kern_clock.c revision 1.69 1 /* $NetBSD: kern_clock.c,v 1.69 2000/08/22 17:28:28 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 int softclock_running; /* 1 => softclock() is running */
316 static int psdiv, pscnt; /* prof => stat divider */
317 int psratio; /* ratio: prof / stat */
318 int tickfix, tickfixinterval; /* used if tick not really integral */
319 #ifndef NTP
320 static int tickfixcnt; /* accumulated fractional error */
321 #else
322 int fixtick; /* used by NTP for same */
323 int shifthz;
324 #endif
325
326 /*
327 * We might want ldd to load the both words from time at once.
328 * To succeed we need to be quadword aligned.
329 * The sparc already does that, and that it has worked so far is a fluke.
330 */
331 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
332 volatile struct timeval mono_time;
333
334 /*
335 * The callout mechanism is based on the work of Adam M. Costello and
336 * George Varghese, published in a technical report entitled "Redesigning
337 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
338 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
339 *
340 * The original work on the data structures used in this implementation
341 * was published by G. Varghese and A. Lauck in the paper "Hashed and
342 * Hierarchical Timing Wheels: Data Structures for the Efficient
343 * Implementation of a Timer Facility" in the Proceedings of the 11th
344 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
345 * November 1987.
346 */
347 struct callout_queue *callwheel;
348 int callwheelsize, callwheelbits, callwheelmask;
349
350 static struct callout *nextsoftcheck; /* next callout to be checked */
351
352 #ifdef CALLWHEEL_STATS
353 int callwheel_collisions; /* number of hash collisions */
354 int callwheel_maxlength; /* length of the longest hash chain */
355 int *callwheel_sizes; /* per-bucket length count */
356 u_int64_t callwheel_count; /* # callouts currently */
357 u_int64_t callwheel_established; /* # callouts established */
358 u_int64_t callwheel_fired; /* # callouts that fired */
359 u_int64_t callwheel_disestablished; /* # callouts disestablished */
360 u_int64_t callwheel_changed; /* # callouts changed */
361 u_int64_t callwheel_softclocks; /* # times softclock() called */
362 u_int64_t callwheel_softchecks; /* # checks per softclock() */
363 u_int64_t callwheel_softempty; /* # empty buckets seen */
364 #endif /* CALLWHEEL_STATS */
365
366 /*
367 * This value indicates the number of consecutive callouts that
368 * will be checked before we allow interrupts to have a chance
369 * again.
370 */
371 #ifndef MAX_SOFTCLOCK_STEPS
372 #define MAX_SOFTCLOCK_STEPS 100
373 #endif
374
375 struct simplelock callwheel_slock;
376
377 #define CALLWHEEL_LOCK(s) \
378 do { \
379 s = splclock(); \
380 simple_lock(&callwheel_slock); \
381 } while (0)
382
383 #define CALLWHEEL_UNLOCK(s) \
384 do { \
385 simple_unlock(&callwheel_slock); \
386 splx(s); \
387 } while (0)
388
389 static void callout_stop_locked(struct callout *);
390
391 /*
392 * These are both protected by callwheel_lock.
393 * XXX SHOULD BE STATIC!!
394 */
395 u_int64_t hardclock_ticks, softclock_ticks;
396
397 /*
398 * Initialize clock frequencies and start both clocks running.
399 */
400 void
401 initclocks(void)
402 {
403 int i;
404
405 /*
406 * Set divisors to 1 (normal case) and let the machine-specific
407 * code do its bit.
408 */
409 psdiv = pscnt = 1;
410 cpu_initclocks();
411
412 /*
413 * Compute profhz/stathz, and fix profhz if needed.
414 */
415 i = stathz ? stathz : hz;
416 if (profhz == 0)
417 profhz = i;
418 psratio = profhz / i;
419
420 #ifdef NTP
421 switch (hz) {
422 case 1:
423 shifthz = SHIFT_SCALE - 0;
424 break;
425 case 2:
426 shifthz = SHIFT_SCALE - 1;
427 break;
428 case 4:
429 shifthz = SHIFT_SCALE - 2;
430 break;
431 case 8:
432 shifthz = SHIFT_SCALE - 3;
433 break;
434 case 16:
435 shifthz = SHIFT_SCALE - 4;
436 break;
437 case 32:
438 shifthz = SHIFT_SCALE - 5;
439 break;
440 case 60:
441 case 64:
442 shifthz = SHIFT_SCALE - 6;
443 break;
444 case 96:
445 case 100:
446 case 128:
447 shifthz = SHIFT_SCALE - 7;
448 break;
449 case 256:
450 shifthz = SHIFT_SCALE - 8;
451 break;
452 case 512:
453 shifthz = SHIFT_SCALE - 9;
454 break;
455 case 1000:
456 case 1024:
457 shifthz = SHIFT_SCALE - 10;
458 break;
459 case 1200:
460 case 2048:
461 shifthz = SHIFT_SCALE - 11;
462 break;
463 case 4096:
464 shifthz = SHIFT_SCALE - 12;
465 break;
466 case 8192:
467 shifthz = SHIFT_SCALE - 13;
468 break;
469 case 16384:
470 shifthz = SHIFT_SCALE - 14;
471 break;
472 case 32768:
473 shifthz = SHIFT_SCALE - 15;
474 break;
475 case 65536:
476 shifthz = SHIFT_SCALE - 16;
477 break;
478 default:
479 panic("weird hz");
480 }
481 if (fixtick == 0) {
482 /*
483 * Give MD code a chance to set this to a better
484 * value; but, if it doesn't, we should.
485 */
486 fixtick = (1000000 - (hz*tick));
487 }
488 #endif
489 }
490
491 /*
492 * The real-time timer, interrupting hz times per second.
493 */
494 void
495 hardclock(struct clockframe *frame)
496 {
497 struct proc *p;
498 int delta;
499 extern int tickdelta;
500 extern long timedelta;
501 #ifdef NTP
502 int time_update;
503 int ltemp;
504 #endif
505
506 p = curproc;
507 if (p) {
508 struct pstats *pstats;
509
510 /*
511 * Run current process's virtual and profile time, as needed.
512 */
513 pstats = p->p_stats;
514 if (CLKF_USERMODE(frame) &&
515 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
516 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
517 psignal(p, SIGVTALRM);
518 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
519 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
520 psignal(p, SIGPROF);
521 }
522
523 /*
524 * If no separate statistics clock is available, run it from here.
525 */
526 if (stathz == 0)
527 statclock(frame);
528
529 #if defined(MULTIPROCESSOR)
530 /*
531 * If we are not the primary CPU, we're not allowed to do
532 * any more work.
533 */
534 if (CPU_IS_PRIMARY(curcpu()) == 0)
535 return;
536 #endif
537
538 /*
539 * Increment the time-of-day. The increment is normally just
540 * ``tick''. If the machine is one which has a clock frequency
541 * such that ``hz'' would not divide the second evenly into
542 * milliseconds, a periodic adjustment must be applied. Finally,
543 * if we are still adjusting the time (see adjtime()),
544 * ``tickdelta'' may also be added in.
545 */
546 delta = tick;
547
548 #ifndef NTP
549 if (tickfix) {
550 tickfixcnt += tickfix;
551 if (tickfixcnt >= tickfixinterval) {
552 delta++;
553 tickfixcnt -= tickfixinterval;
554 }
555 }
556 #endif /* !NTP */
557 /* Imprecise 4bsd adjtime() handling */
558 if (timedelta != 0) {
559 delta += tickdelta;
560 timedelta -= tickdelta;
561 }
562
563 #ifdef notyet
564 microset();
565 #endif
566
567 #ifndef NTP
568 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
569 #endif
570 BUMPTIME(&mono_time, delta);
571
572 #ifdef NTP
573 time_update = delta;
574
575 /*
576 * Compute the phase adjustment. If the low-order bits
577 * (time_phase) of the update overflow, bump the high-order bits
578 * (time_update).
579 */
580 time_phase += time_adj;
581 if (time_phase <= -FINEUSEC) {
582 ltemp = -time_phase >> SHIFT_SCALE;
583 time_phase += ltemp << SHIFT_SCALE;
584 time_update -= ltemp;
585 } else if (time_phase >= FINEUSEC) {
586 ltemp = time_phase >> SHIFT_SCALE;
587 time_phase -= ltemp << SHIFT_SCALE;
588 time_update += ltemp;
589 }
590
591 #ifdef HIGHBALL
592 /*
593 * If the HIGHBALL board is installed, we need to adjust the
594 * external clock offset in order to close the hardware feedback
595 * loop. This will adjust the external clock phase and frequency
596 * in small amounts. The additional phase noise and frequency
597 * wander this causes should be minimal. We also need to
598 * discipline the kernel time variable, since the PLL is used to
599 * discipline the external clock. If the Highball board is not
600 * present, we discipline kernel time with the PLL as usual. We
601 * assume that the external clock phase adjustment (time_update)
602 * and kernel phase adjustment (clock_cpu) are less than the
603 * value of tick.
604 */
605 clock_offset.tv_usec += time_update;
606 if (clock_offset.tv_usec >= 1000000) {
607 clock_offset.tv_sec++;
608 clock_offset.tv_usec -= 1000000;
609 }
610 if (clock_offset.tv_usec < 0) {
611 clock_offset.tv_sec--;
612 clock_offset.tv_usec += 1000000;
613 }
614 time.tv_usec += clock_cpu;
615 clock_cpu = 0;
616 #else
617 time.tv_usec += time_update;
618 #endif /* HIGHBALL */
619
620 /*
621 * On rollover of the second the phase adjustment to be used for
622 * the next second is calculated. Also, the maximum error is
623 * increased by the tolerance. If the PPS frequency discipline
624 * code is present, the phase is increased to compensate for the
625 * CPU clock oscillator frequency error.
626 *
627 * On a 32-bit machine and given parameters in the timex.h
628 * header file, the maximum phase adjustment is +-512 ms and
629 * maximum frequency offset is a tad less than) +-512 ppm. On a
630 * 64-bit machine, you shouldn't need to ask.
631 */
632 if (time.tv_usec >= 1000000) {
633 time.tv_usec -= 1000000;
634 time.tv_sec++;
635 time_maxerror += time_tolerance >> SHIFT_USEC;
636
637 /*
638 * Leap second processing. If in leap-insert state at
639 * the end of the day, the system clock is set back one
640 * second; if in leap-delete state, the system clock is
641 * set ahead one second. The microtime() routine or
642 * external clock driver will insure that reported time
643 * is always monotonic. The ugly divides should be
644 * replaced.
645 */
646 switch (time_state) {
647 case TIME_OK:
648 if (time_status & STA_INS)
649 time_state = TIME_INS;
650 else if (time_status & STA_DEL)
651 time_state = TIME_DEL;
652 break;
653
654 case TIME_INS:
655 if (time.tv_sec % 86400 == 0) {
656 time.tv_sec--;
657 time_state = TIME_OOP;
658 }
659 break;
660
661 case TIME_DEL:
662 if ((time.tv_sec + 1) % 86400 == 0) {
663 time.tv_sec++;
664 time_state = TIME_WAIT;
665 }
666 break;
667
668 case TIME_OOP:
669 time_state = TIME_WAIT;
670 break;
671
672 case TIME_WAIT:
673 if (!(time_status & (STA_INS | STA_DEL)))
674 time_state = TIME_OK;
675 break;
676 }
677
678 /*
679 * Compute the phase adjustment for the next second. In
680 * PLL mode, the offset is reduced by a fixed factor
681 * times the time constant. In FLL mode the offset is
682 * used directly. In either mode, the maximum phase
683 * adjustment for each second is clamped so as to spread
684 * the adjustment over not more than the number of
685 * seconds between updates.
686 */
687 if (time_offset < 0) {
688 ltemp = -time_offset;
689 if (!(time_status & STA_FLL))
690 ltemp >>= SHIFT_KG + time_constant;
691 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
692 ltemp = (MAXPHASE / MINSEC) <<
693 SHIFT_UPDATE;
694 time_offset += ltemp;
695 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
696 } else if (time_offset > 0) {
697 ltemp = time_offset;
698 if (!(time_status & STA_FLL))
699 ltemp >>= SHIFT_KG + time_constant;
700 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
701 ltemp = (MAXPHASE / MINSEC) <<
702 SHIFT_UPDATE;
703 time_offset -= ltemp;
704 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
705 } else
706 time_adj = 0;
707
708 /*
709 * Compute the frequency estimate and additional phase
710 * adjustment due to frequency error for the next
711 * second. When the PPS signal is engaged, gnaw on the
712 * watchdog counter and update the frequency computed by
713 * the pll and the PPS signal.
714 */
715 #ifdef PPS_SYNC
716 pps_valid++;
717 if (pps_valid == PPS_VALID) {
718 pps_jitter = MAXTIME;
719 pps_stabil = MAXFREQ;
720 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
721 STA_PPSWANDER | STA_PPSERROR);
722 }
723 ltemp = time_freq + pps_freq;
724 #else
725 ltemp = time_freq;
726 #endif /* PPS_SYNC */
727
728 if (ltemp < 0)
729 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
730 else
731 time_adj += ltemp >> (SHIFT_USEC - shifthz);
732 time_adj += (long)fixtick << shifthz;
733
734 /*
735 * When the CPU clock oscillator frequency is not a
736 * power of 2 in Hz, shifthz is only an approximate
737 * scale factor.
738 *
739 * To determine the adjustment, you can do the following:
740 * bc -q
741 * scale=24
742 * obase=2
743 * idealhz/realhz
744 * where `idealhz' is the next higher power of 2, and `realhz'
745 * is the actual value. You may need to factor this result
746 * into a sequence of 2 multipliers to get better precision.
747 *
748 * Likewise, the error can be calculated with (e.g. for 100Hz):
749 * bc -q
750 * scale=24
751 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
752 * (and then multiply by 1000000 to get ppm).
753 */
754 switch (hz) {
755 case 60:
756 /* A factor of 1.000100010001 gives about 15ppm
757 error. */
758 if (time_adj < 0) {
759 time_adj -= (-time_adj >> 4);
760 time_adj -= (-time_adj >> 8);
761 } else {
762 time_adj += (time_adj >> 4);
763 time_adj += (time_adj >> 8);
764 }
765 break;
766
767 case 96:
768 /* A factor of 1.0101010101 gives about 244ppm error. */
769 if (time_adj < 0) {
770 time_adj -= (-time_adj >> 2);
771 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
772 } else {
773 time_adj += (time_adj >> 2);
774 time_adj += (time_adj >> 4) + (time_adj >> 8);
775 }
776 break;
777
778 case 100:
779 /* A factor of 1.010001111010111 gives about 1ppm
780 error. */
781 if (time_adj < 0) {
782 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
783 time_adj += (-time_adj >> 10);
784 } else {
785 time_adj += (time_adj >> 2) + (time_adj >> 5);
786 time_adj -= (time_adj >> 10);
787 }
788 break;
789
790 case 1000:
791 /* A factor of 1.000001100010100001 gives about 50ppm
792 error. */
793 if (time_adj < 0) {
794 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
795 time_adj -= (-time_adj >> 7);
796 } else {
797 time_adj += (time_adj >> 6) + (time_adj >> 11);
798 time_adj += (time_adj >> 7);
799 }
800 break;
801
802 case 1200:
803 /* A factor of 1.1011010011100001 gives about 64ppm
804 error. */
805 if (time_adj < 0) {
806 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
807 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
808 } else {
809 time_adj += (time_adj >> 1) + (time_adj >> 6);
810 time_adj += (time_adj >> 3) + (time_adj >> 10);
811 }
812 break;
813 }
814
815 #ifdef EXT_CLOCK
816 /*
817 * If an external clock is present, it is necessary to
818 * discipline the kernel time variable anyway, since not
819 * all system components use the microtime() interface.
820 * Here, the time offset between the external clock and
821 * kernel time variable is computed every so often.
822 */
823 clock_count++;
824 if (clock_count > CLOCK_INTERVAL) {
825 clock_count = 0;
826 microtime(&clock_ext);
827 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
828 delta.tv_usec = clock_ext.tv_usec -
829 time.tv_usec;
830 if (delta.tv_usec < 0)
831 delta.tv_sec--;
832 if (delta.tv_usec >= 500000) {
833 delta.tv_usec -= 1000000;
834 delta.tv_sec++;
835 }
836 if (delta.tv_usec < -500000) {
837 delta.tv_usec += 1000000;
838 delta.tv_sec--;
839 }
840 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
841 delta.tv_usec > MAXPHASE) ||
842 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
843 delta.tv_usec < -MAXPHASE)) {
844 time = clock_ext;
845 delta.tv_sec = 0;
846 delta.tv_usec = 0;
847 }
848 #ifdef HIGHBALL
849 clock_cpu = delta.tv_usec;
850 #else /* HIGHBALL */
851 hardupdate(delta.tv_usec);
852 #endif /* HIGHBALL */
853 }
854 #endif /* EXT_CLOCK */
855 }
856
857 #endif /* NTP */
858
859 /*
860 * Process callouts at a very low cpu priority, so we don't keep the
861 * relatively high clock interrupt priority any longer than necessary.
862 */
863 simple_lock(&callwheel_slock); /* already at splclock() */
864 hardclock_ticks++;
865 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
866 simple_unlock(&callwheel_slock);
867 if (CLKF_BASEPRI(frame)) {
868 /*
869 * Save the overhead of a software interrupt;
870 * it will happen as soon as we return, so do
871 * it now.
872 *
873 * NOTE: If we're at ``base priority'', softclock()
874 * was not already running.
875 */
876 spllowersoftclock();
877 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
878 softclock();
879 KERNEL_UNLOCK();
880 } else
881 setsoftclock();
882 return;
883 } else if (softclock_running == 0 &&
884 (softclock_ticks + 1) == hardclock_ticks) {
885 softclock_ticks++;
886 }
887 simple_unlock(&callwheel_slock);
888 }
889
890 /*
891 * Software (low priority) clock interrupt.
892 * Run periodic events from timeout queue.
893 */
894 /*ARGSUSED*/
895 void
896 softclock(void)
897 {
898 struct callout_queue *bucket;
899 struct callout *c;
900 void (*func)(void *);
901 void *arg;
902 int s, idx;
903 int steps = 0;
904
905 CALLWHEEL_LOCK(s);
906
907 softclock_running = 1;
908
909 #ifdef CALLWHEEL_STATS
910 callwheel_softclocks++;
911 #endif
912
913 while (softclock_ticks != hardclock_ticks) {
914 softclock_ticks++;
915 idx = (int)(softclock_ticks & callwheelmask);
916 bucket = &callwheel[idx];
917 c = TAILQ_FIRST(bucket);
918 #ifdef CALLWHEEL_STATS
919 if (c == NULL)
920 callwheel_softempty++;
921 #endif
922 while (c != NULL) {
923 #ifdef CALLWHEEL_STATS
924 callwheel_softchecks++;
925 #endif
926 if (c->c_time != softclock_ticks) {
927 c = TAILQ_NEXT(c, c_link);
928 if (++steps >= MAX_SOFTCLOCK_STEPS) {
929 nextsoftcheck = c;
930 /* Give interrupts a chance. */
931 CALLWHEEL_UNLOCK(s);
932 CALLWHEEL_LOCK(s);
933 c = nextsoftcheck;
934 steps = 0;
935 }
936 } else {
937 nextsoftcheck = TAILQ_NEXT(c, c_link);
938 TAILQ_REMOVE(bucket, c, c_link);
939 #ifdef CALLWHEEL_STATS
940 callwheel_sizes[idx]--;
941 callwheel_fired++;
942 callwheel_count--;
943 #endif
944 func = c->c_func;
945 arg = c->c_arg;
946 c->c_func = NULL;
947 c->c_flags &= ~CALLOUT_PENDING;
948 CALLWHEEL_UNLOCK(s);
949 (*func)(arg);
950 CALLWHEEL_LOCK(s);
951 steps = 0;
952 c = nextsoftcheck;
953 }
954 }
955 }
956 nextsoftcheck = NULL;
957 softclock_running = 0;
958 CALLWHEEL_UNLOCK(s);
959 }
960
961 /*
962 * callout_setsize:
963 *
964 * Determine how many callwheels are necessary and
965 * set hash mask. Called from allocsys().
966 */
967 void
968 callout_setsize(void)
969 {
970
971 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
972 /* loop */ ;
973 callwheelmask = callwheelsize - 1;
974 }
975
976 /*
977 * callout_startup:
978 *
979 * Initialize the callwheel buckets.
980 */
981 void
982 callout_startup(void)
983 {
984 int i;
985
986 for (i = 0; i < callwheelsize; i++)
987 TAILQ_INIT(&callwheel[i]);
988
989 simple_lock_init(&callwheel_slock);
990 }
991
992 /*
993 * callout_init:
994 *
995 * Initialize a callout structure so that it can be used
996 * by callout_reset() and callout_stop().
997 */
998 void
999 callout_init(struct callout *c)
1000 {
1001
1002 memset(c, 0, sizeof(*c));
1003 }
1004
1005 /*
1006 * callout_reset:
1007 *
1008 * Establish or change a timeout.
1009 */
1010 void
1011 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1012 {
1013 struct callout_queue *bucket;
1014 int s;
1015
1016 if (ticks <= 0)
1017 ticks = 1;
1018
1019 CALLWHEEL_LOCK(s);
1020
1021 /*
1022 * If this callout's timer is already running, cancel it
1023 * before we modify it.
1024 */
1025 if (c->c_flags & CALLOUT_PENDING) {
1026 callout_stop_locked(c); /* Already locked */
1027 #ifdef CALLWHEEL_STATS
1028 callwheel_changed++;
1029 #endif
1030 }
1031
1032 c->c_arg = arg;
1033 c->c_func = func;
1034 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1035 c->c_time = hardclock_ticks + ticks;
1036
1037 bucket = &callwheel[c->c_time & callwheelmask];
1038
1039 #ifdef CALLWHEEL_STATS
1040 if (TAILQ_FIRST(bucket) != NULL)
1041 callwheel_collisions++;
1042 #endif
1043
1044 TAILQ_INSERT_TAIL(bucket, c, c_link);
1045
1046 #ifdef CALLWHEEL_STATS
1047 callwheel_count++;
1048 callwheel_established++;
1049 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1050 callwheel_maxlength =
1051 callwheel_sizes[c->c_time & callwheelmask];
1052 #endif
1053
1054 CALLWHEEL_UNLOCK(s);
1055 }
1056
1057 /*
1058 * callout_stop_locked:
1059 *
1060 * Disestablish a timeout. Callwheel is locked.
1061 */
1062 static void
1063 callout_stop_locked(struct callout *c)
1064 {
1065
1066 /*
1067 * Don't attempt to delete a callout that's not on the queue.
1068 */
1069 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1070 c->c_flags &= ~CALLOUT_ACTIVE;
1071 return;
1072 }
1073
1074 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1075
1076 if (nextsoftcheck == c)
1077 nextsoftcheck = TAILQ_NEXT(c, c_link);
1078
1079 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1080 #ifdef CALLWHEEL_STATS
1081 callwheel_count--;
1082 callwheel_disestablished++;
1083 callwheel_sizes[c->c_time & callwheelmask]--;
1084 #endif
1085
1086 c->c_func = NULL;
1087 }
1088
1089 /*
1090 * callout_stop:
1091 *
1092 * Disestablish a timeout. Callwheel is unlocked. This is
1093 * the standard entry point.
1094 */
1095 void
1096 callout_stop(struct callout *c)
1097 {
1098 int s;
1099
1100 CALLWHEEL_LOCK(s);
1101 callout_stop_locked(c);
1102 CALLWHEEL_UNLOCK(s);
1103 }
1104
1105 #ifdef CALLWHEEL_STATS
1106 /*
1107 * callout_showstats:
1108 *
1109 * Display callout statistics. Call it from DDB.
1110 */
1111 void
1112 callout_showstats(void)
1113 {
1114 u_int64_t curticks;
1115 int s;
1116
1117 s = splclock();
1118 curticks = softclock_ticks;
1119 splx(s);
1120
1121 printf("Callwheel statistics:\n");
1122 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1123 printf("\tCallouts established: %llu\n", callwheel_established);
1124 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1125 if (callwheel_changed != 0)
1126 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1127 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1128 printf("\tNumber of buckets: %d\n", callwheelsize);
1129 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1130 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1131 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1132 callwheel_softclocks, callwheel_softchecks);
1133 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1134 }
1135 #endif
1136
1137 /*
1138 * Compute number of hz until specified time. Used to compute second
1139 * argument to callout_reset() from an absolute time.
1140 */
1141 int
1142 hzto(struct timeval *tv)
1143 {
1144 unsigned long ticks;
1145 long sec, usec;
1146 int s;
1147
1148 /*
1149 * If the number of usecs in the whole seconds part of the time
1150 * difference fits in a long, then the total number of usecs will
1151 * fit in an unsigned long. Compute the total and convert it to
1152 * ticks, rounding up and adding 1 to allow for the current tick
1153 * to expire. Rounding also depends on unsigned long arithmetic
1154 * to avoid overflow.
1155 *
1156 * Otherwise, if the number of ticks in the whole seconds part of
1157 * the time difference fits in a long, then convert the parts to
1158 * ticks separately and add, using similar rounding methods and
1159 * overflow avoidance. This method would work in the previous
1160 * case, but it is slightly slower and assume that hz is integral.
1161 *
1162 * Otherwise, round the time difference down to the maximum
1163 * representable value.
1164 *
1165 * If ints are 32-bit, then the maximum value for any timeout in
1166 * 10ms ticks is 248 days.
1167 */
1168 s = splclock();
1169 sec = tv->tv_sec - time.tv_sec;
1170 usec = tv->tv_usec - time.tv_usec;
1171 splx(s);
1172
1173 if (usec < 0) {
1174 sec--;
1175 usec += 1000000;
1176 }
1177
1178 if (sec < 0 || (sec == 0 && usec <= 0)) {
1179 /*
1180 * Would expire now or in the past. Return 0 ticks.
1181 * This is different from the legacy hzto() interface,
1182 * and callers need to check for it.
1183 */
1184 ticks = 0;
1185 } else if (sec <= (LONG_MAX / 1000000))
1186 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1187 / tick) + 1;
1188 else if (sec <= (LONG_MAX / hz))
1189 ticks = (sec * hz) +
1190 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1191 else
1192 ticks = LONG_MAX;
1193
1194 if (ticks > INT_MAX)
1195 ticks = INT_MAX;
1196
1197 return ((int)ticks);
1198 }
1199
1200 /*
1201 * Start profiling on a process.
1202 *
1203 * Kernel profiling passes proc0 which never exits and hence
1204 * keeps the profile clock running constantly.
1205 */
1206 void
1207 startprofclock(struct proc *p)
1208 {
1209 int s;
1210
1211 if ((p->p_flag & P_PROFIL) == 0) {
1212 p->p_flag |= P_PROFIL;
1213 if (++profprocs == 1 && stathz != 0) {
1214 s = splstatclock();
1215 psdiv = pscnt = psratio;
1216 setstatclockrate(profhz);
1217 splx(s);
1218 }
1219 }
1220 }
1221
1222 /*
1223 * Stop profiling on a process.
1224 */
1225 void
1226 stopprofclock(struct proc *p)
1227 {
1228 int s;
1229
1230 if (p->p_flag & P_PROFIL) {
1231 p->p_flag &= ~P_PROFIL;
1232 if (--profprocs == 0 && stathz != 0) {
1233 s = splstatclock();
1234 psdiv = pscnt = 1;
1235 setstatclockrate(stathz);
1236 splx(s);
1237 }
1238 }
1239 }
1240
1241 /*
1242 * Statistics clock. Grab profile sample, and if divider reaches 0,
1243 * do process and kernel statistics.
1244 */
1245 void
1246 statclock(struct clockframe *frame)
1247 {
1248 #ifdef GPROF
1249 struct gmonparam *g;
1250 intptr_t i;
1251 #endif
1252 struct cpu_info *ci = curcpu();
1253 struct schedstate_percpu *spc = &ci->ci_schedstate;
1254 struct proc *p;
1255
1256 if (CLKF_USERMODE(frame)) {
1257 p = curproc;
1258 if (p->p_flag & P_PROFIL)
1259 addupc_intr(p, CLKF_PC(frame), 1);
1260 if (--pscnt > 0)
1261 return;
1262 /*
1263 * Came from user mode; CPU was in user state.
1264 * If this process is being profiled record the tick.
1265 */
1266 p->p_uticks++;
1267 if (p->p_nice > NZERO)
1268 spc->spc_cp_time[CP_NICE]++;
1269 else
1270 spc->spc_cp_time[CP_USER]++;
1271 } else {
1272 #ifdef GPROF
1273 /*
1274 * Kernel statistics are just like addupc_intr, only easier.
1275 */
1276 g = &_gmonparam;
1277 if (g->state == GMON_PROF_ON) {
1278 i = CLKF_PC(frame) - g->lowpc;
1279 if (i < g->textsize) {
1280 i /= HISTFRACTION * sizeof(*g->kcount);
1281 g->kcount[i]++;
1282 }
1283 }
1284 #endif
1285 if (--pscnt > 0)
1286 return;
1287 /*
1288 * Came from kernel mode, so we were:
1289 * - handling an interrupt,
1290 * - doing syscall or trap work on behalf of the current
1291 * user process, or
1292 * - spinning in the idle loop.
1293 * Whichever it is, charge the time as appropriate.
1294 * Note that we charge interrupts to the current process,
1295 * regardless of whether they are ``for'' that process,
1296 * so that we know how much of its real time was spent
1297 * in ``non-process'' (i.e., interrupt) work.
1298 */
1299 p = curproc;
1300 if (CLKF_INTR(frame)) {
1301 if (p != NULL)
1302 p->p_iticks++;
1303 spc->spc_cp_time[CP_INTR]++;
1304 } else if (p != NULL) {
1305 p->p_sticks++;
1306 spc->spc_cp_time[CP_SYS]++;
1307 } else
1308 spc->spc_cp_time[CP_IDLE]++;
1309 }
1310 pscnt = psdiv;
1311
1312 if (p != NULL) {
1313 ++p->p_cpticks;
1314 /*
1315 * If no separate schedclock is provided, call it here
1316 * at ~~12-25 Hz, ~~16 Hz is best
1317 */
1318 if (schedhz == 0)
1319 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1320 schedclock(p);
1321 }
1322 }
1323
1324
1325 #ifdef NTP /* NTP phase-locked loop in kernel */
1326
1327 /*
1328 * hardupdate() - local clock update
1329 *
1330 * This routine is called by ntp_adjtime() to update the local clock
1331 * phase and frequency. The implementation is of an adaptive-parameter,
1332 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1333 * time and frequency offset estimates for each call. If the kernel PPS
1334 * discipline code is configured (PPS_SYNC), the PPS signal itself
1335 * determines the new time offset, instead of the calling argument.
1336 * Presumably, calls to ntp_adjtime() occur only when the caller
1337 * believes the local clock is valid within some bound (+-128 ms with
1338 * NTP). If the caller's time is far different than the PPS time, an
1339 * argument will ensue, and it's not clear who will lose.
1340 *
1341 * For uncompensated quartz crystal oscillatores and nominal update
1342 * intervals less than 1024 s, operation should be in phase-lock mode
1343 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1344 * intervals greater than thiss, operation should be in frequency-lock
1345 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1346 *
1347 * Note: splclock() is in effect.
1348 */
1349 void
1350 hardupdate(long offset)
1351 {
1352 long ltemp, mtemp;
1353
1354 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1355 return;
1356 ltemp = offset;
1357 #ifdef PPS_SYNC
1358 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1359 ltemp = pps_offset;
1360 #endif /* PPS_SYNC */
1361
1362 /*
1363 * Scale the phase adjustment and clamp to the operating range.
1364 */
1365 if (ltemp > MAXPHASE)
1366 time_offset = MAXPHASE << SHIFT_UPDATE;
1367 else if (ltemp < -MAXPHASE)
1368 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1369 else
1370 time_offset = ltemp << SHIFT_UPDATE;
1371
1372 /*
1373 * Select whether the frequency is to be controlled and in which
1374 * mode (PLL or FLL). Clamp to the operating range. Ugly
1375 * multiply/divide should be replaced someday.
1376 */
1377 if (time_status & STA_FREQHOLD || time_reftime == 0)
1378 time_reftime = time.tv_sec;
1379 mtemp = time.tv_sec - time_reftime;
1380 time_reftime = time.tv_sec;
1381 if (time_status & STA_FLL) {
1382 if (mtemp >= MINSEC) {
1383 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1384 SHIFT_UPDATE));
1385 if (ltemp < 0)
1386 time_freq -= -ltemp >> SHIFT_KH;
1387 else
1388 time_freq += ltemp >> SHIFT_KH;
1389 }
1390 } else {
1391 if (mtemp < MAXSEC) {
1392 ltemp *= mtemp;
1393 if (ltemp < 0)
1394 time_freq -= -ltemp >> (time_constant +
1395 time_constant + SHIFT_KF -
1396 SHIFT_USEC);
1397 else
1398 time_freq += ltemp >> (time_constant +
1399 time_constant + SHIFT_KF -
1400 SHIFT_USEC);
1401 }
1402 }
1403 if (time_freq > time_tolerance)
1404 time_freq = time_tolerance;
1405 else if (time_freq < -time_tolerance)
1406 time_freq = -time_tolerance;
1407 }
1408
1409 #ifdef PPS_SYNC
1410 /*
1411 * hardpps() - discipline CPU clock oscillator to external PPS signal
1412 *
1413 * This routine is called at each PPS interrupt in order to discipline
1414 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1415 * and leaves it in a handy spot for the hardclock() routine. It
1416 * integrates successive PPS phase differences and calculates the
1417 * frequency offset. This is used in hardclock() to discipline the CPU
1418 * clock oscillator so that intrinsic frequency error is cancelled out.
1419 * The code requires the caller to capture the time and hardware counter
1420 * value at the on-time PPS signal transition.
1421 *
1422 * Note that, on some Unix systems, this routine runs at an interrupt
1423 * priority level higher than the timer interrupt routine hardclock().
1424 * Therefore, the variables used are distinct from the hardclock()
1425 * variables, except for certain exceptions: The PPS frequency pps_freq
1426 * and phase pps_offset variables are determined by this routine and
1427 * updated atomically. The time_tolerance variable can be considered a
1428 * constant, since it is infrequently changed, and then only when the
1429 * PPS signal is disabled. The watchdog counter pps_valid is updated
1430 * once per second by hardclock() and is atomically cleared in this
1431 * routine.
1432 */
1433 void
1434 hardpps(struct timeval *tvp, /* time at PPS */
1435 long usec /* hardware counter at PPS */)
1436 {
1437 long u_usec, v_usec, bigtick;
1438 long cal_sec, cal_usec;
1439
1440 /*
1441 * An occasional glitch can be produced when the PPS interrupt
1442 * occurs in the hardclock() routine before the time variable is
1443 * updated. Here the offset is discarded when the difference
1444 * between it and the last one is greater than tick/2, but not
1445 * if the interval since the first discard exceeds 30 s.
1446 */
1447 time_status |= STA_PPSSIGNAL;
1448 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1449 pps_valid = 0;
1450 u_usec = -tvp->tv_usec;
1451 if (u_usec < -500000)
1452 u_usec += 1000000;
1453 v_usec = pps_offset - u_usec;
1454 if (v_usec < 0)
1455 v_usec = -v_usec;
1456 if (v_usec > (tick >> 1)) {
1457 if (pps_glitch > MAXGLITCH) {
1458 pps_glitch = 0;
1459 pps_tf[2] = u_usec;
1460 pps_tf[1] = u_usec;
1461 } else {
1462 pps_glitch++;
1463 u_usec = pps_offset;
1464 }
1465 } else
1466 pps_glitch = 0;
1467
1468 /*
1469 * A three-stage median filter is used to help deglitch the pps
1470 * time. The median sample becomes the time offset estimate; the
1471 * difference between the other two samples becomes the time
1472 * dispersion (jitter) estimate.
1473 */
1474 pps_tf[2] = pps_tf[1];
1475 pps_tf[1] = pps_tf[0];
1476 pps_tf[0] = u_usec;
1477 if (pps_tf[0] > pps_tf[1]) {
1478 if (pps_tf[1] > pps_tf[2]) {
1479 pps_offset = pps_tf[1]; /* 0 1 2 */
1480 v_usec = pps_tf[0] - pps_tf[2];
1481 } else if (pps_tf[2] > pps_tf[0]) {
1482 pps_offset = pps_tf[0]; /* 2 0 1 */
1483 v_usec = pps_tf[2] - pps_tf[1];
1484 } else {
1485 pps_offset = pps_tf[2]; /* 0 2 1 */
1486 v_usec = pps_tf[0] - pps_tf[1];
1487 }
1488 } else {
1489 if (pps_tf[1] < pps_tf[2]) {
1490 pps_offset = pps_tf[1]; /* 2 1 0 */
1491 v_usec = pps_tf[2] - pps_tf[0];
1492 } else if (pps_tf[2] < pps_tf[0]) {
1493 pps_offset = pps_tf[0]; /* 1 0 2 */
1494 v_usec = pps_tf[1] - pps_tf[2];
1495 } else {
1496 pps_offset = pps_tf[2]; /* 1 2 0 */
1497 v_usec = pps_tf[1] - pps_tf[0];
1498 }
1499 }
1500 if (v_usec > MAXTIME)
1501 pps_jitcnt++;
1502 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1503 if (v_usec < 0)
1504 pps_jitter -= -v_usec >> PPS_AVG;
1505 else
1506 pps_jitter += v_usec >> PPS_AVG;
1507 if (pps_jitter > (MAXTIME >> 1))
1508 time_status |= STA_PPSJITTER;
1509
1510 /*
1511 * During the calibration interval adjust the starting time when
1512 * the tick overflows. At the end of the interval compute the
1513 * duration of the interval and the difference of the hardware
1514 * counters at the beginning and end of the interval. This code
1515 * is deliciously complicated by the fact valid differences may
1516 * exceed the value of tick when using long calibration
1517 * intervals and small ticks. Note that the counter can be
1518 * greater than tick if caught at just the wrong instant, but
1519 * the values returned and used here are correct.
1520 */
1521 bigtick = (long)tick << SHIFT_USEC;
1522 pps_usec -= pps_freq;
1523 if (pps_usec >= bigtick)
1524 pps_usec -= bigtick;
1525 if (pps_usec < 0)
1526 pps_usec += bigtick;
1527 pps_time.tv_sec++;
1528 pps_count++;
1529 if (pps_count < (1 << pps_shift))
1530 return;
1531 pps_count = 0;
1532 pps_calcnt++;
1533 u_usec = usec << SHIFT_USEC;
1534 v_usec = pps_usec - u_usec;
1535 if (v_usec >= bigtick >> 1)
1536 v_usec -= bigtick;
1537 if (v_usec < -(bigtick >> 1))
1538 v_usec += bigtick;
1539 if (v_usec < 0)
1540 v_usec = -(-v_usec >> pps_shift);
1541 else
1542 v_usec = v_usec >> pps_shift;
1543 pps_usec = u_usec;
1544 cal_sec = tvp->tv_sec;
1545 cal_usec = tvp->tv_usec;
1546 cal_sec -= pps_time.tv_sec;
1547 cal_usec -= pps_time.tv_usec;
1548 if (cal_usec < 0) {
1549 cal_usec += 1000000;
1550 cal_sec--;
1551 }
1552 pps_time = *tvp;
1553
1554 /*
1555 * Check for lost interrupts, noise, excessive jitter and
1556 * excessive frequency error. The number of timer ticks during
1557 * the interval may vary +-1 tick. Add to this a margin of one
1558 * tick for the PPS signal jitter and maximum frequency
1559 * deviation. If the limits are exceeded, the calibration
1560 * interval is reset to the minimum and we start over.
1561 */
1562 u_usec = (long)tick << 1;
1563 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1564 || (cal_sec == 0 && cal_usec < u_usec))
1565 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1566 pps_errcnt++;
1567 pps_shift = PPS_SHIFT;
1568 pps_intcnt = 0;
1569 time_status |= STA_PPSERROR;
1570 return;
1571 }
1572
1573 /*
1574 * A three-stage median filter is used to help deglitch the pps
1575 * frequency. The median sample becomes the frequency offset
1576 * estimate; the difference between the other two samples
1577 * becomes the frequency dispersion (stability) estimate.
1578 */
1579 pps_ff[2] = pps_ff[1];
1580 pps_ff[1] = pps_ff[0];
1581 pps_ff[0] = v_usec;
1582 if (pps_ff[0] > pps_ff[1]) {
1583 if (pps_ff[1] > pps_ff[2]) {
1584 u_usec = pps_ff[1]; /* 0 1 2 */
1585 v_usec = pps_ff[0] - pps_ff[2];
1586 } else if (pps_ff[2] > pps_ff[0]) {
1587 u_usec = pps_ff[0]; /* 2 0 1 */
1588 v_usec = pps_ff[2] - pps_ff[1];
1589 } else {
1590 u_usec = pps_ff[2]; /* 0 2 1 */
1591 v_usec = pps_ff[0] - pps_ff[1];
1592 }
1593 } else {
1594 if (pps_ff[1] < pps_ff[2]) {
1595 u_usec = pps_ff[1]; /* 2 1 0 */
1596 v_usec = pps_ff[2] - pps_ff[0];
1597 } else if (pps_ff[2] < pps_ff[0]) {
1598 u_usec = pps_ff[0]; /* 1 0 2 */
1599 v_usec = pps_ff[1] - pps_ff[2];
1600 } else {
1601 u_usec = pps_ff[2]; /* 1 2 0 */
1602 v_usec = pps_ff[1] - pps_ff[0];
1603 }
1604 }
1605
1606 /*
1607 * Here the frequency dispersion (stability) is updated. If it
1608 * is less than one-fourth the maximum (MAXFREQ), the frequency
1609 * offset is updated as well, but clamped to the tolerance. It
1610 * will be processed later by the hardclock() routine.
1611 */
1612 v_usec = (v_usec >> 1) - pps_stabil;
1613 if (v_usec < 0)
1614 pps_stabil -= -v_usec >> PPS_AVG;
1615 else
1616 pps_stabil += v_usec >> PPS_AVG;
1617 if (pps_stabil > MAXFREQ >> 2) {
1618 pps_stbcnt++;
1619 time_status |= STA_PPSWANDER;
1620 return;
1621 }
1622 if (time_status & STA_PPSFREQ) {
1623 if (u_usec < 0) {
1624 pps_freq -= -u_usec >> PPS_AVG;
1625 if (pps_freq < -time_tolerance)
1626 pps_freq = -time_tolerance;
1627 u_usec = -u_usec;
1628 } else {
1629 pps_freq += u_usec >> PPS_AVG;
1630 if (pps_freq > time_tolerance)
1631 pps_freq = time_tolerance;
1632 }
1633 }
1634
1635 /*
1636 * Here the calibration interval is adjusted. If the maximum
1637 * time difference is greater than tick / 4, reduce the interval
1638 * by half. If this is not the case for four consecutive
1639 * intervals, double the interval.
1640 */
1641 if (u_usec << pps_shift > bigtick >> 2) {
1642 pps_intcnt = 0;
1643 if (pps_shift > PPS_SHIFT)
1644 pps_shift--;
1645 } else if (pps_intcnt >= 4) {
1646 pps_intcnt = 0;
1647 if (pps_shift < PPS_SHIFTMAX)
1648 pps_shift++;
1649 } else
1650 pps_intcnt++;
1651 }
1652 #endif /* PPS_SYNC */
1653 #endif /* NTP */
1654
1655 /*
1656 * Return information about system clocks.
1657 */
1658 int
1659 sysctl_clockrate(void *where, size_t *sizep)
1660 {
1661 struct clockinfo clkinfo;
1662
1663 /*
1664 * Construct clockinfo structure.
1665 */
1666 clkinfo.tick = tick;
1667 clkinfo.tickadj = tickadj;
1668 clkinfo.hz = hz;
1669 clkinfo.profhz = profhz;
1670 clkinfo.stathz = stathz ? stathz : hz;
1671 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1672 }
1673