kern_clock.c revision 1.71 1 /* $NetBSD: kern_clock.c,v 1.71 2000/08/26 04:01:16 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 int softclock_running; /* 1 => softclock() is running */
316 static int psdiv; /* prof => stat divider */
317 int psratio; /* ratio: prof / stat */
318 int tickfix, tickfixinterval; /* used if tick not really integral */
319 #ifndef NTP
320 static int tickfixcnt; /* accumulated fractional error */
321 #else
322 int fixtick; /* used by NTP for same */
323 int shifthz;
324 #endif
325
326 /*
327 * We might want ldd to load the both words from time at once.
328 * To succeed we need to be quadword aligned.
329 * The sparc already does that, and that it has worked so far is a fluke.
330 */
331 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
332 volatile struct timeval mono_time;
333
334 /*
335 * The callout mechanism is based on the work of Adam M. Costello and
336 * George Varghese, published in a technical report entitled "Redesigning
337 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
338 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
339 *
340 * The original work on the data structures used in this implementation
341 * was published by G. Varghese and A. Lauck in the paper "Hashed and
342 * Hierarchical Timing Wheels: Data Structures for the Efficient
343 * Implementation of a Timer Facility" in the Proceedings of the 11th
344 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
345 * November 1987.
346 */
347 struct callout_queue *callwheel;
348 int callwheelsize, callwheelbits, callwheelmask;
349
350 static struct callout *nextsoftcheck; /* next callout to be checked */
351
352 #ifdef CALLWHEEL_STATS
353 int callwheel_collisions; /* number of hash collisions */
354 int callwheel_maxlength; /* length of the longest hash chain */
355 int *callwheel_sizes; /* per-bucket length count */
356 u_int64_t callwheel_count; /* # callouts currently */
357 u_int64_t callwheel_established; /* # callouts established */
358 u_int64_t callwheel_fired; /* # callouts that fired */
359 u_int64_t callwheel_disestablished; /* # callouts disestablished */
360 u_int64_t callwheel_changed; /* # callouts changed */
361 u_int64_t callwheel_softclocks; /* # times softclock() called */
362 u_int64_t callwheel_softchecks; /* # checks per softclock() */
363 u_int64_t callwheel_softempty; /* # empty buckets seen */
364 #endif /* CALLWHEEL_STATS */
365
366 /*
367 * This value indicates the number of consecutive callouts that
368 * will be checked before we allow interrupts to have a chance
369 * again.
370 */
371 #ifndef MAX_SOFTCLOCK_STEPS
372 #define MAX_SOFTCLOCK_STEPS 100
373 #endif
374
375 struct simplelock callwheel_slock;
376
377 #define CALLWHEEL_LOCK(s) \
378 do { \
379 s = splclock(); \
380 simple_lock(&callwheel_slock); \
381 } while (0)
382
383 #define CALLWHEEL_UNLOCK(s) \
384 do { \
385 simple_unlock(&callwheel_slock); \
386 splx(s); \
387 } while (0)
388
389 static void callout_stop_locked(struct callout *);
390
391 /*
392 * These are both protected by callwheel_lock.
393 * XXX SHOULD BE STATIC!!
394 */
395 u_int64_t hardclock_ticks, softclock_ticks;
396
397 /*
398 * Initialize clock frequencies and start both clocks running.
399 */
400 void
401 initclocks(void)
402 {
403 int i;
404
405 /*
406 * Set divisors to 1 (normal case) and let the machine-specific
407 * code do its bit.
408 */
409 psdiv = 1;
410 cpu_initclocks();
411
412 /*
413 * Compute profhz/stathz/rrticks, and fix profhz if needed.
414 */
415 i = stathz ? stathz : hz;
416 if (profhz == 0)
417 profhz = i;
418 psratio = profhz / i;
419 rrticks = hz / 10;
420
421 #ifdef NTP
422 switch (hz) {
423 case 1:
424 shifthz = SHIFT_SCALE - 0;
425 break;
426 case 2:
427 shifthz = SHIFT_SCALE - 1;
428 break;
429 case 4:
430 shifthz = SHIFT_SCALE - 2;
431 break;
432 case 8:
433 shifthz = SHIFT_SCALE - 3;
434 break;
435 case 16:
436 shifthz = SHIFT_SCALE - 4;
437 break;
438 case 32:
439 shifthz = SHIFT_SCALE - 5;
440 break;
441 case 60:
442 case 64:
443 shifthz = SHIFT_SCALE - 6;
444 break;
445 case 96:
446 case 100:
447 case 128:
448 shifthz = SHIFT_SCALE - 7;
449 break;
450 case 256:
451 shifthz = SHIFT_SCALE - 8;
452 break;
453 case 512:
454 shifthz = SHIFT_SCALE - 9;
455 break;
456 case 1000:
457 case 1024:
458 shifthz = SHIFT_SCALE - 10;
459 break;
460 case 1200:
461 case 2048:
462 shifthz = SHIFT_SCALE - 11;
463 break;
464 case 4096:
465 shifthz = SHIFT_SCALE - 12;
466 break;
467 case 8192:
468 shifthz = SHIFT_SCALE - 13;
469 break;
470 case 16384:
471 shifthz = SHIFT_SCALE - 14;
472 break;
473 case 32768:
474 shifthz = SHIFT_SCALE - 15;
475 break;
476 case 65536:
477 shifthz = SHIFT_SCALE - 16;
478 break;
479 default:
480 panic("weird hz");
481 }
482 if (fixtick == 0) {
483 /*
484 * Give MD code a chance to set this to a better
485 * value; but, if it doesn't, we should.
486 */
487 fixtick = (1000000 - (hz*tick));
488 }
489 #endif
490 }
491
492 /*
493 * The real-time timer, interrupting hz times per second.
494 */
495 void
496 hardclock(struct clockframe *frame)
497 {
498 struct proc *p;
499 int delta;
500 extern int tickdelta;
501 extern long timedelta;
502 struct cpu_info *ci = curcpu();
503 #ifdef NTP
504 int time_update;
505 int ltemp;
506 #endif
507
508 p = curproc;
509 if (p) {
510 struct pstats *pstats;
511
512 /*
513 * Run current process's virtual and profile time, as needed.
514 */
515 pstats = p->p_stats;
516 if (CLKF_USERMODE(frame) &&
517 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
518 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
519 psignal(p, SIGVTALRM);
520 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
521 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
522 psignal(p, SIGPROF);
523 }
524
525 /*
526 * If no separate statistics clock is available, run it from here.
527 */
528 if (stathz == 0)
529 statclock(frame);
530 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
531 roundrobin(ci);
532
533 #if defined(MULTIPROCESSOR)
534 /*
535 * If we are not the primary CPU, we're not allowed to do
536 * any more work.
537 */
538 if (CPU_IS_PRIMARY(ci) == 0)
539 return;
540 #endif
541
542 /*
543 * Increment the time-of-day. The increment is normally just
544 * ``tick''. If the machine is one which has a clock frequency
545 * such that ``hz'' would not divide the second evenly into
546 * milliseconds, a periodic adjustment must be applied. Finally,
547 * if we are still adjusting the time (see adjtime()),
548 * ``tickdelta'' may also be added in.
549 */
550 delta = tick;
551
552 #ifndef NTP
553 if (tickfix) {
554 tickfixcnt += tickfix;
555 if (tickfixcnt >= tickfixinterval) {
556 delta++;
557 tickfixcnt -= tickfixinterval;
558 }
559 }
560 #endif /* !NTP */
561 /* Imprecise 4bsd adjtime() handling */
562 if (timedelta != 0) {
563 delta += tickdelta;
564 timedelta -= tickdelta;
565 }
566
567 #ifdef notyet
568 microset();
569 #endif
570
571 #ifndef NTP
572 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
573 #endif
574 BUMPTIME(&mono_time, delta);
575
576 #ifdef NTP
577 time_update = delta;
578
579 /*
580 * Compute the phase adjustment. If the low-order bits
581 * (time_phase) of the update overflow, bump the high-order bits
582 * (time_update).
583 */
584 time_phase += time_adj;
585 if (time_phase <= -FINEUSEC) {
586 ltemp = -time_phase >> SHIFT_SCALE;
587 time_phase += ltemp << SHIFT_SCALE;
588 time_update -= ltemp;
589 } else if (time_phase >= FINEUSEC) {
590 ltemp = time_phase >> SHIFT_SCALE;
591 time_phase -= ltemp << SHIFT_SCALE;
592 time_update += ltemp;
593 }
594
595 #ifdef HIGHBALL
596 /*
597 * If the HIGHBALL board is installed, we need to adjust the
598 * external clock offset in order to close the hardware feedback
599 * loop. This will adjust the external clock phase and frequency
600 * in small amounts. The additional phase noise and frequency
601 * wander this causes should be minimal. We also need to
602 * discipline the kernel time variable, since the PLL is used to
603 * discipline the external clock. If the Highball board is not
604 * present, we discipline kernel time with the PLL as usual. We
605 * assume that the external clock phase adjustment (time_update)
606 * and kernel phase adjustment (clock_cpu) are less than the
607 * value of tick.
608 */
609 clock_offset.tv_usec += time_update;
610 if (clock_offset.tv_usec >= 1000000) {
611 clock_offset.tv_sec++;
612 clock_offset.tv_usec -= 1000000;
613 }
614 if (clock_offset.tv_usec < 0) {
615 clock_offset.tv_sec--;
616 clock_offset.tv_usec += 1000000;
617 }
618 time.tv_usec += clock_cpu;
619 clock_cpu = 0;
620 #else
621 time.tv_usec += time_update;
622 #endif /* HIGHBALL */
623
624 /*
625 * On rollover of the second the phase adjustment to be used for
626 * the next second is calculated. Also, the maximum error is
627 * increased by the tolerance. If the PPS frequency discipline
628 * code is present, the phase is increased to compensate for the
629 * CPU clock oscillator frequency error.
630 *
631 * On a 32-bit machine and given parameters in the timex.h
632 * header file, the maximum phase adjustment is +-512 ms and
633 * maximum frequency offset is a tad less than) +-512 ppm. On a
634 * 64-bit machine, you shouldn't need to ask.
635 */
636 if (time.tv_usec >= 1000000) {
637 time.tv_usec -= 1000000;
638 time.tv_sec++;
639 time_maxerror += time_tolerance >> SHIFT_USEC;
640
641 /*
642 * Leap second processing. If in leap-insert state at
643 * the end of the day, the system clock is set back one
644 * second; if in leap-delete state, the system clock is
645 * set ahead one second. The microtime() routine or
646 * external clock driver will insure that reported time
647 * is always monotonic. The ugly divides should be
648 * replaced.
649 */
650 switch (time_state) {
651 case TIME_OK:
652 if (time_status & STA_INS)
653 time_state = TIME_INS;
654 else if (time_status & STA_DEL)
655 time_state = TIME_DEL;
656 break;
657
658 case TIME_INS:
659 if (time.tv_sec % 86400 == 0) {
660 time.tv_sec--;
661 time_state = TIME_OOP;
662 }
663 break;
664
665 case TIME_DEL:
666 if ((time.tv_sec + 1) % 86400 == 0) {
667 time.tv_sec++;
668 time_state = TIME_WAIT;
669 }
670 break;
671
672 case TIME_OOP:
673 time_state = TIME_WAIT;
674 break;
675
676 case TIME_WAIT:
677 if (!(time_status & (STA_INS | STA_DEL)))
678 time_state = TIME_OK;
679 break;
680 }
681
682 /*
683 * Compute the phase adjustment for the next second. In
684 * PLL mode, the offset is reduced by a fixed factor
685 * times the time constant. In FLL mode the offset is
686 * used directly. In either mode, the maximum phase
687 * adjustment for each second is clamped so as to spread
688 * the adjustment over not more than the number of
689 * seconds between updates.
690 */
691 if (time_offset < 0) {
692 ltemp = -time_offset;
693 if (!(time_status & STA_FLL))
694 ltemp >>= SHIFT_KG + time_constant;
695 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
696 ltemp = (MAXPHASE / MINSEC) <<
697 SHIFT_UPDATE;
698 time_offset += ltemp;
699 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
700 } else if (time_offset > 0) {
701 ltemp = time_offset;
702 if (!(time_status & STA_FLL))
703 ltemp >>= SHIFT_KG + time_constant;
704 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
705 ltemp = (MAXPHASE / MINSEC) <<
706 SHIFT_UPDATE;
707 time_offset -= ltemp;
708 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
709 } else
710 time_adj = 0;
711
712 /*
713 * Compute the frequency estimate and additional phase
714 * adjustment due to frequency error for the next
715 * second. When the PPS signal is engaged, gnaw on the
716 * watchdog counter and update the frequency computed by
717 * the pll and the PPS signal.
718 */
719 #ifdef PPS_SYNC
720 pps_valid++;
721 if (pps_valid == PPS_VALID) {
722 pps_jitter = MAXTIME;
723 pps_stabil = MAXFREQ;
724 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
725 STA_PPSWANDER | STA_PPSERROR);
726 }
727 ltemp = time_freq + pps_freq;
728 #else
729 ltemp = time_freq;
730 #endif /* PPS_SYNC */
731
732 if (ltemp < 0)
733 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
734 else
735 time_adj += ltemp >> (SHIFT_USEC - shifthz);
736 time_adj += (long)fixtick << shifthz;
737
738 /*
739 * When the CPU clock oscillator frequency is not a
740 * power of 2 in Hz, shifthz is only an approximate
741 * scale factor.
742 *
743 * To determine the adjustment, you can do the following:
744 * bc -q
745 * scale=24
746 * obase=2
747 * idealhz/realhz
748 * where `idealhz' is the next higher power of 2, and `realhz'
749 * is the actual value. You may need to factor this result
750 * into a sequence of 2 multipliers to get better precision.
751 *
752 * Likewise, the error can be calculated with (e.g. for 100Hz):
753 * bc -q
754 * scale=24
755 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
756 * (and then multiply by 1000000 to get ppm).
757 */
758 switch (hz) {
759 case 60:
760 /* A factor of 1.000100010001 gives about 15ppm
761 error. */
762 if (time_adj < 0) {
763 time_adj -= (-time_adj >> 4);
764 time_adj -= (-time_adj >> 8);
765 } else {
766 time_adj += (time_adj >> 4);
767 time_adj += (time_adj >> 8);
768 }
769 break;
770
771 case 96:
772 /* A factor of 1.0101010101 gives about 244ppm error. */
773 if (time_adj < 0) {
774 time_adj -= (-time_adj >> 2);
775 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
776 } else {
777 time_adj += (time_adj >> 2);
778 time_adj += (time_adj >> 4) + (time_adj >> 8);
779 }
780 break;
781
782 case 100:
783 /* A factor of 1.010001111010111 gives about 1ppm
784 error. */
785 if (time_adj < 0) {
786 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
787 time_adj += (-time_adj >> 10);
788 } else {
789 time_adj += (time_adj >> 2) + (time_adj >> 5);
790 time_adj -= (time_adj >> 10);
791 }
792 break;
793
794 case 1000:
795 /* A factor of 1.000001100010100001 gives about 50ppm
796 error. */
797 if (time_adj < 0) {
798 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
799 time_adj -= (-time_adj >> 7);
800 } else {
801 time_adj += (time_adj >> 6) + (time_adj >> 11);
802 time_adj += (time_adj >> 7);
803 }
804 break;
805
806 case 1200:
807 /* A factor of 1.1011010011100001 gives about 64ppm
808 error. */
809 if (time_adj < 0) {
810 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
811 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
812 } else {
813 time_adj += (time_adj >> 1) + (time_adj >> 6);
814 time_adj += (time_adj >> 3) + (time_adj >> 10);
815 }
816 break;
817 }
818
819 #ifdef EXT_CLOCK
820 /*
821 * If an external clock is present, it is necessary to
822 * discipline the kernel time variable anyway, since not
823 * all system components use the microtime() interface.
824 * Here, the time offset between the external clock and
825 * kernel time variable is computed every so often.
826 */
827 clock_count++;
828 if (clock_count > CLOCK_INTERVAL) {
829 clock_count = 0;
830 microtime(&clock_ext);
831 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
832 delta.tv_usec = clock_ext.tv_usec -
833 time.tv_usec;
834 if (delta.tv_usec < 0)
835 delta.tv_sec--;
836 if (delta.tv_usec >= 500000) {
837 delta.tv_usec -= 1000000;
838 delta.tv_sec++;
839 }
840 if (delta.tv_usec < -500000) {
841 delta.tv_usec += 1000000;
842 delta.tv_sec--;
843 }
844 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
845 delta.tv_usec > MAXPHASE) ||
846 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
847 delta.tv_usec < -MAXPHASE)) {
848 time = clock_ext;
849 delta.tv_sec = 0;
850 delta.tv_usec = 0;
851 }
852 #ifdef HIGHBALL
853 clock_cpu = delta.tv_usec;
854 #else /* HIGHBALL */
855 hardupdate(delta.tv_usec);
856 #endif /* HIGHBALL */
857 }
858 #endif /* EXT_CLOCK */
859 }
860
861 #endif /* NTP */
862
863 /*
864 * Process callouts at a very low cpu priority, so we don't keep the
865 * relatively high clock interrupt priority any longer than necessary.
866 */
867 simple_lock(&callwheel_slock); /* already at splclock() */
868 hardclock_ticks++;
869 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
870 simple_unlock(&callwheel_slock);
871 if (CLKF_BASEPRI(frame)) {
872 /*
873 * Save the overhead of a software interrupt;
874 * it will happen as soon as we return, so do
875 * it now.
876 *
877 * NOTE: If we're at ``base priority'', softclock()
878 * was not already running.
879 */
880 spllowersoftclock();
881 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
882 softclock();
883 KERNEL_UNLOCK();
884 } else
885 setsoftclock();
886 return;
887 } else if (softclock_running == 0 &&
888 (softclock_ticks + 1) == hardclock_ticks) {
889 softclock_ticks++;
890 }
891 simple_unlock(&callwheel_slock);
892 }
893
894 /*
895 * Software (low priority) clock interrupt.
896 * Run periodic events from timeout queue.
897 */
898 /*ARGSUSED*/
899 void
900 softclock(void)
901 {
902 struct callout_queue *bucket;
903 struct callout *c;
904 void (*func)(void *);
905 void *arg;
906 int s, idx;
907 int steps = 0;
908
909 CALLWHEEL_LOCK(s);
910
911 softclock_running = 1;
912
913 #ifdef CALLWHEEL_STATS
914 callwheel_softclocks++;
915 #endif
916
917 while (softclock_ticks != hardclock_ticks) {
918 softclock_ticks++;
919 idx = (int)(softclock_ticks & callwheelmask);
920 bucket = &callwheel[idx];
921 c = TAILQ_FIRST(bucket);
922 #ifdef CALLWHEEL_STATS
923 if (c == NULL)
924 callwheel_softempty++;
925 #endif
926 while (c != NULL) {
927 #ifdef CALLWHEEL_STATS
928 callwheel_softchecks++;
929 #endif
930 if (c->c_time != softclock_ticks) {
931 c = TAILQ_NEXT(c, c_link);
932 if (++steps >= MAX_SOFTCLOCK_STEPS) {
933 nextsoftcheck = c;
934 /* Give interrupts a chance. */
935 CALLWHEEL_UNLOCK(s);
936 CALLWHEEL_LOCK(s);
937 c = nextsoftcheck;
938 steps = 0;
939 }
940 } else {
941 nextsoftcheck = TAILQ_NEXT(c, c_link);
942 TAILQ_REMOVE(bucket, c, c_link);
943 #ifdef CALLWHEEL_STATS
944 callwheel_sizes[idx]--;
945 callwheel_fired++;
946 callwheel_count--;
947 #endif
948 func = c->c_func;
949 arg = c->c_arg;
950 c->c_func = NULL;
951 c->c_flags &= ~CALLOUT_PENDING;
952 CALLWHEEL_UNLOCK(s);
953 (*func)(arg);
954 CALLWHEEL_LOCK(s);
955 steps = 0;
956 c = nextsoftcheck;
957 }
958 }
959 }
960 nextsoftcheck = NULL;
961 softclock_running = 0;
962 CALLWHEEL_UNLOCK(s);
963 }
964
965 /*
966 * callout_setsize:
967 *
968 * Determine how many callwheels are necessary and
969 * set hash mask. Called from allocsys().
970 */
971 void
972 callout_setsize(void)
973 {
974
975 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
976 /* loop */ ;
977 callwheelmask = callwheelsize - 1;
978 }
979
980 /*
981 * callout_startup:
982 *
983 * Initialize the callwheel buckets.
984 */
985 void
986 callout_startup(void)
987 {
988 int i;
989
990 for (i = 0; i < callwheelsize; i++)
991 TAILQ_INIT(&callwheel[i]);
992
993 simple_lock_init(&callwheel_slock);
994 }
995
996 /*
997 * callout_init:
998 *
999 * Initialize a callout structure so that it can be used
1000 * by callout_reset() and callout_stop().
1001 */
1002 void
1003 callout_init(struct callout *c)
1004 {
1005
1006 memset(c, 0, sizeof(*c));
1007 }
1008
1009 /*
1010 * callout_reset:
1011 *
1012 * Establish or change a timeout.
1013 */
1014 void
1015 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1016 {
1017 struct callout_queue *bucket;
1018 int s;
1019
1020 if (ticks <= 0)
1021 ticks = 1;
1022
1023 CALLWHEEL_LOCK(s);
1024
1025 /*
1026 * If this callout's timer is already running, cancel it
1027 * before we modify it.
1028 */
1029 if (c->c_flags & CALLOUT_PENDING) {
1030 callout_stop_locked(c); /* Already locked */
1031 #ifdef CALLWHEEL_STATS
1032 callwheel_changed++;
1033 #endif
1034 }
1035
1036 c->c_arg = arg;
1037 c->c_func = func;
1038 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1039 c->c_time = hardclock_ticks + ticks;
1040
1041 bucket = &callwheel[c->c_time & callwheelmask];
1042
1043 #ifdef CALLWHEEL_STATS
1044 if (TAILQ_FIRST(bucket) != NULL)
1045 callwheel_collisions++;
1046 #endif
1047
1048 TAILQ_INSERT_TAIL(bucket, c, c_link);
1049
1050 #ifdef CALLWHEEL_STATS
1051 callwheel_count++;
1052 callwheel_established++;
1053 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1054 callwheel_maxlength =
1055 callwheel_sizes[c->c_time & callwheelmask];
1056 #endif
1057
1058 CALLWHEEL_UNLOCK(s);
1059 }
1060
1061 /*
1062 * callout_stop_locked:
1063 *
1064 * Disestablish a timeout. Callwheel is locked.
1065 */
1066 static void
1067 callout_stop_locked(struct callout *c)
1068 {
1069
1070 /*
1071 * Don't attempt to delete a callout that's not on the queue.
1072 */
1073 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1074 c->c_flags &= ~CALLOUT_ACTIVE;
1075 return;
1076 }
1077
1078 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1079
1080 if (nextsoftcheck == c)
1081 nextsoftcheck = TAILQ_NEXT(c, c_link);
1082
1083 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1084 #ifdef CALLWHEEL_STATS
1085 callwheel_count--;
1086 callwheel_disestablished++;
1087 callwheel_sizes[c->c_time & callwheelmask]--;
1088 #endif
1089
1090 c->c_func = NULL;
1091 }
1092
1093 /*
1094 * callout_stop:
1095 *
1096 * Disestablish a timeout. Callwheel is unlocked. This is
1097 * the standard entry point.
1098 */
1099 void
1100 callout_stop(struct callout *c)
1101 {
1102 int s;
1103
1104 CALLWHEEL_LOCK(s);
1105 callout_stop_locked(c);
1106 CALLWHEEL_UNLOCK(s);
1107 }
1108
1109 #ifdef CALLWHEEL_STATS
1110 /*
1111 * callout_showstats:
1112 *
1113 * Display callout statistics. Call it from DDB.
1114 */
1115 void
1116 callout_showstats(void)
1117 {
1118 u_int64_t curticks;
1119 int s;
1120
1121 s = splclock();
1122 curticks = softclock_ticks;
1123 splx(s);
1124
1125 printf("Callwheel statistics:\n");
1126 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1127 printf("\tCallouts established: %llu\n", callwheel_established);
1128 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1129 if (callwheel_changed != 0)
1130 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1131 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1132 printf("\tNumber of buckets: %d\n", callwheelsize);
1133 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1134 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1135 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1136 callwheel_softclocks, callwheel_softchecks);
1137 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1138 }
1139 #endif
1140
1141 /*
1142 * Compute number of hz until specified time. Used to compute second
1143 * argument to callout_reset() from an absolute time.
1144 */
1145 int
1146 hzto(struct timeval *tv)
1147 {
1148 unsigned long ticks;
1149 long sec, usec;
1150 int s;
1151
1152 /*
1153 * If the number of usecs in the whole seconds part of the time
1154 * difference fits in a long, then the total number of usecs will
1155 * fit in an unsigned long. Compute the total and convert it to
1156 * ticks, rounding up and adding 1 to allow for the current tick
1157 * to expire. Rounding also depends on unsigned long arithmetic
1158 * to avoid overflow.
1159 *
1160 * Otherwise, if the number of ticks in the whole seconds part of
1161 * the time difference fits in a long, then convert the parts to
1162 * ticks separately and add, using similar rounding methods and
1163 * overflow avoidance. This method would work in the previous
1164 * case, but it is slightly slower and assume that hz is integral.
1165 *
1166 * Otherwise, round the time difference down to the maximum
1167 * representable value.
1168 *
1169 * If ints are 32-bit, then the maximum value for any timeout in
1170 * 10ms ticks is 248 days.
1171 */
1172 s = splclock();
1173 sec = tv->tv_sec - time.tv_sec;
1174 usec = tv->tv_usec - time.tv_usec;
1175 splx(s);
1176
1177 if (usec < 0) {
1178 sec--;
1179 usec += 1000000;
1180 }
1181
1182 if (sec < 0 || (sec == 0 && usec <= 0)) {
1183 /*
1184 * Would expire now or in the past. Return 0 ticks.
1185 * This is different from the legacy hzto() interface,
1186 * and callers need to check for it.
1187 */
1188 ticks = 0;
1189 } else if (sec <= (LONG_MAX / 1000000))
1190 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1191 / tick) + 1;
1192 else if (sec <= (LONG_MAX / hz))
1193 ticks = (sec * hz) +
1194 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1195 else
1196 ticks = LONG_MAX;
1197
1198 if (ticks > INT_MAX)
1199 ticks = INT_MAX;
1200
1201 return ((int)ticks);
1202 }
1203
1204 /*
1205 * Start profiling on a process.
1206 *
1207 * Kernel profiling passes proc0 which never exits and hence
1208 * keeps the profile clock running constantly.
1209 */
1210 void
1211 startprofclock(struct proc *p)
1212 {
1213
1214 if ((p->p_flag & P_PROFIL) == 0) {
1215 p->p_flag |= P_PROFIL;
1216 if (++profprocs == 1 && stathz != 0)
1217 psdiv = psratio;
1218 }
1219 }
1220
1221 /*
1222 * Stop profiling on a process.
1223 */
1224 void
1225 stopprofclock(struct proc *p)
1226 {
1227
1228 if (p->p_flag & P_PROFIL) {
1229 p->p_flag &= ~P_PROFIL;
1230 if (--profprocs == 0 && stathz != 0)
1231 psdiv = 1;
1232 }
1233 }
1234
1235 /*
1236 * Statistics clock. Grab profile sample, and if divider reaches 0,
1237 * do process and kernel statistics.
1238 */
1239 void
1240 statclock(struct clockframe *frame)
1241 {
1242 #ifdef GPROF
1243 struct gmonparam *g;
1244 intptr_t i;
1245 #endif
1246 struct cpu_info *ci = curcpu();
1247 struct schedstate_percpu *spc = &ci->ci_schedstate;
1248 struct proc *p;
1249
1250 /*
1251 * Notice changes in divisor frequency, and adjust clock
1252 * frequency accordingly.
1253 */
1254 if (spc->spc_psdiv != psdiv) {
1255 spc->spc_psdiv = psdiv;
1256 spc->spc_pscnt = psdiv;
1257 if (psdiv == 1) {
1258 setstatclockrate(stathz);
1259 } else {
1260 setstatclockrate(profhz);
1261 }
1262 }
1263 if (CLKF_USERMODE(frame)) {
1264 p = curproc;
1265 if (p->p_flag & P_PROFIL)
1266 addupc_intr(p, CLKF_PC(frame), 1);
1267 if (--spc->spc_pscnt > 0)
1268 return;
1269 /*
1270 * Came from user mode; CPU was in user state.
1271 * If this process is being profiled record the tick.
1272 */
1273 p->p_uticks++;
1274 if (p->p_nice > NZERO)
1275 spc->spc_cp_time[CP_NICE]++;
1276 else
1277 spc->spc_cp_time[CP_USER]++;
1278 } else {
1279 #ifdef GPROF
1280 /*
1281 * Kernel statistics are just like addupc_intr, only easier.
1282 */
1283 g = &_gmonparam;
1284 if (g->state == GMON_PROF_ON) {
1285 i = CLKF_PC(frame) - g->lowpc;
1286 if (i < g->textsize) {
1287 i /= HISTFRACTION * sizeof(*g->kcount);
1288 g->kcount[i]++;
1289 }
1290 }
1291 #endif
1292 if (--spc->spc_pscnt > 0)
1293 return;
1294 /*
1295 * Came from kernel mode, so we were:
1296 * - handling an interrupt,
1297 * - doing syscall or trap work on behalf of the current
1298 * user process, or
1299 * - spinning in the idle loop.
1300 * Whichever it is, charge the time as appropriate.
1301 * Note that we charge interrupts to the current process,
1302 * regardless of whether they are ``for'' that process,
1303 * so that we know how much of its real time was spent
1304 * in ``non-process'' (i.e., interrupt) work.
1305 */
1306 p = curproc;
1307 if (CLKF_INTR(frame)) {
1308 if (p != NULL)
1309 p->p_iticks++;
1310 spc->spc_cp_time[CP_INTR]++;
1311 } else if (p != NULL) {
1312 p->p_sticks++;
1313 spc->spc_cp_time[CP_SYS]++;
1314 } else
1315 spc->spc_cp_time[CP_IDLE]++;
1316 }
1317 spc->spc_pscnt = psdiv;
1318
1319 if (p != NULL) {
1320 ++p->p_cpticks;
1321 /*
1322 * If no separate schedclock is provided, call it here
1323 * at ~~12-25 Hz, ~~16 Hz is best
1324 */
1325 if (schedhz == 0)
1326 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1327 schedclock(p);
1328 }
1329 }
1330
1331
1332 #ifdef NTP /* NTP phase-locked loop in kernel */
1333
1334 /*
1335 * hardupdate() - local clock update
1336 *
1337 * This routine is called by ntp_adjtime() to update the local clock
1338 * phase and frequency. The implementation is of an adaptive-parameter,
1339 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1340 * time and frequency offset estimates for each call. If the kernel PPS
1341 * discipline code is configured (PPS_SYNC), the PPS signal itself
1342 * determines the new time offset, instead of the calling argument.
1343 * Presumably, calls to ntp_adjtime() occur only when the caller
1344 * believes the local clock is valid within some bound (+-128 ms with
1345 * NTP). If the caller's time is far different than the PPS time, an
1346 * argument will ensue, and it's not clear who will lose.
1347 *
1348 * For uncompensated quartz crystal oscillatores and nominal update
1349 * intervals less than 1024 s, operation should be in phase-lock mode
1350 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1351 * intervals greater than thiss, operation should be in frequency-lock
1352 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1353 *
1354 * Note: splclock() is in effect.
1355 */
1356 void
1357 hardupdate(long offset)
1358 {
1359 long ltemp, mtemp;
1360
1361 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1362 return;
1363 ltemp = offset;
1364 #ifdef PPS_SYNC
1365 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1366 ltemp = pps_offset;
1367 #endif /* PPS_SYNC */
1368
1369 /*
1370 * Scale the phase adjustment and clamp to the operating range.
1371 */
1372 if (ltemp > MAXPHASE)
1373 time_offset = MAXPHASE << SHIFT_UPDATE;
1374 else if (ltemp < -MAXPHASE)
1375 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1376 else
1377 time_offset = ltemp << SHIFT_UPDATE;
1378
1379 /*
1380 * Select whether the frequency is to be controlled and in which
1381 * mode (PLL or FLL). Clamp to the operating range. Ugly
1382 * multiply/divide should be replaced someday.
1383 */
1384 if (time_status & STA_FREQHOLD || time_reftime == 0)
1385 time_reftime = time.tv_sec;
1386 mtemp = time.tv_sec - time_reftime;
1387 time_reftime = time.tv_sec;
1388 if (time_status & STA_FLL) {
1389 if (mtemp >= MINSEC) {
1390 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1391 SHIFT_UPDATE));
1392 if (ltemp < 0)
1393 time_freq -= -ltemp >> SHIFT_KH;
1394 else
1395 time_freq += ltemp >> SHIFT_KH;
1396 }
1397 } else {
1398 if (mtemp < MAXSEC) {
1399 ltemp *= mtemp;
1400 if (ltemp < 0)
1401 time_freq -= -ltemp >> (time_constant +
1402 time_constant + SHIFT_KF -
1403 SHIFT_USEC);
1404 else
1405 time_freq += ltemp >> (time_constant +
1406 time_constant + SHIFT_KF -
1407 SHIFT_USEC);
1408 }
1409 }
1410 if (time_freq > time_tolerance)
1411 time_freq = time_tolerance;
1412 else if (time_freq < -time_tolerance)
1413 time_freq = -time_tolerance;
1414 }
1415
1416 #ifdef PPS_SYNC
1417 /*
1418 * hardpps() - discipline CPU clock oscillator to external PPS signal
1419 *
1420 * This routine is called at each PPS interrupt in order to discipline
1421 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1422 * and leaves it in a handy spot for the hardclock() routine. It
1423 * integrates successive PPS phase differences and calculates the
1424 * frequency offset. This is used in hardclock() to discipline the CPU
1425 * clock oscillator so that intrinsic frequency error is cancelled out.
1426 * The code requires the caller to capture the time and hardware counter
1427 * value at the on-time PPS signal transition.
1428 *
1429 * Note that, on some Unix systems, this routine runs at an interrupt
1430 * priority level higher than the timer interrupt routine hardclock().
1431 * Therefore, the variables used are distinct from the hardclock()
1432 * variables, except for certain exceptions: The PPS frequency pps_freq
1433 * and phase pps_offset variables are determined by this routine and
1434 * updated atomically. The time_tolerance variable can be considered a
1435 * constant, since it is infrequently changed, and then only when the
1436 * PPS signal is disabled. The watchdog counter pps_valid is updated
1437 * once per second by hardclock() and is atomically cleared in this
1438 * routine.
1439 */
1440 void
1441 hardpps(struct timeval *tvp, /* time at PPS */
1442 long usec /* hardware counter at PPS */)
1443 {
1444 long u_usec, v_usec, bigtick;
1445 long cal_sec, cal_usec;
1446
1447 /*
1448 * An occasional glitch can be produced when the PPS interrupt
1449 * occurs in the hardclock() routine before the time variable is
1450 * updated. Here the offset is discarded when the difference
1451 * between it and the last one is greater than tick/2, but not
1452 * if the interval since the first discard exceeds 30 s.
1453 */
1454 time_status |= STA_PPSSIGNAL;
1455 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1456 pps_valid = 0;
1457 u_usec = -tvp->tv_usec;
1458 if (u_usec < -500000)
1459 u_usec += 1000000;
1460 v_usec = pps_offset - u_usec;
1461 if (v_usec < 0)
1462 v_usec = -v_usec;
1463 if (v_usec > (tick >> 1)) {
1464 if (pps_glitch > MAXGLITCH) {
1465 pps_glitch = 0;
1466 pps_tf[2] = u_usec;
1467 pps_tf[1] = u_usec;
1468 } else {
1469 pps_glitch++;
1470 u_usec = pps_offset;
1471 }
1472 } else
1473 pps_glitch = 0;
1474
1475 /*
1476 * A three-stage median filter is used to help deglitch the pps
1477 * time. The median sample becomes the time offset estimate; the
1478 * difference between the other two samples becomes the time
1479 * dispersion (jitter) estimate.
1480 */
1481 pps_tf[2] = pps_tf[1];
1482 pps_tf[1] = pps_tf[0];
1483 pps_tf[0] = u_usec;
1484 if (pps_tf[0] > pps_tf[1]) {
1485 if (pps_tf[1] > pps_tf[2]) {
1486 pps_offset = pps_tf[1]; /* 0 1 2 */
1487 v_usec = pps_tf[0] - pps_tf[2];
1488 } else if (pps_tf[2] > pps_tf[0]) {
1489 pps_offset = pps_tf[0]; /* 2 0 1 */
1490 v_usec = pps_tf[2] - pps_tf[1];
1491 } else {
1492 pps_offset = pps_tf[2]; /* 0 2 1 */
1493 v_usec = pps_tf[0] - pps_tf[1];
1494 }
1495 } else {
1496 if (pps_tf[1] < pps_tf[2]) {
1497 pps_offset = pps_tf[1]; /* 2 1 0 */
1498 v_usec = pps_tf[2] - pps_tf[0];
1499 } else if (pps_tf[2] < pps_tf[0]) {
1500 pps_offset = pps_tf[0]; /* 1 0 2 */
1501 v_usec = pps_tf[1] - pps_tf[2];
1502 } else {
1503 pps_offset = pps_tf[2]; /* 1 2 0 */
1504 v_usec = pps_tf[1] - pps_tf[0];
1505 }
1506 }
1507 if (v_usec > MAXTIME)
1508 pps_jitcnt++;
1509 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1510 if (v_usec < 0)
1511 pps_jitter -= -v_usec >> PPS_AVG;
1512 else
1513 pps_jitter += v_usec >> PPS_AVG;
1514 if (pps_jitter > (MAXTIME >> 1))
1515 time_status |= STA_PPSJITTER;
1516
1517 /*
1518 * During the calibration interval adjust the starting time when
1519 * the tick overflows. At the end of the interval compute the
1520 * duration of the interval and the difference of the hardware
1521 * counters at the beginning and end of the interval. This code
1522 * is deliciously complicated by the fact valid differences may
1523 * exceed the value of tick when using long calibration
1524 * intervals and small ticks. Note that the counter can be
1525 * greater than tick if caught at just the wrong instant, but
1526 * the values returned and used here are correct.
1527 */
1528 bigtick = (long)tick << SHIFT_USEC;
1529 pps_usec -= pps_freq;
1530 if (pps_usec >= bigtick)
1531 pps_usec -= bigtick;
1532 if (pps_usec < 0)
1533 pps_usec += bigtick;
1534 pps_time.tv_sec++;
1535 pps_count++;
1536 if (pps_count < (1 << pps_shift))
1537 return;
1538 pps_count = 0;
1539 pps_calcnt++;
1540 u_usec = usec << SHIFT_USEC;
1541 v_usec = pps_usec - u_usec;
1542 if (v_usec >= bigtick >> 1)
1543 v_usec -= bigtick;
1544 if (v_usec < -(bigtick >> 1))
1545 v_usec += bigtick;
1546 if (v_usec < 0)
1547 v_usec = -(-v_usec >> pps_shift);
1548 else
1549 v_usec = v_usec >> pps_shift;
1550 pps_usec = u_usec;
1551 cal_sec = tvp->tv_sec;
1552 cal_usec = tvp->tv_usec;
1553 cal_sec -= pps_time.tv_sec;
1554 cal_usec -= pps_time.tv_usec;
1555 if (cal_usec < 0) {
1556 cal_usec += 1000000;
1557 cal_sec--;
1558 }
1559 pps_time = *tvp;
1560
1561 /*
1562 * Check for lost interrupts, noise, excessive jitter and
1563 * excessive frequency error. The number of timer ticks during
1564 * the interval may vary +-1 tick. Add to this a margin of one
1565 * tick for the PPS signal jitter and maximum frequency
1566 * deviation. If the limits are exceeded, the calibration
1567 * interval is reset to the minimum and we start over.
1568 */
1569 u_usec = (long)tick << 1;
1570 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1571 || (cal_sec == 0 && cal_usec < u_usec))
1572 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1573 pps_errcnt++;
1574 pps_shift = PPS_SHIFT;
1575 pps_intcnt = 0;
1576 time_status |= STA_PPSERROR;
1577 return;
1578 }
1579
1580 /*
1581 * A three-stage median filter is used to help deglitch the pps
1582 * frequency. The median sample becomes the frequency offset
1583 * estimate; the difference between the other two samples
1584 * becomes the frequency dispersion (stability) estimate.
1585 */
1586 pps_ff[2] = pps_ff[1];
1587 pps_ff[1] = pps_ff[0];
1588 pps_ff[0] = v_usec;
1589 if (pps_ff[0] > pps_ff[1]) {
1590 if (pps_ff[1] > pps_ff[2]) {
1591 u_usec = pps_ff[1]; /* 0 1 2 */
1592 v_usec = pps_ff[0] - pps_ff[2];
1593 } else if (pps_ff[2] > pps_ff[0]) {
1594 u_usec = pps_ff[0]; /* 2 0 1 */
1595 v_usec = pps_ff[2] - pps_ff[1];
1596 } else {
1597 u_usec = pps_ff[2]; /* 0 2 1 */
1598 v_usec = pps_ff[0] - pps_ff[1];
1599 }
1600 } else {
1601 if (pps_ff[1] < pps_ff[2]) {
1602 u_usec = pps_ff[1]; /* 2 1 0 */
1603 v_usec = pps_ff[2] - pps_ff[0];
1604 } else if (pps_ff[2] < pps_ff[0]) {
1605 u_usec = pps_ff[0]; /* 1 0 2 */
1606 v_usec = pps_ff[1] - pps_ff[2];
1607 } else {
1608 u_usec = pps_ff[2]; /* 1 2 0 */
1609 v_usec = pps_ff[1] - pps_ff[0];
1610 }
1611 }
1612
1613 /*
1614 * Here the frequency dispersion (stability) is updated. If it
1615 * is less than one-fourth the maximum (MAXFREQ), the frequency
1616 * offset is updated as well, but clamped to the tolerance. It
1617 * will be processed later by the hardclock() routine.
1618 */
1619 v_usec = (v_usec >> 1) - pps_stabil;
1620 if (v_usec < 0)
1621 pps_stabil -= -v_usec >> PPS_AVG;
1622 else
1623 pps_stabil += v_usec >> PPS_AVG;
1624 if (pps_stabil > MAXFREQ >> 2) {
1625 pps_stbcnt++;
1626 time_status |= STA_PPSWANDER;
1627 return;
1628 }
1629 if (time_status & STA_PPSFREQ) {
1630 if (u_usec < 0) {
1631 pps_freq -= -u_usec >> PPS_AVG;
1632 if (pps_freq < -time_tolerance)
1633 pps_freq = -time_tolerance;
1634 u_usec = -u_usec;
1635 } else {
1636 pps_freq += u_usec >> PPS_AVG;
1637 if (pps_freq > time_tolerance)
1638 pps_freq = time_tolerance;
1639 }
1640 }
1641
1642 /*
1643 * Here the calibration interval is adjusted. If the maximum
1644 * time difference is greater than tick / 4, reduce the interval
1645 * by half. If this is not the case for four consecutive
1646 * intervals, double the interval.
1647 */
1648 if (u_usec << pps_shift > bigtick >> 2) {
1649 pps_intcnt = 0;
1650 if (pps_shift > PPS_SHIFT)
1651 pps_shift--;
1652 } else if (pps_intcnt >= 4) {
1653 pps_intcnt = 0;
1654 if (pps_shift < PPS_SHIFTMAX)
1655 pps_shift++;
1656 } else
1657 pps_intcnt++;
1658 }
1659 #endif /* PPS_SYNC */
1660 #endif /* NTP */
1661
1662 /*
1663 * Return information about system clocks.
1664 */
1665 int
1666 sysctl_clockrate(void *where, size_t *sizep)
1667 {
1668 struct clockinfo clkinfo;
1669
1670 /*
1671 * Construct clockinfo structure.
1672 */
1673 clkinfo.tick = tick;
1674 clkinfo.tickadj = tickadj;
1675 clkinfo.hz = hz;
1676 clkinfo.profhz = profhz;
1677 clkinfo.stathz = stathz ? stathz : hz;
1678 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1679 }
1680