocs == 1 && stathz != 0) {
1212 s = splstatclock();
1213 psdiv = pscnt = psratio;
1214 setstatclockrate(profhz);
1215 splx(s);
1216 }
1217 }
1218 }
1219
1220 /*
1221 * Stop profiling on a process.
1222 */
1223 void
1224 stopprofclock(struct proc *p)
1225 {
1226 int s;
1227
1228 if (p->p_flag & P_PROFIL) {
1229 p->p_flag &= ~P_PROFIL;
1230 if (--profprocs == 0 && stathz != 0) {
1231 s = splstatclock();
1232 psdiv = pscnt = 1;
1233 setstatclockrate(stathz);
1234 splx(s);
1235 }
1236 }
1237 }
1238
1239 /*
1240 * Statistics clock. Grab profile sample, and if divider reaches 0,
1241 * do process and kernel statistics.
1242 */
1243 void
1244 statclock(struct clockframe *frame)
1245 {
1246 #ifdef GPROF
1247 struct gmonparam *g;
1248 intptr_t i;
1249 #endif
1250 struct cpu_info *ci = curcpu();
1251 struct schedstate_percpu *spc = &ci->ci_schedstate;
1252 struct proc *p;
1253
1254 if (CLKF_USERMODE(frame)) {
1255 p = curproc;
1256 if (p->p_flag & P_PROFIL)
1257 addupc_intr(p, CLKF_PC(frame), 1);
1258 if (--pscnt > 0)
1259 return;
1260 /*
1261 * Came from user mode; CPU was in user state.
1262 * If this process is being profiled record the tick.
1263 */
1264 p->p_uticks++;
1265 if (p->p_nice > NZERO)
1266 spc->spc_cp_time[CP_NICE]++;
1267 else
1268 spc->spc_cp_time[CP_USER]++;
1269 } else {
1270 #ifdef GPROF
1271 /*
1272 * Kernel statistics are just like addupc_intr, only easier.
1273 */
1274 g = &_gmonparam;
1275 if (g->state == GMON_PROF_ON) {
1276 i = CLKF_PC(frame) - g->lowpc;
1277 if (i < g->textsize) {
1278 i /= HISTFRACTION * sizeof(*g->kcount);
1279 g->kcount[i]++;
1280 }
1281 }
1282 #endif
1283 if (--pscnt > 0)
1284 return;
1285 /*
1286 * Came from kernel mode, so we were:
1287 * - handling an interrupt,
1288 * - doing syscall or trap work on behalf of the current
1289 * user process, or
1290 * - spinning in the idle loop.
1291 * Whichever it is, charge the time as appropriate.
1292 * Note that we charge interrupts to the current process,
1293 * regardless of whether they are ``for'' that process,
1294 * so that we know how much of its real time was spent
1295 * in ``non-process'' (i.e., interrupt) work.
1296 */
1297 p = curproc;
1298 if (CLKF_INTR(frame)) {
1299 if (p != NULL)
1300 p->p_iticks++;
1301 spc->spc_cp_time[CP_INTR]++;
1302 } else if (p != NULL) {
1303 p->p_sticks++;
1304 spc->spc_cp_time[CP_SYS]++;
1305 } else
1306 spc->spc_cp_time[CP_IDLE]++;
1307 }
1308 pscnt = psdiv;
1309
1310 if (p != NULL) {
1311 ++p->p_cpticks;
1312 /*
1313 * If no separate schedclock is provided, call it here
1314 * at ~~12-25 Hz, ~~16 Hz is best
1315 */
1316 if (schedhz == 0)
1317 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1318 schedclock(p);
1319 }
1320 }
1321
1322
1323 #ifdef NTP /* NTP phase-locked loop in kernel */
1324
1325 /*
1326 * hardupdate() - local clock update
1327 *
1328 * This routine is called by ntp_adjtime() to update the local clock
1329 * phase and frequency. The implementation is of an adaptive-parameter,
1330 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1331 * time and frequency offset estimates for each call. If the kernel PPS
1332 * discipline code is configured (PPS_SYNC), the PPS signal itself
1333 * determines the new time offset, instead of the calling argument.
1334 * Presumably, calls to ntp_adjtime() occur only when the caller
1335 * believes the local clock is valid within some bound (+-128 ms with
1336 * NTP). If the caller's time is far different than the PPS time, an
1337 * argument will ensue, and it's not clear who will lose.
1338 *
1339 * For uncompensated quartz crystal oscillatores and nominal update
1340 * intervals less than 1024 s, operation should be in phase-lock mode
1341 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1342 * intervals greater than thiss, operation should be in frequency-lock
1343 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1344 *
1345 * Note: splclock() is in effect.
1346 */
1347 void
1348 hardupdate(long offset)
1349 {
1350 long ltemp, mtemp;
1351
1352 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1353 return;
1354 ltemp = offset;
1355 #ifdef PPS_SYNC
1356 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1357 ltemp = pps_offset;
1358 #endif /* PPS_SYNC */
1359
1360 /*
1361 * Scale the phase adjustment and clamp to the operating range.
1362 */
1363 if (ltemp > MAXPHASE)
1364 time_offset = MAXPHASE << SHIFT_UPDATE;
1365 else if (ltemp < -MAXPHASE)
1366 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1367 else
1368 time_offset = ltemp << SHIFT_UPDATE;
1369
1370 /*
1371 * Select whether the frequency is to be controlled and in which
1372 * mode (PLL or FLL). Clamp to the operating range. Ugly
1373 * multiply/divide should be replaced someday.
1374 */
1375 if (time_status & STA_FREQHOLD || time_reftime == 0)
1376 time_reftime = time.tv_sec;
1377 mtemp = time.tv_sec - time_reftime;
1378 time_reftime = time.tv_sec;
1379 if (time_status & STA_FLL) {
1380 if (mtemp >= MINSEC) {
1381 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1382 SHIFT_UPDATE));
1383 if (ltemp < 0)
1384 time_freq -= -ltemp >> SHIFT_KH;
1385 else
1386 time_freq += ltemp >> SHIFT_KH;
1387 }
1388 } else {
1389 if (mtemp < MAXSEC) {
1390 ltemp *= mtemp;
1391 if (ltemp < 0)
1392 time_freq -= -ltemp >> (time_constant +
1393 time_constant + SHIFT_KF -
1394 SHIFT_USEC);
1395 else
1396 time_freq += ltemp >> (time_constant +
1397 time_constant + SHIFT_KF -
1398 SHIFT_USEC);
1399 }
1400 }
1401 if (time_freq > time_tolerance)
1402 time_freq = time_tolerance;
1403 else if (time_freq < -time_tolerance)
1404 time_freq = -time_tolerance;
1405 }
1406
1407 #ifdef PPS_SYNC
1408 /*
1409 * hardpps() - discipline CPU clock oscillator to external PPS signal
1410 *
1411 * This routine is called at each PPS interrupt in order to discipline
1412 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1413 * and leaves it in a handy spot for the hardclock() routine. It
1414 * integrates successive PPS phase differences and calculates the
1415 * frequency offset. This is used in hardclock() to discipline the CPU
1416 * clock oscillator so that intrinsic frequency error is cancelled out.
1417 * The code requires the caller to capture the time and hardware counter
1418 * value at the on-time PPS signal transition.
1419 *
1420 * Note that, on some Unix systems, this routine runs at an interrupt
1421 * priority level higher than the timer interrupt routine hardclock().
1422 * Therefore, the variables used are distinct from the hardclock()
1423 * variables, except for certain exceptions: The PPS frequency pps_freq
1424 * and phase pps_offset variables are determined by this routine and
1425 * updated atomically. The time_tolerance variable can be considered a
1426 * constant, since it is infrequently changed, and then only when the
1427 * PPS signal is disabled. The watchdog counter pps_valid is updated
1428 * once per second by hardclock() and is atomically cleared in this
1429 * routine.
1430 */
1431 void
1432 hardpps(struct timeval *tvp, /* time at PPS */
1433 long usec /* hardware counter at PPS */)
1434 {
1435 long u_usec, v_usec, bigtick;
1436 long cal_sec, cal_usec;
1437
1438 /*
1439 * An occasional glitch can be produced when the PPS interrupt
1440 * occurs in the hardclock() routine before the time variable is
1441 * updated. Here the offset is discarded when the difference
1442 * between it and the last one is greater than tick/2, but not
1443 * if the interval since the first discard exceeds 30 s.
1444 */
1445 time_status |= STA_PPSSIGNAL;
1446 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1447 pps_valid = 0;
1448 u_usec = -tvp->tv_usec;
1449 if (u_usec < -500000)
1450 u_usec += 1000000;
1451 v_usec = pps_offset - u_usec;
1452 if (v_usec < 0)
1453 v_usec = -v_usec;
1454 if (v_usec > (tick >> 1)) {
1455 if (pps_glitch > MAXGLITCH) {
1456 pps_glitch = 0;
1457 pps_tf[2] = u_usec;
1458 pps_tf[1] = u_usec;
1459 } else {
1460 pps_glitch++;
1461 u_usec = pps_offset;
1462 }
1463 } else
1464 pps_glitch = 0;
1465
1466 /*
1467 * A three-stage median filter is used to help deglitch the pps
1468 * time. The median sample becomes the time offset estimate; the
1469 * difference between the other two samples becomes the time
1470 * dispersion (jitter) estimate.
1471 */
1472 pps_tf[2] = pps_tf[1];
1473 pps_tf[1] = pps_tf[0];
1474 pps_tf[0] = u_usec;
1475 if (pps_tf[0] > pps_tf[1]) {
1476 if (pps_tf[1] > pps_tf[2]) {
1477 pps_offset = pps_tf[1]; /* 0 1 2 */
1478 v_usec = pps_tf[0] - pps_tf[2];
1479 } else if (pps_tf[2] > pps_tf[0]) {
1480 pps_offset = pps_tf[0]; /* 2 0 1 */
1481 v_usec = pps_tf[2] - pps_tf[1];
1482 } else {
1483 pps_offset = pps_tf[2]; /* 0 2 1 */
1484 v_usec = pps_tf[0] - pps_tf[1];
1485 }
1486 } else {
1487 if (pps_tf[1] < pps_tf[2]) {
1488 pps_offset = pps_tf[1]; /* 2 1 0 */
1489 v_usec = pps_tf[2] - pps_tf[0];
1490 } else if (pps_tf[2] < pps_tf[0]) {
1491 pps_offset = pps_tf[0]; /* 1 0 2 */
1492 v_usec = pps_tf[1] - pps_tf[2];
1493 } else {
1494 pps_offset = pps_tf[2]; /* 1 2 0 */
1495 v_usec = pps_tf[1] - pps_tf[0];
1496 }
1497 }
1498 if (v_usec > MAXTIME)
1499 pps_jitcnt++;
1500 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1501 if (v_usec < 0)
1502 pps_jitter -= -v_usec >> PPS_AVG;
1503 else
1504 pps_jitter += v_usec >> PPS_AVG;
1505 if (pps_jitter > (MAXTIME >> 1))
1506 time_status |= STA_PPSJITTER;
1507
1508 /*
1509 * During the calibration interval adjust the starting time when
1510 * the tick overflows. At the end of the interval compute the
1511 * duration of the interval and the difference of the hardware
1512 * counters at the beginning and end of the interval. This code
1513 * is deliciously complicated by the fact valid differences may
1514 * exceed the value of tick when using long calibration
1515 * intervals and small ticks. Note that the counter can be
1516 * greater than tick if caught at just the wrong instant, but
1517 * the values returned and used here are correct.
1518 */
1519 bigtick = (long)tick << SHIFT_USEC;
1520 pps_usec -= pps_freq;
1521 if (pps_usec >= bigtick)
1522 pps_usec -= bigtick;
1523 if (pps_usec < 0)
1524 pps_usec += bigtick;
1525 pps_time.tv_sec++;
1526 pps_count++;
1527 if (pps_count < (1 << pps_shift))
1528 return;
1529 pps_count = 0;
1530 pps_calcnt++;
1531 u_usec = usec << SHIFT_USEC;
1532 v_usec = pps_usec - u_usec;
1533 if (v_usec >= bigtick >> 1)
1534 v_usec -= bigtick;
1535 if (v_usec < -(bigtick >> 1))
1536 v_usec += bigtick;
1537 if (v_usec < 0)
1538 v_usec = -(-v_usec >> pps_shift);
1539 else
1540 v_usec = v_usec >> pps_shift;
1541 pps_usec = u_usec;
1542 cal_sec = tvp->tv_sec;
1543 cal_usec = tvp->tv_usec;
1544 cal_sec -= pps_time.tv_sec;
1545 cal_usec -= pps_time.tv_usec;
1546 if (cal_usec < 0) {
1547 cal_usec += 1000000;
1548 cal_sec--;
1549 }
1550 pps_time = *tvp;
1551
1552 /*
1553 * Check for lost interrupts, noise, excessive jitter and
1554 * excessive frequency error. The number of timer ticks during
1555 * the interval may vary +-1 tick. Add to this a margin of one
1556 * tick for the PPS signal jitter and maximum frequency
1557 * deviation. If the limits are exceeded, the calibration
1558 * interval is reset to the minimum and we start over.
1559 */
1560 u_usec = (long)tick << 1;
1561 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1562 || (cal_sec == 0 && cal_usec < u_usec))
1563 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1564 pps_errcnt++;
1565 pps_shift = PPS_SHIFT;
1566 pps_intcnt = 0;
1567 time_status |= STA_PPSERROR;
1568 return;
1569 }
1570
1571 /*
1572 * A three-stage median filter is used to help deglitch the pps
1573 * frequency. The median sample becomes the frequency offset
1574 * estimate; the difference between the other two samples
1575 * becomes the frequency dispersion (stability) estimate.
1576 */
1577 pps_ff[2] = pps_ff[1];
1578 pps_ff[1] = pps_ff[0];
1579 pps_ff[0] = v_usec;
1580 if (pps_ff[0] > pps_ff[1]) {
1581 if (pps_ff[1] > pps_ff[2]) {
1582 u_usec = pps_ff[1]; /* 0 1 2 */
1583 v_usec = pps_ff[0] - pps_ff[2];
1584 } else if (pps_ff[2] > pps_ff[0]) {
1585 u_usec = pps_ff[0]; /* 2 0 1 */
1586 v_usec = pps_ff[2] - pps_ff[1];
1587 } else {
1588 u_usec = pps_ff[2]; /* 0 2 1 */
1589 v_usec = pps_ff[0] - pps_ff[1];
1590 }
1591 } else {
1592 if (pps_ff[1] < pps_ff[2]) {
1593 u_usec = pps_ff[1]; /* 2 1 0 */
1594 v_usec = pps_ff[2] - pps_ff[0];
1595 } else if (pps_ff[2] < pps_ff[0]) {
1596 u_usec = pps_ff[0]; /* 1 0 2 */
1597 v_usec = pps_ff[1] - pps_ff[2];
1598 } else {
1599 u_usec = pps_ff[2]; /* 1 2 0 */
1600 v_usec = pps_ff[1] - pps_ff[0];
1601 }
1602 }
1603
1604 /*
1605 * Here the frequency dispersion (stability) is updated. If it
1606 * is less than one-fourth the maximum (MAXFREQ), the frequency
1607 * offset is updated as well, but clamped to the tolerance. It
1608 * will be processed later by the hardclock() routine.
1609 */
1610 v_usec = (v_usec >> 1) - pps_stabil;
1611 if (v_usec < 0)
1612 pps_stabil -= -v_usec >> PPS_AVG;
1613 else
1614 pps_stabil += v_usec >> PPS_AVG;
1615 if (pps_stabil > MAXFREQ >> 2) {
1616 pps_stbcnt++;
1617 time_status |= STA_PPSWANDER;
1618 return;
1619 }
1620 if (time_status & STA_PPSFREQ) {
1621 if (u_usec < 0) {
1622 pps_freq -= -u_usec >> PPS_AVG;
1623 if (pps_freq < -time_tolerance)
1624 pps_freq = -time_tolerance;
1625 u_usec = -u_usec;
1626 } else {
1627 pps_freq += u_usec >> PPS_AVG;
1628 if (pps_freq > time_tolerance)
1629 pps_freq = time_tolerance;
1630 }
1631 }
1632
1633 /*
1634 * Here the calibration interval is adjusted. If the maximum
1635 * time difference is greater than tick / 4, reduce the interval
1636 * by half. If this is not the case for four consecutive
1637 * intervals, double the interval.
1638 */
1639 if (u_usec << pps_shift > bigtick >> 2) {
1640 pps_intcnt = 0;
1641 if (pps_shift > PPS_SHIFT)
1642 pps_shift--;
1643 } else if (pps_intcnt >= 4) {
1644 pps_intcnt = 0;
1645 if (pps_shift < PPS_SHIFTMAX)
1646 pps_shift++;
1647 } else
1648 pps_intcnt++;
1649 }
1650 #endif /* PPS_SYNC */
1651 #endif /* NTP */
1652
1653 /*
1654 * Return information about system clocks.
1655 */
1656 int
1657 sysctl_clockrate(void *where, size_t *sizep)
1658 {
1659 struct clockinfo clkinfo;
1660
1661 /*
1662 * Construct clockinfo structure.
1663 */
1664 clkinfo.tick = tick;
1665 clkinfo.tickadj = tickadj;
1666 clkinfo.hz = hz;
1667 clkinfo.profhz = profhz;
1668 clkinfo.stathz = stathz ? stathz : hz;
1669 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1670 }
1671