Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.71
      1 /*	$NetBSD: kern_clock.c,v 1.71 2000/08/26 04:01:16 sommerfeld Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include "opt_ntp.h"
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/dkstat.h>
     85 #include <sys/callout.h>
     86 #include <sys/kernel.h>
     87 #include <sys/proc.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/signalvar.h>
     90 #include <uvm/uvm_extern.h>
     91 #include <sys/sysctl.h>
     92 #include <sys/timex.h>
     93 #include <sys/sched.h>
     94 
     95 #include <machine/cpu.h>
     96 
     97 #ifdef GPROF
     98 #include <sys/gmon.h>
     99 #endif
    100 
    101 /*
    102  * Clock handling routines.
    103  *
    104  * This code is written to operate with two timers that run independently of
    105  * each other.  The main clock, running hz times per second, is used to keep
    106  * track of real time.  The second timer handles kernel and user profiling,
    107  * and does resource use estimation.  If the second timer is programmable,
    108  * it is randomized to avoid aliasing between the two clocks.  For example,
    109  * the randomization prevents an adversary from always giving up the cpu
    110  * just before its quantum expires.  Otherwise, it would never accumulate
    111  * cpu ticks.  The mean frequency of the second timer is stathz.
    112  *
    113  * If no second timer exists, stathz will be zero; in this case we drive
    114  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    115  * do not do it unless absolutely necessary.
    116  *
    117  * The statistics clock may (or may not) be run at a higher rate while
    118  * profiling.  This profile clock runs at profhz.  We require that profhz
    119  * be an integral multiple of stathz.
    120  *
    121  * If the statistics clock is running fast, it must be divided by the ratio
    122  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    123  */
    124 
    125 #ifdef NTP	/* NTP phase-locked loop in kernel */
    126 /*
    127  * Phase/frequency-lock loop (PLL/FLL) definitions
    128  *
    129  * The following variables are read and set by the ntp_adjtime() system
    130  * call.
    131  *
    132  * time_state shows the state of the system clock, with values defined
    133  * in the timex.h header file.
    134  *
    135  * time_status shows the status of the system clock, with bits defined
    136  * in the timex.h header file.
    137  *
    138  * time_offset is used by the PLL/FLL to adjust the system time in small
    139  * increments.
    140  *
    141  * time_constant determines the bandwidth or "stiffness" of the PLL.
    142  *
    143  * time_tolerance determines maximum frequency error or tolerance of the
    144  * CPU clock oscillator and is a property of the architecture; however,
    145  * in principle it could change as result of the presence of external
    146  * discipline signals, for instance.
    147  *
    148  * time_precision is usually equal to the kernel tick variable; however,
    149  * in cases where a precision clock counter or external clock is
    150  * available, the resolution can be much less than this and depend on
    151  * whether the external clock is working or not.
    152  *
    153  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    154  * the kernel once each second to reflect the maximum error bound
    155  * growth.
    156  *
    157  * time_esterror is set and read by the ntp_adjtime() call, but
    158  * otherwise not used by the kernel.
    159  */
    160 int time_state = TIME_OK;	/* clock state */
    161 int time_status = STA_UNSYNC;	/* clock status bits */
    162 long time_offset = 0;		/* time offset (us) */
    163 long time_constant = 0;		/* pll time constant */
    164 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    165 long time_precision = 1;	/* clock precision (us) */
    166 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    167 long time_esterror = MAXPHASE;	/* estimated error (us) */
    168 
    169 /*
    170  * The following variables establish the state of the PLL/FLL and the
    171  * residual time and frequency offset of the local clock. The scale
    172  * factors are defined in the timex.h header file.
    173  *
    174  * time_phase and time_freq are the phase increment and the frequency
    175  * increment, respectively, of the kernel time variable.
    176  *
    177  * time_freq is set via ntp_adjtime() from a value stored in a file when
    178  * the synchronization daemon is first started. Its value is retrieved
    179  * via ntp_adjtime() and written to the file about once per hour by the
    180  * daemon.
    181  *
    182  * time_adj is the adjustment added to the value of tick at each timer
    183  * interrupt and is recomputed from time_phase and time_freq at each
    184  * seconds rollover.
    185  *
    186  * time_reftime is the second's portion of the system time at the last
    187  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    188  * and to increase the time_maxerror as the time since last update
    189  * increases.
    190  */
    191 long time_phase = 0;		/* phase offset (scaled us) */
    192 long time_freq = 0;		/* frequency offset (scaled ppm) */
    193 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    194 long time_reftime = 0;		/* time at last adjustment (s) */
    195 
    196 #ifdef PPS_SYNC
    197 /*
    198  * The following variables are used only if the kernel PPS discipline
    199  * code is configured (PPS_SYNC). The scale factors are defined in the
    200  * timex.h header file.
    201  *
    202  * pps_time contains the time at each calibration interval, as read by
    203  * microtime(). pps_count counts the seconds of the calibration
    204  * interval, the duration of which is nominally pps_shift in powers of
    205  * two.
    206  *
    207  * pps_offset is the time offset produced by the time median filter
    208  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    209  * this filter.
    210  *
    211  * pps_freq is the frequency offset produced by the frequency median
    212  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    213  * by this filter.
    214  *
    215  * pps_usec is latched from a high resolution counter or external clock
    216  * at pps_time. Here we want the hardware counter contents only, not the
    217  * contents plus the time_tv.usec as usual.
    218  *
    219  * pps_valid counts the number of seconds since the last PPS update. It
    220  * is used as a watchdog timer to disable the PPS discipline should the
    221  * PPS signal be lost.
    222  *
    223  * pps_glitch counts the number of seconds since the beginning of an
    224  * offset burst more than tick/2 from current nominal offset. It is used
    225  * mainly to suppress error bursts due to priority conflicts between the
    226  * PPS interrupt and timer interrupt.
    227  *
    228  * pps_intcnt counts the calibration intervals for use in the interval-
    229  * adaptation algorithm. It's just too complicated for words.
    230  */
    231 struct timeval pps_time;	/* kernel time at last interval */
    232 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    233 long pps_offset = 0;		/* pps time offset (us) */
    234 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    235 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    236 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    237 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    238 long pps_usec = 0;		/* microsec counter at last interval */
    239 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    240 int pps_glitch = 0;		/* pps signal glitch counter */
    241 int pps_count = 0;		/* calibration interval counter (s) */
    242 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    243 int pps_intcnt = 0;		/* intervals at current duration */
    244 
    245 /*
    246  * PPS signal quality monitors
    247  *
    248  * pps_jitcnt counts the seconds that have been discarded because the
    249  * jitter measured by the time median filter exceeds the limit MAXTIME
    250  * (100 us).
    251  *
    252  * pps_calcnt counts the frequency calibration intervals, which are
    253  * variable from 4 s to 256 s.
    254  *
    255  * pps_errcnt counts the calibration intervals which have been discarded
    256  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    257  * calibration interval jitter exceeds two ticks.
    258  *
    259  * pps_stbcnt counts the calibration intervals that have been discarded
    260  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    261  */
    262 long pps_jitcnt = 0;		/* jitter limit exceeded */
    263 long pps_calcnt = 0;		/* calibration intervals */
    264 long pps_errcnt = 0;		/* calibration errors */
    265 long pps_stbcnt = 0;		/* stability limit exceeded */
    266 #endif /* PPS_SYNC */
    267 
    268 #ifdef EXT_CLOCK
    269 /*
    270  * External clock definitions
    271  *
    272  * The following definitions and declarations are used only if an
    273  * external clock is configured on the system.
    274  */
    275 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    276 
    277 /*
    278  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    279  * interrupt and decremented once each second.
    280  */
    281 int clock_count = 0;		/* CPU clock counter */
    282 
    283 #ifdef HIGHBALL
    284 /*
    285  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    286  * interface. The clock_offset variable defines the offset between
    287  * system time and the HIGBALL counters. The clock_cpu variable contains
    288  * the offset between the system clock and the HIGHBALL clock for use in
    289  * disciplining the kernel time variable.
    290  */
    291 extern struct timeval clock_offset; /* Highball clock offset */
    292 long clock_cpu = 0;		/* CPU clock adjust */
    293 #endif /* HIGHBALL */
    294 #endif /* EXT_CLOCK */
    295 #endif /* NTP */
    296 
    297 
    298 /*
    299  * Bump a timeval by a small number of usec's.
    300  */
    301 #define BUMPTIME(t, usec) { \
    302 	volatile struct timeval *tp = (t); \
    303 	long us; \
    304  \
    305 	tp->tv_usec = us = tp->tv_usec + (usec); \
    306 	if (us >= 1000000) { \
    307 		tp->tv_usec = us - 1000000; \
    308 		tp->tv_sec++; \
    309 	} \
    310 }
    311 
    312 int	stathz;
    313 int	profhz;
    314 int	profprocs;
    315 int	softclock_running;		/* 1 => softclock() is running */
    316 static int psdiv;			/* prof => stat divider */
    317 int	psratio;			/* ratio: prof / stat */
    318 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    319 #ifndef NTP
    320 static int tickfixcnt;			/* accumulated fractional error */
    321 #else
    322 int	fixtick;			/* used by NTP for same */
    323 int	shifthz;
    324 #endif
    325 
    326 /*
    327  * We might want ldd to load the both words from time at once.
    328  * To succeed we need to be quadword aligned.
    329  * The sparc already does that, and that it has worked so far is a fluke.
    330  */
    331 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    332 volatile struct	timeval mono_time;
    333 
    334 /*
    335  * The callout mechanism is based on the work of Adam M. Costello and
    336  * George Varghese, published in a technical report entitled "Redesigning
    337  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
    338  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
    339  *
    340  * The original work on the data structures used in this implementation
    341  * was published by G. Varghese and A. Lauck in the paper "Hashed and
    342  * Hierarchical Timing Wheels: Data Structures for the Efficient
    343  * Implementation of a Timer Facility" in the Proceedings of the 11th
    344  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
    345  * November 1987.
    346  */
    347 struct callout_queue *callwheel;
    348 int	callwheelsize, callwheelbits, callwheelmask;
    349 
    350 static struct callout *nextsoftcheck;	/* next callout to be checked */
    351 
    352 #ifdef CALLWHEEL_STATS
    353 int	callwheel_collisions;		/* number of hash collisions */
    354 int	callwheel_maxlength;		/* length of the longest hash chain */
    355 int	*callwheel_sizes;		/* per-bucket length count */
    356 u_int64_t callwheel_count;		/* # callouts currently */
    357 u_int64_t callwheel_established;	/* # callouts established */
    358 u_int64_t callwheel_fired;		/* # callouts that fired */
    359 u_int64_t callwheel_disestablished;	/* # callouts disestablished */
    360 u_int64_t callwheel_changed;		/* # callouts changed */
    361 u_int64_t callwheel_softclocks;		/* # times softclock() called */
    362 u_int64_t callwheel_softchecks;		/* # checks per softclock() */
    363 u_int64_t callwheel_softempty;		/* # empty buckets seen */
    364 #endif /* CALLWHEEL_STATS */
    365 
    366 /*
    367  * This value indicates the number of consecutive callouts that
    368  * will be checked before we allow interrupts to have a chance
    369  * again.
    370  */
    371 #ifndef MAX_SOFTCLOCK_STEPS
    372 #define	MAX_SOFTCLOCK_STEPS	100
    373 #endif
    374 
    375 struct simplelock callwheel_slock;
    376 
    377 #define	CALLWHEEL_LOCK(s)						\
    378 do {									\
    379 	s = splclock();							\
    380 	simple_lock(&callwheel_slock);					\
    381 } while (0)
    382 
    383 #define	CALLWHEEL_UNLOCK(s)						\
    384 do {									\
    385 	simple_unlock(&callwheel_slock);				\
    386 	splx(s);							\
    387 } while (0)
    388 
    389 static void callout_stop_locked(struct callout *);
    390 
    391 /*
    392  * These are both protected by callwheel_lock.
    393  * XXX SHOULD BE STATIC!!
    394  */
    395 u_int64_t hardclock_ticks, softclock_ticks;
    396 
    397 /*
    398  * Initialize clock frequencies and start both clocks running.
    399  */
    400 void
    401 initclocks(void)
    402 {
    403 	int i;
    404 
    405 	/*
    406 	 * Set divisors to 1 (normal case) and let the machine-specific
    407 	 * code do its bit.
    408 	 */
    409 	psdiv = 1;
    410 	cpu_initclocks();
    411 
    412 	/*
    413 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    414 	 */
    415 	i = stathz ? stathz : hz;
    416 	if (profhz == 0)
    417 		profhz = i;
    418 	psratio = profhz / i;
    419 	rrticks = hz / 10;
    420 
    421 #ifdef NTP
    422 	switch (hz) {
    423 	case 1:
    424 		shifthz = SHIFT_SCALE - 0;
    425 		break;
    426 	case 2:
    427 		shifthz = SHIFT_SCALE - 1;
    428 		break;
    429 	case 4:
    430 		shifthz = SHIFT_SCALE - 2;
    431 		break;
    432 	case 8:
    433 		shifthz = SHIFT_SCALE - 3;
    434 		break;
    435 	case 16:
    436 		shifthz = SHIFT_SCALE - 4;
    437 		break;
    438 	case 32:
    439 		shifthz = SHIFT_SCALE - 5;
    440 		break;
    441 	case 60:
    442 	case 64:
    443 		shifthz = SHIFT_SCALE - 6;
    444 		break;
    445 	case 96:
    446 	case 100:
    447 	case 128:
    448 		shifthz = SHIFT_SCALE - 7;
    449 		break;
    450 	case 256:
    451 		shifthz = SHIFT_SCALE - 8;
    452 		break;
    453 	case 512:
    454 		shifthz = SHIFT_SCALE - 9;
    455 		break;
    456 	case 1000:
    457 	case 1024:
    458 		shifthz = SHIFT_SCALE - 10;
    459 		break;
    460 	case 1200:
    461 	case 2048:
    462 		shifthz = SHIFT_SCALE - 11;
    463 		break;
    464 	case 4096:
    465 		shifthz = SHIFT_SCALE - 12;
    466 		break;
    467 	case 8192:
    468 		shifthz = SHIFT_SCALE - 13;
    469 		break;
    470 	case 16384:
    471 		shifthz = SHIFT_SCALE - 14;
    472 		break;
    473 	case 32768:
    474 		shifthz = SHIFT_SCALE - 15;
    475 		break;
    476 	case 65536:
    477 		shifthz = SHIFT_SCALE - 16;
    478 		break;
    479 	default:
    480 		panic("weird hz");
    481 	}
    482 	if (fixtick == 0) {
    483 		/*
    484 		 * Give MD code a chance to set this to a better
    485 		 * value; but, if it doesn't, we should.
    486 		 */
    487 		fixtick = (1000000 - (hz*tick));
    488 	}
    489 #endif
    490 }
    491 
    492 /*
    493  * The real-time timer, interrupting hz times per second.
    494  */
    495 void
    496 hardclock(struct clockframe *frame)
    497 {
    498 	struct proc *p;
    499 	int delta;
    500 	extern int tickdelta;
    501 	extern long timedelta;
    502 	struct cpu_info *ci = curcpu();
    503 #ifdef NTP
    504 	int time_update;
    505 	int ltemp;
    506 #endif
    507 
    508 	p = curproc;
    509 	if (p) {
    510 		struct pstats *pstats;
    511 
    512 		/*
    513 		 * Run current process's virtual and profile time, as needed.
    514 		 */
    515 		pstats = p->p_stats;
    516 		if (CLKF_USERMODE(frame) &&
    517 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    518 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    519 			psignal(p, SIGVTALRM);
    520 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    521 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    522 			psignal(p, SIGPROF);
    523 	}
    524 
    525 	/*
    526 	 * If no separate statistics clock is available, run it from here.
    527 	 */
    528 	if (stathz == 0)
    529 		statclock(frame);
    530 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    531 		roundrobin(ci);
    532 
    533 #if defined(MULTIPROCESSOR)
    534 	/*
    535 	 * If we are not the primary CPU, we're not allowed to do
    536 	 * any more work.
    537 	 */
    538 	if (CPU_IS_PRIMARY(ci) == 0)
    539 		return;
    540 #endif
    541 
    542 	/*
    543 	 * Increment the time-of-day.  The increment is normally just
    544 	 * ``tick''.  If the machine is one which has a clock frequency
    545 	 * such that ``hz'' would not divide the second evenly into
    546 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    547 	 * if we are still adjusting the time (see adjtime()),
    548 	 * ``tickdelta'' may also be added in.
    549 	 */
    550 	delta = tick;
    551 
    552 #ifndef NTP
    553 	if (tickfix) {
    554 		tickfixcnt += tickfix;
    555 		if (tickfixcnt >= tickfixinterval) {
    556 			delta++;
    557 			tickfixcnt -= tickfixinterval;
    558 		}
    559 	}
    560 #endif /* !NTP */
    561 	/* Imprecise 4bsd adjtime() handling */
    562 	if (timedelta != 0) {
    563 		delta += tickdelta;
    564 		timedelta -= tickdelta;
    565 	}
    566 
    567 #ifdef notyet
    568 	microset();
    569 #endif
    570 
    571 #ifndef NTP
    572 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    573 #endif
    574 	BUMPTIME(&mono_time, delta);
    575 
    576 #ifdef NTP
    577 	time_update = delta;
    578 
    579 	/*
    580 	 * Compute the phase adjustment. If the low-order bits
    581 	 * (time_phase) of the update overflow, bump the high-order bits
    582 	 * (time_update).
    583 	 */
    584 	time_phase += time_adj;
    585 	if (time_phase <= -FINEUSEC) {
    586 		ltemp = -time_phase >> SHIFT_SCALE;
    587 		time_phase += ltemp << SHIFT_SCALE;
    588 		time_update -= ltemp;
    589 	} else if (time_phase >= FINEUSEC) {
    590 		ltemp = time_phase >> SHIFT_SCALE;
    591 		time_phase -= ltemp << SHIFT_SCALE;
    592 		time_update += ltemp;
    593 	}
    594 
    595 #ifdef HIGHBALL
    596 	/*
    597 	 * If the HIGHBALL board is installed, we need to adjust the
    598 	 * external clock offset in order to close the hardware feedback
    599 	 * loop. This will adjust the external clock phase and frequency
    600 	 * in small amounts. The additional phase noise and frequency
    601 	 * wander this causes should be minimal. We also need to
    602 	 * discipline the kernel time variable, since the PLL is used to
    603 	 * discipline the external clock. If the Highball board is not
    604 	 * present, we discipline kernel time with the PLL as usual. We
    605 	 * assume that the external clock phase adjustment (time_update)
    606 	 * and kernel phase adjustment (clock_cpu) are less than the
    607 	 * value of tick.
    608 	 */
    609 	clock_offset.tv_usec += time_update;
    610 	if (clock_offset.tv_usec >= 1000000) {
    611 		clock_offset.tv_sec++;
    612 		clock_offset.tv_usec -= 1000000;
    613 	}
    614 	if (clock_offset.tv_usec < 0) {
    615 		clock_offset.tv_sec--;
    616 		clock_offset.tv_usec += 1000000;
    617 	}
    618 	time.tv_usec += clock_cpu;
    619 	clock_cpu = 0;
    620 #else
    621 	time.tv_usec += time_update;
    622 #endif /* HIGHBALL */
    623 
    624 	/*
    625 	 * On rollover of the second the phase adjustment to be used for
    626 	 * the next second is calculated. Also, the maximum error is
    627 	 * increased by the tolerance. If the PPS frequency discipline
    628 	 * code is present, the phase is increased to compensate for the
    629 	 * CPU clock oscillator frequency error.
    630 	 *
    631  	 * On a 32-bit machine and given parameters in the timex.h
    632 	 * header file, the maximum phase adjustment is +-512 ms and
    633 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    634 	 * 64-bit machine, you shouldn't need to ask.
    635 	 */
    636 	if (time.tv_usec >= 1000000) {
    637 		time.tv_usec -= 1000000;
    638 		time.tv_sec++;
    639 		time_maxerror += time_tolerance >> SHIFT_USEC;
    640 
    641 		/*
    642 		 * Leap second processing. If in leap-insert state at
    643 		 * the end of the day, the system clock is set back one
    644 		 * second; if in leap-delete state, the system clock is
    645 		 * set ahead one second. The microtime() routine or
    646 		 * external clock driver will insure that reported time
    647 		 * is always monotonic. The ugly divides should be
    648 		 * replaced.
    649 		 */
    650 		switch (time_state) {
    651 		case TIME_OK:
    652 			if (time_status & STA_INS)
    653 				time_state = TIME_INS;
    654 			else if (time_status & STA_DEL)
    655 				time_state = TIME_DEL;
    656 			break;
    657 
    658 		case TIME_INS:
    659 			if (time.tv_sec % 86400 == 0) {
    660 				time.tv_sec--;
    661 				time_state = TIME_OOP;
    662 			}
    663 			break;
    664 
    665 		case TIME_DEL:
    666 			if ((time.tv_sec + 1) % 86400 == 0) {
    667 				time.tv_sec++;
    668 				time_state = TIME_WAIT;
    669 			}
    670 			break;
    671 
    672 		case TIME_OOP:
    673 			time_state = TIME_WAIT;
    674 			break;
    675 
    676 		case TIME_WAIT:
    677 			if (!(time_status & (STA_INS | STA_DEL)))
    678 				time_state = TIME_OK;
    679 			break;
    680 		}
    681 
    682 		/*
    683 		 * Compute the phase adjustment for the next second. In
    684 		 * PLL mode, the offset is reduced by a fixed factor
    685 		 * times the time constant. In FLL mode the offset is
    686 		 * used directly. In either mode, the maximum phase
    687 		 * adjustment for each second is clamped so as to spread
    688 		 * the adjustment over not more than the number of
    689 		 * seconds between updates.
    690 		 */
    691 		if (time_offset < 0) {
    692 			ltemp = -time_offset;
    693 			if (!(time_status & STA_FLL))
    694 				ltemp >>= SHIFT_KG + time_constant;
    695 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    696 				ltemp = (MAXPHASE / MINSEC) <<
    697 				    SHIFT_UPDATE;
    698 			time_offset += ltemp;
    699 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    700 		} else if (time_offset > 0) {
    701 			ltemp = time_offset;
    702 			if (!(time_status & STA_FLL))
    703 				ltemp >>= SHIFT_KG + time_constant;
    704 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    705 				ltemp = (MAXPHASE / MINSEC) <<
    706 				    SHIFT_UPDATE;
    707 			time_offset -= ltemp;
    708 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    709 		} else
    710 			time_adj = 0;
    711 
    712 		/*
    713 		 * Compute the frequency estimate and additional phase
    714 		 * adjustment due to frequency error for the next
    715 		 * second. When the PPS signal is engaged, gnaw on the
    716 		 * watchdog counter and update the frequency computed by
    717 		 * the pll and the PPS signal.
    718 		 */
    719 #ifdef PPS_SYNC
    720 		pps_valid++;
    721 		if (pps_valid == PPS_VALID) {
    722 			pps_jitter = MAXTIME;
    723 			pps_stabil = MAXFREQ;
    724 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    725 			    STA_PPSWANDER | STA_PPSERROR);
    726 		}
    727 		ltemp = time_freq + pps_freq;
    728 #else
    729 		ltemp = time_freq;
    730 #endif /* PPS_SYNC */
    731 
    732 		if (ltemp < 0)
    733 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    734 		else
    735 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    736 		time_adj += (long)fixtick << shifthz;
    737 
    738 		/*
    739 		 * When the CPU clock oscillator frequency is not a
    740 		 * power of 2 in Hz, shifthz is only an approximate
    741 		 * scale factor.
    742 		 *
    743 		 * To determine the adjustment, you can do the following:
    744 		 *   bc -q
    745 		 *   scale=24
    746 		 *   obase=2
    747 		 *   idealhz/realhz
    748 		 * where `idealhz' is the next higher power of 2, and `realhz'
    749 		 * is the actual value.  You may need to factor this result
    750 		 * into a sequence of 2 multipliers to get better precision.
    751 		 *
    752 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    753 		 *   bc -q
    754 		 *   scale=24
    755 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    756 		 * (and then multiply by 1000000 to get ppm).
    757 		 */
    758 		switch (hz) {
    759 		case 60:
    760 			/* A factor of 1.000100010001 gives about 15ppm
    761 			   error. */
    762 			if (time_adj < 0) {
    763 				time_adj -= (-time_adj >> 4);
    764 				time_adj -= (-time_adj >> 8);
    765 			} else {
    766 				time_adj += (time_adj >> 4);
    767 				time_adj += (time_adj >> 8);
    768 			}
    769 			break;
    770 
    771 		case 96:
    772 			/* A factor of 1.0101010101 gives about 244ppm error. */
    773 			if (time_adj < 0) {
    774 				time_adj -= (-time_adj >> 2);
    775 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    776 			} else {
    777 				time_adj += (time_adj >> 2);
    778 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    779 			}
    780 			break;
    781 
    782 		case 100:
    783 			/* A factor of 1.010001111010111 gives about 1ppm
    784 			   error. */
    785 			if (time_adj < 0) {
    786 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    787 				time_adj += (-time_adj >> 10);
    788 			} else {
    789 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    790 				time_adj -= (time_adj >> 10);
    791 			}
    792 			break;
    793 
    794 		case 1000:
    795 			/* A factor of 1.000001100010100001 gives about 50ppm
    796 			   error. */
    797 			if (time_adj < 0) {
    798 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    799 				time_adj -= (-time_adj >> 7);
    800 			} else {
    801 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    802 				time_adj += (time_adj >> 7);
    803 			}
    804 			break;
    805 
    806 		case 1200:
    807 			/* A factor of 1.1011010011100001 gives about 64ppm
    808 			   error. */
    809 			if (time_adj < 0) {
    810 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    811 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    812 			} else {
    813 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    814 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    815 			}
    816 			break;
    817 		}
    818 
    819 #ifdef EXT_CLOCK
    820 		/*
    821 		 * If an external clock is present, it is necessary to
    822 		 * discipline the kernel time variable anyway, since not
    823 		 * all system components use the microtime() interface.
    824 		 * Here, the time offset between the external clock and
    825 		 * kernel time variable is computed every so often.
    826 		 */
    827 		clock_count++;
    828 		if (clock_count > CLOCK_INTERVAL) {
    829 			clock_count = 0;
    830 			microtime(&clock_ext);
    831 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    832 			delta.tv_usec = clock_ext.tv_usec -
    833 			    time.tv_usec;
    834 			if (delta.tv_usec < 0)
    835 				delta.tv_sec--;
    836 			if (delta.tv_usec >= 500000) {
    837 				delta.tv_usec -= 1000000;
    838 				delta.tv_sec++;
    839 			}
    840 			if (delta.tv_usec < -500000) {
    841 				delta.tv_usec += 1000000;
    842 				delta.tv_sec--;
    843 			}
    844 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    845 			    delta.tv_usec > MAXPHASE) ||
    846 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    847 			    delta.tv_usec < -MAXPHASE)) {
    848 				time = clock_ext;
    849 				delta.tv_sec = 0;
    850 				delta.tv_usec = 0;
    851 			}
    852 #ifdef HIGHBALL
    853 			clock_cpu = delta.tv_usec;
    854 #else /* HIGHBALL */
    855 			hardupdate(delta.tv_usec);
    856 #endif /* HIGHBALL */
    857 		}
    858 #endif /* EXT_CLOCK */
    859 	}
    860 
    861 #endif /* NTP */
    862 
    863 	/*
    864 	 * Process callouts at a very low cpu priority, so we don't keep the
    865 	 * relatively high clock interrupt priority any longer than necessary.
    866 	 */
    867 	simple_lock(&callwheel_slock);	/* already at splclock() */
    868 	hardclock_ticks++;
    869 	if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
    870 		simple_unlock(&callwheel_slock);
    871 		if (CLKF_BASEPRI(frame)) {
    872 			/*
    873 			 * Save the overhead of a software interrupt;
    874 			 * it will happen as soon as we return, so do
    875 			 * it now.
    876 			 *
    877 			 * NOTE: If we're at ``base priority'', softclock()
    878 			 * was not already running.
    879 			 */
    880 			spllowersoftclock();
    881 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    882 			softclock();
    883 			KERNEL_UNLOCK();
    884 		} else
    885 			setsoftclock();
    886 		return;
    887 	} else if (softclock_running == 0 &&
    888 		   (softclock_ticks + 1) == hardclock_ticks) {
    889 		softclock_ticks++;
    890 	}
    891 	simple_unlock(&callwheel_slock);
    892 }
    893 
    894 /*
    895  * Software (low priority) clock interrupt.
    896  * Run periodic events from timeout queue.
    897  */
    898 /*ARGSUSED*/
    899 void
    900 softclock(void)
    901 {
    902 	struct callout_queue *bucket;
    903 	struct callout *c;
    904 	void (*func)(void *);
    905 	void *arg;
    906 	int s, idx;
    907 	int steps = 0;
    908 
    909 	CALLWHEEL_LOCK(s);
    910 
    911 	softclock_running = 1;
    912 
    913 #ifdef CALLWHEEL_STATS
    914 	callwheel_softclocks++;
    915 #endif
    916 
    917 	while (softclock_ticks != hardclock_ticks) {
    918 		softclock_ticks++;
    919 		idx = (int)(softclock_ticks & callwheelmask);
    920 		bucket = &callwheel[idx];
    921 		c = TAILQ_FIRST(bucket);
    922 #ifdef CALLWHEEL_STATS
    923 		if (c == NULL)
    924 			callwheel_softempty++;
    925 #endif
    926 		while (c != NULL) {
    927 #ifdef CALLWHEEL_STATS
    928 			callwheel_softchecks++;
    929 #endif
    930 			if (c->c_time != softclock_ticks) {
    931 				c = TAILQ_NEXT(c, c_link);
    932 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
    933 					nextsoftcheck = c;
    934 					/* Give interrupts a chance. */
    935 					CALLWHEEL_UNLOCK(s);
    936 					CALLWHEEL_LOCK(s);
    937 					c = nextsoftcheck;
    938 					steps = 0;
    939 				}
    940 			} else {
    941 				nextsoftcheck = TAILQ_NEXT(c, c_link);
    942 				TAILQ_REMOVE(bucket, c, c_link);
    943 #ifdef CALLWHEEL_STATS
    944 				callwheel_sizes[idx]--;
    945 				callwheel_fired++;
    946 				callwheel_count--;
    947 #endif
    948 				func = c->c_func;
    949 				arg = c->c_arg;
    950 				c->c_func = NULL;
    951 				c->c_flags &= ~CALLOUT_PENDING;
    952 				CALLWHEEL_UNLOCK(s);
    953 				(*func)(arg);
    954 				CALLWHEEL_LOCK(s);
    955 				steps = 0;
    956 				c = nextsoftcheck;
    957 			}
    958 		}
    959 	}
    960 	nextsoftcheck = NULL;
    961 	softclock_running = 0;
    962 	CALLWHEEL_UNLOCK(s);
    963 }
    964 
    965 /*
    966  * callout_setsize:
    967  *
    968  *	Determine how many callwheels are necessary and
    969  *	set hash mask.  Called from allocsys().
    970  */
    971 void
    972 callout_setsize(void)
    973 {
    974 
    975 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
    976 		/* loop */ ;
    977 	callwheelmask = callwheelsize - 1;
    978 }
    979 
    980 /*
    981  * callout_startup:
    982  *
    983  *	Initialize the callwheel buckets.
    984  */
    985 void
    986 callout_startup(void)
    987 {
    988 	int i;
    989 
    990 	for (i = 0; i < callwheelsize; i++)
    991 		TAILQ_INIT(&callwheel[i]);
    992 
    993 	simple_lock_init(&callwheel_slock);
    994 }
    995 
    996 /*
    997  * callout_init:
    998  *
    999  *	Initialize a callout structure so that it can be used
   1000  *	by callout_reset() and callout_stop().
   1001  */
   1002 void
   1003 callout_init(struct callout *c)
   1004 {
   1005 
   1006 	memset(c, 0, sizeof(*c));
   1007 }
   1008 
   1009 /*
   1010  * callout_reset:
   1011  *
   1012  *	Establish or change a timeout.
   1013  */
   1014 void
   1015 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
   1016 {
   1017 	struct callout_queue *bucket;
   1018 	int s;
   1019 
   1020 	if (ticks <= 0)
   1021 		ticks = 1;
   1022 
   1023 	CALLWHEEL_LOCK(s);
   1024 
   1025 	/*
   1026 	 * If this callout's timer is already running, cancel it
   1027 	 * before we modify it.
   1028 	 */
   1029 	if (c->c_flags & CALLOUT_PENDING) {
   1030 		callout_stop_locked(c);	/* Already locked */
   1031 #ifdef CALLWHEEL_STATS
   1032 		callwheel_changed++;
   1033 #endif
   1034 	}
   1035 
   1036 	c->c_arg = arg;
   1037 	c->c_func = func;
   1038 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
   1039 	c->c_time = hardclock_ticks + ticks;
   1040 
   1041 	bucket = &callwheel[c->c_time & callwheelmask];
   1042 
   1043 #ifdef CALLWHEEL_STATS
   1044 	if (TAILQ_FIRST(bucket) != NULL)
   1045 		callwheel_collisions++;
   1046 #endif
   1047 
   1048 	TAILQ_INSERT_TAIL(bucket, c, c_link);
   1049 
   1050 #ifdef CALLWHEEL_STATS
   1051 	callwheel_count++;
   1052 	callwheel_established++;
   1053 	if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
   1054 		callwheel_maxlength =
   1055 		    callwheel_sizes[c->c_time & callwheelmask];
   1056 #endif
   1057 
   1058 	CALLWHEEL_UNLOCK(s);
   1059 }
   1060 
   1061 /*
   1062  * callout_stop_locked:
   1063  *
   1064  *	Disestablish a timeout.  Callwheel is locked.
   1065  */
   1066 static void
   1067 callout_stop_locked(struct callout *c)
   1068 {
   1069 
   1070 	/*
   1071 	 * Don't attempt to delete a callout that's not on the queue.
   1072 	 */
   1073 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
   1074 		c->c_flags &= ~CALLOUT_ACTIVE;
   1075 		return;
   1076 	}
   1077 
   1078 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
   1079 
   1080 	if (nextsoftcheck == c)
   1081 		nextsoftcheck = TAILQ_NEXT(c, c_link);
   1082 
   1083 	TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
   1084 #ifdef CALLWHEEL_STATS
   1085 	callwheel_count--;
   1086 	callwheel_disestablished++;
   1087 	callwheel_sizes[c->c_time & callwheelmask]--;
   1088 #endif
   1089 
   1090 	c->c_func = NULL;
   1091 }
   1092 
   1093 /*
   1094  * callout_stop:
   1095  *
   1096  *	Disestablish a timeout.  Callwheel is unlocked.  This is
   1097  *	the standard entry point.
   1098  */
   1099 void
   1100 callout_stop(struct callout *c)
   1101 {
   1102 	int s;
   1103 
   1104 	CALLWHEEL_LOCK(s);
   1105 	callout_stop_locked(c);
   1106 	CALLWHEEL_UNLOCK(s);
   1107 }
   1108 
   1109 #ifdef CALLWHEEL_STATS
   1110 /*
   1111  * callout_showstats:
   1112  *
   1113  *	Display callout statistics.  Call it from DDB.
   1114  */
   1115 void
   1116 callout_showstats(void)
   1117 {
   1118 	u_int64_t curticks;
   1119 	int s;
   1120 
   1121 	s = splclock();
   1122 	curticks = softclock_ticks;
   1123 	splx(s);
   1124 
   1125 	printf("Callwheel statistics:\n");
   1126 	printf("\tCallouts currently queued: %llu\n", callwheel_count);
   1127 	printf("\tCallouts established: %llu\n", callwheel_established);
   1128 	printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
   1129 	if (callwheel_changed != 0)
   1130 		printf("\t\tOf those, %llu were changes\n", callwheel_changed);
   1131 	printf("\tCallouts that fired: %llu\n", callwheel_fired);
   1132 	printf("\tNumber of buckets: %d\n", callwheelsize);
   1133 	printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
   1134 	printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
   1135 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
   1136 	    callwheel_softclocks, callwheel_softchecks);
   1137 	printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
   1138 }
   1139 #endif
   1140 
   1141 /*
   1142  * Compute number of hz until specified time.  Used to compute second
   1143  * argument to callout_reset() from an absolute time.
   1144  */
   1145 int
   1146 hzto(struct timeval *tv)
   1147 {
   1148 	unsigned long ticks;
   1149 	long sec, usec;
   1150 	int s;
   1151 
   1152 	/*
   1153 	 * If the number of usecs in the whole seconds part of the time
   1154 	 * difference fits in a long, then the total number of usecs will
   1155 	 * fit in an unsigned long.  Compute the total and convert it to
   1156 	 * ticks, rounding up and adding 1 to allow for the current tick
   1157 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1158 	 * to avoid overflow.
   1159 	 *
   1160 	 * Otherwise, if the number of ticks in the whole seconds part of
   1161 	 * the time difference fits in a long, then convert the parts to
   1162 	 * ticks separately and add, using similar rounding methods and
   1163 	 * overflow avoidance.  This method would work in the previous
   1164 	 * case, but it is slightly slower and assume that hz is integral.
   1165 	 *
   1166 	 * Otherwise, round the time difference down to the maximum
   1167 	 * representable value.
   1168 	 *
   1169 	 * If ints are 32-bit, then the maximum value for any timeout in
   1170 	 * 10ms ticks is 248 days.
   1171 	 */
   1172 	s = splclock();
   1173 	sec = tv->tv_sec - time.tv_sec;
   1174 	usec = tv->tv_usec - time.tv_usec;
   1175 	splx(s);
   1176 
   1177 	if (usec < 0) {
   1178 		sec--;
   1179 		usec += 1000000;
   1180 	}
   1181 
   1182 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1183 		/*
   1184 		 * Would expire now or in the past.  Return 0 ticks.
   1185 		 * This is different from the legacy hzto() interface,
   1186 		 * and callers need to check for it.
   1187 		 */
   1188 		ticks = 0;
   1189 	} else if (sec <= (LONG_MAX / 1000000))
   1190 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1191 		    / tick) + 1;
   1192 	else if (sec <= (LONG_MAX / hz))
   1193 		ticks = (sec * hz) +
   1194 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1195 	else
   1196 		ticks = LONG_MAX;
   1197 
   1198 	if (ticks > INT_MAX)
   1199 		ticks = INT_MAX;
   1200 
   1201 	return ((int)ticks);
   1202 }
   1203 
   1204 /*
   1205  * Start profiling on a process.
   1206  *
   1207  * Kernel profiling passes proc0 which never exits and hence
   1208  * keeps the profile clock running constantly.
   1209  */
   1210 void
   1211 startprofclock(struct proc *p)
   1212 {
   1213 
   1214 	if ((p->p_flag & P_PROFIL) == 0) {
   1215 		p->p_flag |= P_PROFIL;
   1216 		if (++profprocs == 1 && stathz != 0)
   1217 			psdiv = psratio;
   1218 	}
   1219 }
   1220 
   1221 /*
   1222  * Stop profiling on a process.
   1223  */
   1224 void
   1225 stopprofclock(struct proc *p)
   1226 {
   1227 
   1228 	if (p->p_flag & P_PROFIL) {
   1229 		p->p_flag &= ~P_PROFIL;
   1230 		if (--profprocs == 0 && stathz != 0)
   1231 			psdiv = 1;
   1232 	}
   1233 }
   1234 
   1235 /*
   1236  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1237  * do process and kernel statistics.
   1238  */
   1239 void
   1240 statclock(struct clockframe *frame)
   1241 {
   1242 #ifdef GPROF
   1243 	struct gmonparam *g;
   1244 	intptr_t i;
   1245 #endif
   1246 	struct cpu_info *ci = curcpu();
   1247 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1248 	struct proc *p;
   1249 
   1250 	/*
   1251 	 * Notice changes in divisor frequency, and adjust clock
   1252 	 * frequency accordingly.
   1253 	 */
   1254 	if (spc->spc_psdiv != psdiv) {
   1255 		spc->spc_psdiv = psdiv;
   1256 		spc->spc_pscnt = psdiv;
   1257 		if (psdiv == 1) {
   1258 			setstatclockrate(stathz);
   1259 		} else {
   1260 			setstatclockrate(profhz);
   1261 		}
   1262 	}
   1263 	if (CLKF_USERMODE(frame)) {
   1264 		p = curproc;
   1265 		if (p->p_flag & P_PROFIL)
   1266 			addupc_intr(p, CLKF_PC(frame), 1);
   1267 		if (--spc->spc_pscnt > 0)
   1268 			return;
   1269 		/*
   1270 		 * Came from user mode; CPU was in user state.
   1271 		 * If this process is being profiled record the tick.
   1272 		 */
   1273 		p->p_uticks++;
   1274 		if (p->p_nice > NZERO)
   1275 			spc->spc_cp_time[CP_NICE]++;
   1276 		else
   1277 			spc->spc_cp_time[CP_USER]++;
   1278 	} else {
   1279 #ifdef GPROF
   1280 		/*
   1281 		 * Kernel statistics are just like addupc_intr, only easier.
   1282 		 */
   1283 		g = &_gmonparam;
   1284 		if (g->state == GMON_PROF_ON) {
   1285 			i = CLKF_PC(frame) - g->lowpc;
   1286 			if (i < g->textsize) {
   1287 				i /= HISTFRACTION * sizeof(*g->kcount);
   1288 				g->kcount[i]++;
   1289 			}
   1290 		}
   1291 #endif
   1292 		if (--spc->spc_pscnt > 0)
   1293 			return;
   1294 		/*
   1295 		 * Came from kernel mode, so we were:
   1296 		 * - handling an interrupt,
   1297 		 * - doing syscall or trap work on behalf of the current
   1298 		 *   user process, or
   1299 		 * - spinning in the idle loop.
   1300 		 * Whichever it is, charge the time as appropriate.
   1301 		 * Note that we charge interrupts to the current process,
   1302 		 * regardless of whether they are ``for'' that process,
   1303 		 * so that we know how much of its real time was spent
   1304 		 * in ``non-process'' (i.e., interrupt) work.
   1305 		 */
   1306 		p = curproc;
   1307 		if (CLKF_INTR(frame)) {
   1308 			if (p != NULL)
   1309 				p->p_iticks++;
   1310 			spc->spc_cp_time[CP_INTR]++;
   1311 		} else if (p != NULL) {
   1312 			p->p_sticks++;
   1313 			spc->spc_cp_time[CP_SYS]++;
   1314 		} else
   1315 			spc->spc_cp_time[CP_IDLE]++;
   1316 	}
   1317 	spc->spc_pscnt = psdiv;
   1318 
   1319 	if (p != NULL) {
   1320 		++p->p_cpticks;
   1321 		/*
   1322 		 * If no separate schedclock is provided, call it here
   1323 		 * at ~~12-25 Hz, ~~16 Hz is best
   1324 		 */
   1325 		if (schedhz == 0)
   1326 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1327 				schedclock(p);
   1328 	}
   1329 }
   1330 
   1331 
   1332 #ifdef NTP	/* NTP phase-locked loop in kernel */
   1333 
   1334 /*
   1335  * hardupdate() - local clock update
   1336  *
   1337  * This routine is called by ntp_adjtime() to update the local clock
   1338  * phase and frequency. The implementation is of an adaptive-parameter,
   1339  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1340  * time and frequency offset estimates for each call. If the kernel PPS
   1341  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1342  * determines the new time offset, instead of the calling argument.
   1343  * Presumably, calls to ntp_adjtime() occur only when the caller
   1344  * believes the local clock is valid within some bound (+-128 ms with
   1345  * NTP). If the caller's time is far different than the PPS time, an
   1346  * argument will ensue, and it's not clear who will lose.
   1347  *
   1348  * For uncompensated quartz crystal oscillatores and nominal update
   1349  * intervals less than 1024 s, operation should be in phase-lock mode
   1350  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1351  * intervals greater than thiss, operation should be in frequency-lock
   1352  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1353  *
   1354  * Note: splclock() is in effect.
   1355  */
   1356 void
   1357 hardupdate(long offset)
   1358 {
   1359 	long ltemp, mtemp;
   1360 
   1361 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1362 		return;
   1363 	ltemp = offset;
   1364 #ifdef PPS_SYNC
   1365 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1366 		ltemp = pps_offset;
   1367 #endif /* PPS_SYNC */
   1368 
   1369 	/*
   1370 	 * Scale the phase adjustment and clamp to the operating range.
   1371 	 */
   1372 	if (ltemp > MAXPHASE)
   1373 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1374 	else if (ltemp < -MAXPHASE)
   1375 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1376 	else
   1377 		time_offset = ltemp << SHIFT_UPDATE;
   1378 
   1379 	/*
   1380 	 * Select whether the frequency is to be controlled and in which
   1381 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1382 	 * multiply/divide should be replaced someday.
   1383 	 */
   1384 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1385 		time_reftime = time.tv_sec;
   1386 	mtemp = time.tv_sec - time_reftime;
   1387 	time_reftime = time.tv_sec;
   1388 	if (time_status & STA_FLL) {
   1389 		if (mtemp >= MINSEC) {
   1390 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1391 			    SHIFT_UPDATE));
   1392 			if (ltemp < 0)
   1393 				time_freq -= -ltemp >> SHIFT_KH;
   1394 			else
   1395 				time_freq += ltemp >> SHIFT_KH;
   1396 		}
   1397 	} else {
   1398 		if (mtemp < MAXSEC) {
   1399 			ltemp *= mtemp;
   1400 			if (ltemp < 0)
   1401 				time_freq -= -ltemp >> (time_constant +
   1402 				    time_constant + SHIFT_KF -
   1403 				    SHIFT_USEC);
   1404 			else
   1405 				time_freq += ltemp >> (time_constant +
   1406 				    time_constant + SHIFT_KF -
   1407 				    SHIFT_USEC);
   1408 		}
   1409 	}
   1410 	if (time_freq > time_tolerance)
   1411 		time_freq = time_tolerance;
   1412 	else if (time_freq < -time_tolerance)
   1413 		time_freq = -time_tolerance;
   1414 }
   1415 
   1416 #ifdef PPS_SYNC
   1417 /*
   1418  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1419  *
   1420  * This routine is called at each PPS interrupt in order to discipline
   1421  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1422  * and leaves it in a handy spot for the hardclock() routine. It
   1423  * integrates successive PPS phase differences and calculates the
   1424  * frequency offset. This is used in hardclock() to discipline the CPU
   1425  * clock oscillator so that intrinsic frequency error is cancelled out.
   1426  * The code requires the caller to capture the time and hardware counter
   1427  * value at the on-time PPS signal transition.
   1428  *
   1429  * Note that, on some Unix systems, this routine runs at an interrupt
   1430  * priority level higher than the timer interrupt routine hardclock().
   1431  * Therefore, the variables used are distinct from the hardclock()
   1432  * variables, except for certain exceptions: The PPS frequency pps_freq
   1433  * and phase pps_offset variables are determined by this routine and
   1434  * updated atomically. The time_tolerance variable can be considered a
   1435  * constant, since it is infrequently changed, and then only when the
   1436  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1437  * once per second by hardclock() and is atomically cleared in this
   1438  * routine.
   1439  */
   1440 void
   1441 hardpps(struct timeval *tvp,		/* time at PPS */
   1442 	long usec			/* hardware counter at PPS */)
   1443 {
   1444 	long u_usec, v_usec, bigtick;
   1445 	long cal_sec, cal_usec;
   1446 
   1447 	/*
   1448 	 * An occasional glitch can be produced when the PPS interrupt
   1449 	 * occurs in the hardclock() routine before the time variable is
   1450 	 * updated. Here the offset is discarded when the difference
   1451 	 * between it and the last one is greater than tick/2, but not
   1452 	 * if the interval since the first discard exceeds 30 s.
   1453 	 */
   1454 	time_status |= STA_PPSSIGNAL;
   1455 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1456 	pps_valid = 0;
   1457 	u_usec = -tvp->tv_usec;
   1458 	if (u_usec < -500000)
   1459 		u_usec += 1000000;
   1460 	v_usec = pps_offset - u_usec;
   1461 	if (v_usec < 0)
   1462 		v_usec = -v_usec;
   1463 	if (v_usec > (tick >> 1)) {
   1464 		if (pps_glitch > MAXGLITCH) {
   1465 			pps_glitch = 0;
   1466 			pps_tf[2] = u_usec;
   1467 			pps_tf[1] = u_usec;
   1468 		} else {
   1469 			pps_glitch++;
   1470 			u_usec = pps_offset;
   1471 		}
   1472 	} else
   1473 		pps_glitch = 0;
   1474 
   1475 	/*
   1476 	 * A three-stage median filter is used to help deglitch the pps
   1477 	 * time. The median sample becomes the time offset estimate; the
   1478 	 * difference between the other two samples becomes the time
   1479 	 * dispersion (jitter) estimate.
   1480 	 */
   1481 	pps_tf[2] = pps_tf[1];
   1482 	pps_tf[1] = pps_tf[0];
   1483 	pps_tf[0] = u_usec;
   1484 	if (pps_tf[0] > pps_tf[1]) {
   1485 		if (pps_tf[1] > pps_tf[2]) {
   1486 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1487 			v_usec = pps_tf[0] - pps_tf[2];
   1488 		} else if (pps_tf[2] > pps_tf[0]) {
   1489 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1490 			v_usec = pps_tf[2] - pps_tf[1];
   1491 		} else {
   1492 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1493 			v_usec = pps_tf[0] - pps_tf[1];
   1494 		}
   1495 	} else {
   1496 		if (pps_tf[1] < pps_tf[2]) {
   1497 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1498 			v_usec = pps_tf[2] - pps_tf[0];
   1499 		} else  if (pps_tf[2] < pps_tf[0]) {
   1500 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1501 			v_usec = pps_tf[1] - pps_tf[2];
   1502 		} else {
   1503 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1504 			v_usec = pps_tf[1] - pps_tf[0];
   1505 		}
   1506 	}
   1507 	if (v_usec > MAXTIME)
   1508 		pps_jitcnt++;
   1509 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1510 	if (v_usec < 0)
   1511 		pps_jitter -= -v_usec >> PPS_AVG;
   1512 	else
   1513 		pps_jitter += v_usec >> PPS_AVG;
   1514 	if (pps_jitter > (MAXTIME >> 1))
   1515 		time_status |= STA_PPSJITTER;
   1516 
   1517 	/*
   1518 	 * During the calibration interval adjust the starting time when
   1519 	 * the tick overflows. At the end of the interval compute the
   1520 	 * duration of the interval and the difference of the hardware
   1521 	 * counters at the beginning and end of the interval. This code
   1522 	 * is deliciously complicated by the fact valid differences may
   1523 	 * exceed the value of tick when using long calibration
   1524 	 * intervals and small ticks. Note that the counter can be
   1525 	 * greater than tick if caught at just the wrong instant, but
   1526 	 * the values returned and used here are correct.
   1527 	 */
   1528 	bigtick = (long)tick << SHIFT_USEC;
   1529 	pps_usec -= pps_freq;
   1530 	if (pps_usec >= bigtick)
   1531 		pps_usec -= bigtick;
   1532 	if (pps_usec < 0)
   1533 		pps_usec += bigtick;
   1534 	pps_time.tv_sec++;
   1535 	pps_count++;
   1536 	if (pps_count < (1 << pps_shift))
   1537 		return;
   1538 	pps_count = 0;
   1539 	pps_calcnt++;
   1540 	u_usec = usec << SHIFT_USEC;
   1541 	v_usec = pps_usec - u_usec;
   1542 	if (v_usec >= bigtick >> 1)
   1543 		v_usec -= bigtick;
   1544 	if (v_usec < -(bigtick >> 1))
   1545 		v_usec += bigtick;
   1546 	if (v_usec < 0)
   1547 		v_usec = -(-v_usec >> pps_shift);
   1548 	else
   1549 		v_usec = v_usec >> pps_shift;
   1550 	pps_usec = u_usec;
   1551 	cal_sec = tvp->tv_sec;
   1552 	cal_usec = tvp->tv_usec;
   1553 	cal_sec -= pps_time.tv_sec;
   1554 	cal_usec -= pps_time.tv_usec;
   1555 	if (cal_usec < 0) {
   1556 		cal_usec += 1000000;
   1557 		cal_sec--;
   1558 	}
   1559 	pps_time = *tvp;
   1560 
   1561 	/*
   1562 	 * Check for lost interrupts, noise, excessive jitter and
   1563 	 * excessive frequency error. The number of timer ticks during
   1564 	 * the interval may vary +-1 tick. Add to this a margin of one
   1565 	 * tick for the PPS signal jitter and maximum frequency
   1566 	 * deviation. If the limits are exceeded, the calibration
   1567 	 * interval is reset to the minimum and we start over.
   1568 	 */
   1569 	u_usec = (long)tick << 1;
   1570 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1571 	    || (cal_sec == 0 && cal_usec < u_usec))
   1572 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1573 		pps_errcnt++;
   1574 		pps_shift = PPS_SHIFT;
   1575 		pps_intcnt = 0;
   1576 		time_status |= STA_PPSERROR;
   1577 		return;
   1578 	}
   1579 
   1580 	/*
   1581 	 * A three-stage median filter is used to help deglitch the pps
   1582 	 * frequency. The median sample becomes the frequency offset
   1583 	 * estimate; the difference between the other two samples
   1584 	 * becomes the frequency dispersion (stability) estimate.
   1585 	 */
   1586 	pps_ff[2] = pps_ff[1];
   1587 	pps_ff[1] = pps_ff[0];
   1588 	pps_ff[0] = v_usec;
   1589 	if (pps_ff[0] > pps_ff[1]) {
   1590 		if (pps_ff[1] > pps_ff[2]) {
   1591 			u_usec = pps_ff[1];		/* 0 1 2 */
   1592 			v_usec = pps_ff[0] - pps_ff[2];
   1593 		} else if (pps_ff[2] > pps_ff[0]) {
   1594 			u_usec = pps_ff[0];		/* 2 0 1 */
   1595 			v_usec = pps_ff[2] - pps_ff[1];
   1596 		} else {
   1597 			u_usec = pps_ff[2];		/* 0 2 1 */
   1598 			v_usec = pps_ff[0] - pps_ff[1];
   1599 		}
   1600 	} else {
   1601 		if (pps_ff[1] < pps_ff[2]) {
   1602 			u_usec = pps_ff[1];		/* 2 1 0 */
   1603 			v_usec = pps_ff[2] - pps_ff[0];
   1604 		} else  if (pps_ff[2] < pps_ff[0]) {
   1605 			u_usec = pps_ff[0];		/* 1 0 2 */
   1606 			v_usec = pps_ff[1] - pps_ff[2];
   1607 		} else {
   1608 			u_usec = pps_ff[2];		/* 1 2 0 */
   1609 			v_usec = pps_ff[1] - pps_ff[0];
   1610 		}
   1611 	}
   1612 
   1613 	/*
   1614 	 * Here the frequency dispersion (stability) is updated. If it
   1615 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1616 	 * offset is updated as well, but clamped to the tolerance. It
   1617 	 * will be processed later by the hardclock() routine.
   1618 	 */
   1619 	v_usec = (v_usec >> 1) - pps_stabil;
   1620 	if (v_usec < 0)
   1621 		pps_stabil -= -v_usec >> PPS_AVG;
   1622 	else
   1623 		pps_stabil += v_usec >> PPS_AVG;
   1624 	if (pps_stabil > MAXFREQ >> 2) {
   1625 		pps_stbcnt++;
   1626 		time_status |= STA_PPSWANDER;
   1627 		return;
   1628 	}
   1629 	if (time_status & STA_PPSFREQ) {
   1630 		if (u_usec < 0) {
   1631 			pps_freq -= -u_usec >> PPS_AVG;
   1632 			if (pps_freq < -time_tolerance)
   1633 				pps_freq = -time_tolerance;
   1634 			u_usec = -u_usec;
   1635 		} else {
   1636 			pps_freq += u_usec >> PPS_AVG;
   1637 			if (pps_freq > time_tolerance)
   1638 				pps_freq = time_tolerance;
   1639 		}
   1640 	}
   1641 
   1642 	/*
   1643 	 * Here the calibration interval is adjusted. If the maximum
   1644 	 * time difference is greater than tick / 4, reduce the interval
   1645 	 * by half. If this is not the case for four consecutive
   1646 	 * intervals, double the interval.
   1647 	 */
   1648 	if (u_usec << pps_shift > bigtick >> 2) {
   1649 		pps_intcnt = 0;
   1650 		if (pps_shift > PPS_SHIFT)
   1651 			pps_shift--;
   1652 	} else if (pps_intcnt >= 4) {
   1653 		pps_intcnt = 0;
   1654 		if (pps_shift < PPS_SHIFTMAX)
   1655 			pps_shift++;
   1656 	} else
   1657 		pps_intcnt++;
   1658 }
   1659 #endif /* PPS_SYNC */
   1660 #endif /* NTP  */
   1661 
   1662 /*
   1663  * Return information about system clocks.
   1664  */
   1665 int
   1666 sysctl_clockrate(void *where, size_t *sizep)
   1667 {
   1668 	struct clockinfo clkinfo;
   1669 
   1670 	/*
   1671 	 * Construct clockinfo structure.
   1672 	 */
   1673 	clkinfo.tick = tick;
   1674 	clkinfo.tickadj = tickadj;
   1675 	clkinfo.hz = hz;
   1676 	clkinfo.profhz = profhz;
   1677 	clkinfo.stathz = stathz ? stathz : hz;
   1678 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1679 }
   1680