kern_clock.c revision 1.74 1 /* $NetBSD: kern_clock.c,v 1.74 2001/01/17 18:21:41 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 #include <machine/intr.h>
98 #endif
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the cpu
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * cpu ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifdef NTP /* NTP phase-locked loop in kernel */
129 /*
130 * Phase/frequency-lock loop (PLL/FLL) definitions
131 *
132 * The following variables are read and set by the ntp_adjtime() system
133 * call.
134 *
135 * time_state shows the state of the system clock, with values defined
136 * in the timex.h header file.
137 *
138 * time_status shows the status of the system clock, with bits defined
139 * in the timex.h header file.
140 *
141 * time_offset is used by the PLL/FLL to adjust the system time in small
142 * increments.
143 *
144 * time_constant determines the bandwidth or "stiffness" of the PLL.
145 *
146 * time_tolerance determines maximum frequency error or tolerance of the
147 * CPU clock oscillator and is a property of the architecture; however,
148 * in principle it could change as result of the presence of external
149 * discipline signals, for instance.
150 *
151 * time_precision is usually equal to the kernel tick variable; however,
152 * in cases where a precision clock counter or external clock is
153 * available, the resolution can be much less than this and depend on
154 * whether the external clock is working or not.
155 *
156 * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 * the kernel once each second to reflect the maximum error bound
158 * growth.
159 *
160 * time_esterror is set and read by the ntp_adjtime() call, but
161 * otherwise not used by the kernel.
162 */
163 int time_state = TIME_OK; /* clock state */
164 int time_status = STA_UNSYNC; /* clock status bits */
165 long time_offset = 0; /* time offset (us) */
166 long time_constant = 0; /* pll time constant */
167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 long time_precision = 1; /* clock precision (us) */
169 long time_maxerror = MAXPHASE; /* maximum error (us) */
170 long time_esterror = MAXPHASE; /* estimated error (us) */
171
172 /*
173 * The following variables establish the state of the PLL/FLL and the
174 * residual time and frequency offset of the local clock. The scale
175 * factors are defined in the timex.h header file.
176 *
177 * time_phase and time_freq are the phase increment and the frequency
178 * increment, respectively, of the kernel time variable.
179 *
180 * time_freq is set via ntp_adjtime() from a value stored in a file when
181 * the synchronization daemon is first started. Its value is retrieved
182 * via ntp_adjtime() and written to the file about once per hour by the
183 * daemon.
184 *
185 * time_adj is the adjustment added to the value of tick at each timer
186 * interrupt and is recomputed from time_phase and time_freq at each
187 * seconds rollover.
188 *
189 * time_reftime is the second's portion of the system time at the last
190 * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 * and to increase the time_maxerror as the time since last update
192 * increases.
193 */
194 long time_phase = 0; /* phase offset (scaled us) */
195 long time_freq = 0; /* frequency offset (scaled ppm) */
196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0; /* time at last adjustment (s) */
198
199 #ifdef PPS_SYNC
200 /*
201 * The following variables are used only if the kernel PPS discipline
202 * code is configured (PPS_SYNC). The scale factors are defined in the
203 * timex.h header file.
204 *
205 * pps_time contains the time at each calibration interval, as read by
206 * microtime(). pps_count counts the seconds of the calibration
207 * interval, the duration of which is nominally pps_shift in powers of
208 * two.
209 *
210 * pps_offset is the time offset produced by the time median filter
211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 * this filter.
213 *
214 * pps_freq is the frequency offset produced by the frequency median
215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 * by this filter.
217 *
218 * pps_usec is latched from a high resolution counter or external clock
219 * at pps_time. Here we want the hardware counter contents only, not the
220 * contents plus the time_tv.usec as usual.
221 *
222 * pps_valid counts the number of seconds since the last PPS update. It
223 * is used as a watchdog timer to disable the PPS discipline should the
224 * PPS signal be lost.
225 *
226 * pps_glitch counts the number of seconds since the beginning of an
227 * offset burst more than tick/2 from current nominal offset. It is used
228 * mainly to suppress error bursts due to priority conflicts between the
229 * PPS interrupt and timer interrupt.
230 *
231 * pps_intcnt counts the calibration intervals for use in the interval-
232 * adaptation algorithm. It's just too complicated for words.
233 */
234 struct timeval pps_time; /* kernel time at last interval */
235 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
236 long pps_offset = 0; /* pps time offset (us) */
237 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
238 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
239 long pps_freq = 0; /* frequency offset (scaled ppm) */
240 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
241 long pps_usec = 0; /* microsec counter at last interval */
242 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
243 int pps_glitch = 0; /* pps signal glitch counter */
244 int pps_count = 0; /* calibration interval counter (s) */
245 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
246 int pps_intcnt = 0; /* intervals at current duration */
247
248 /*
249 * PPS signal quality monitors
250 *
251 * pps_jitcnt counts the seconds that have been discarded because the
252 * jitter measured by the time median filter exceeds the limit MAXTIME
253 * (100 us).
254 *
255 * pps_calcnt counts the frequency calibration intervals, which are
256 * variable from 4 s to 256 s.
257 *
258 * pps_errcnt counts the calibration intervals which have been discarded
259 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
260 * calibration interval jitter exceeds two ticks.
261 *
262 * pps_stbcnt counts the calibration intervals that have been discarded
263 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
264 */
265 long pps_jitcnt = 0; /* jitter limit exceeded */
266 long pps_calcnt = 0; /* calibration intervals */
267 long pps_errcnt = 0; /* calibration errors */
268 long pps_stbcnt = 0; /* stability limit exceeded */
269 #endif /* PPS_SYNC */
270
271 #ifdef EXT_CLOCK
272 /*
273 * External clock definitions
274 *
275 * The following definitions and declarations are used only if an
276 * external clock is configured on the system.
277 */
278 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
279
280 /*
281 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
282 * interrupt and decremented once each second.
283 */
284 int clock_count = 0; /* CPU clock counter */
285
286 #ifdef HIGHBALL
287 /*
288 * The clock_offset and clock_cpu variables are used by the HIGHBALL
289 * interface. The clock_offset variable defines the offset between
290 * system time and the HIGBALL counters. The clock_cpu variable contains
291 * the offset between the system clock and the HIGHBALL clock for use in
292 * disciplining the kernel time variable.
293 */
294 extern struct timeval clock_offset; /* Highball clock offset */
295 long clock_cpu = 0; /* CPU clock adjust */
296 #endif /* HIGHBALL */
297 #endif /* EXT_CLOCK */
298 #endif /* NTP */
299
300
301 /*
302 * Bump a timeval by a small number of usec's.
303 */
304 #define BUMPTIME(t, usec) { \
305 volatile struct timeval *tp = (t); \
306 long us; \
307 \
308 tp->tv_usec = us = tp->tv_usec + (usec); \
309 if (us >= 1000000) { \
310 tp->tv_usec = us - 1000000; \
311 tp->tv_sec++; \
312 } \
313 }
314
315 int stathz;
316 int profhz;
317 int profprocs;
318 int softclock_running; /* 1 => softclock() is running */
319 static int psdiv; /* prof => stat divider */
320 int psratio; /* ratio: prof / stat */
321 int tickfix, tickfixinterval; /* used if tick not really integral */
322 #ifndef NTP
323 static int tickfixcnt; /* accumulated fractional error */
324 #else
325 int fixtick; /* used by NTP for same */
326 int shifthz;
327 #endif
328
329 /*
330 * We might want ldd to load the both words from time at once.
331 * To succeed we need to be quadword aligned.
332 * The sparc already does that, and that it has worked so far is a fluke.
333 */
334 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
335 volatile struct timeval mono_time;
336
337 /*
338 * The callout mechanism is based on the work of Adam M. Costello and
339 * George Varghese, published in a technical report entitled "Redesigning
340 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
341 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
342 *
343 * The original work on the data structures used in this implementation
344 * was published by G. Varghese and A. Lauck in the paper "Hashed and
345 * Hierarchical Timing Wheels: Data Structures for the Efficient
346 * Implementation of a Timer Facility" in the Proceedings of the 11th
347 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
348 * November 1987.
349 */
350 struct callout_queue *callwheel;
351 int callwheelsize, callwheelbits, callwheelmask;
352
353 static struct callout *nextsoftcheck; /* next callout to be checked */
354
355 #ifdef CALLWHEEL_STATS
356 int callwheel_collisions; /* number of hash collisions */
357 int callwheel_maxlength; /* length of the longest hash chain */
358 int *callwheel_sizes; /* per-bucket length count */
359 u_int64_t callwheel_count; /* # callouts currently */
360 u_int64_t callwheel_established; /* # callouts established */
361 u_int64_t callwheel_fired; /* # callouts that fired */
362 u_int64_t callwheel_disestablished; /* # callouts disestablished */
363 u_int64_t callwheel_changed; /* # callouts changed */
364 u_int64_t callwheel_softclocks; /* # times softclock() called */
365 u_int64_t callwheel_softchecks; /* # checks per softclock() */
366 u_int64_t callwheel_softempty; /* # empty buckets seen */
367 #endif /* CALLWHEEL_STATS */
368
369 /*
370 * This value indicates the number of consecutive callouts that
371 * will be checked before we allow interrupts to have a chance
372 * again.
373 */
374 #ifndef MAX_SOFTCLOCK_STEPS
375 #define MAX_SOFTCLOCK_STEPS 100
376 #endif
377
378 struct simplelock callwheel_slock;
379
380 #define CALLWHEEL_LOCK(s) \
381 do { \
382 s = splclock(); \
383 simple_lock(&callwheel_slock); \
384 } while (0)
385
386 #define CALLWHEEL_UNLOCK(s) \
387 do { \
388 simple_unlock(&callwheel_slock); \
389 splx(s); \
390 } while (0)
391
392 static void callout_stop_locked(struct callout *);
393
394 /*
395 * These are both protected by callwheel_lock.
396 * XXX SHOULD BE STATIC!!
397 */
398 u_int64_t hardclock_ticks, softclock_ticks;
399
400 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
401 void softclock(void *);
402 void *softclock_si;
403 #endif
404
405 /*
406 * Initialize clock frequencies and start both clocks running.
407 */
408 void
409 initclocks(void)
410 {
411 int i;
412
413 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
414 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
415 if (softclock_si == NULL)
416 panic("initclocks: unable to register softclock intr");
417 #endif
418
419 /*
420 * Set divisors to 1 (normal case) and let the machine-specific
421 * code do its bit.
422 */
423 psdiv = 1;
424 cpu_initclocks();
425
426 /*
427 * Compute profhz/stathz/rrticks, and fix profhz if needed.
428 */
429 i = stathz ? stathz : hz;
430 if (profhz == 0)
431 profhz = i;
432 psratio = profhz / i;
433 rrticks = hz / 10;
434
435 #ifdef NTP
436 switch (hz) {
437 case 1:
438 shifthz = SHIFT_SCALE - 0;
439 break;
440 case 2:
441 shifthz = SHIFT_SCALE - 1;
442 break;
443 case 4:
444 shifthz = SHIFT_SCALE - 2;
445 break;
446 case 8:
447 shifthz = SHIFT_SCALE - 3;
448 break;
449 case 16:
450 shifthz = SHIFT_SCALE - 4;
451 break;
452 case 32:
453 shifthz = SHIFT_SCALE - 5;
454 break;
455 case 60:
456 case 64:
457 shifthz = SHIFT_SCALE - 6;
458 break;
459 case 96:
460 case 100:
461 case 128:
462 shifthz = SHIFT_SCALE - 7;
463 break;
464 case 256:
465 shifthz = SHIFT_SCALE - 8;
466 break;
467 case 512:
468 shifthz = SHIFT_SCALE - 9;
469 break;
470 case 1000:
471 case 1024:
472 shifthz = SHIFT_SCALE - 10;
473 break;
474 case 1200:
475 case 2048:
476 shifthz = SHIFT_SCALE - 11;
477 break;
478 case 4096:
479 shifthz = SHIFT_SCALE - 12;
480 break;
481 case 8192:
482 shifthz = SHIFT_SCALE - 13;
483 break;
484 case 16384:
485 shifthz = SHIFT_SCALE - 14;
486 break;
487 case 32768:
488 shifthz = SHIFT_SCALE - 15;
489 break;
490 case 65536:
491 shifthz = SHIFT_SCALE - 16;
492 break;
493 default:
494 panic("weird hz");
495 }
496 if (fixtick == 0) {
497 /*
498 * Give MD code a chance to set this to a better
499 * value; but, if it doesn't, we should.
500 */
501 fixtick = (1000000 - (hz*tick));
502 }
503 #endif
504 }
505
506 /*
507 * The real-time timer, interrupting hz times per second.
508 */
509 void
510 hardclock(struct clockframe *frame)
511 {
512 struct proc *p;
513 int delta;
514 extern int tickdelta;
515 extern long timedelta;
516 struct cpu_info *ci = curcpu();
517 #ifdef NTP
518 int time_update;
519 int ltemp;
520 #endif
521
522 p = curproc;
523 if (p) {
524 struct pstats *pstats;
525
526 /*
527 * Run current process's virtual and profile time, as needed.
528 */
529 pstats = p->p_stats;
530 if (CLKF_USERMODE(frame) &&
531 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
532 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
533 psignal(p, SIGVTALRM);
534 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
535 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
536 psignal(p, SIGPROF);
537 }
538
539 /*
540 * If no separate statistics clock is available, run it from here.
541 */
542 if (stathz == 0)
543 statclock(frame);
544 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
545 roundrobin(ci);
546
547 #if defined(MULTIPROCESSOR)
548 /*
549 * If we are not the primary CPU, we're not allowed to do
550 * any more work.
551 */
552 if (CPU_IS_PRIMARY(ci) == 0)
553 return;
554 #endif
555
556 /*
557 * Increment the time-of-day. The increment is normally just
558 * ``tick''. If the machine is one which has a clock frequency
559 * such that ``hz'' would not divide the second evenly into
560 * milliseconds, a periodic adjustment must be applied. Finally,
561 * if we are still adjusting the time (see adjtime()),
562 * ``tickdelta'' may also be added in.
563 */
564 delta = tick;
565
566 #ifndef NTP
567 if (tickfix) {
568 tickfixcnt += tickfix;
569 if (tickfixcnt >= tickfixinterval) {
570 delta++;
571 tickfixcnt -= tickfixinterval;
572 }
573 }
574 #endif /* !NTP */
575 /* Imprecise 4bsd adjtime() handling */
576 if (timedelta != 0) {
577 delta += tickdelta;
578 timedelta -= tickdelta;
579 }
580
581 #ifdef notyet
582 microset();
583 #endif
584
585 #ifndef NTP
586 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
587 #endif
588 BUMPTIME(&mono_time, delta);
589
590 #ifdef NTP
591 time_update = delta;
592
593 /*
594 * Compute the phase adjustment. If the low-order bits
595 * (time_phase) of the update overflow, bump the high-order bits
596 * (time_update).
597 */
598 time_phase += time_adj;
599 if (time_phase <= -FINEUSEC) {
600 ltemp = -time_phase >> SHIFT_SCALE;
601 time_phase += ltemp << SHIFT_SCALE;
602 time_update -= ltemp;
603 } else if (time_phase >= FINEUSEC) {
604 ltemp = time_phase >> SHIFT_SCALE;
605 time_phase -= ltemp << SHIFT_SCALE;
606 time_update += ltemp;
607 }
608
609 #ifdef HIGHBALL
610 /*
611 * If the HIGHBALL board is installed, we need to adjust the
612 * external clock offset in order to close the hardware feedback
613 * loop. This will adjust the external clock phase and frequency
614 * in small amounts. The additional phase noise and frequency
615 * wander this causes should be minimal. We also need to
616 * discipline the kernel time variable, since the PLL is used to
617 * discipline the external clock. If the Highball board is not
618 * present, we discipline kernel time with the PLL as usual. We
619 * assume that the external clock phase adjustment (time_update)
620 * and kernel phase adjustment (clock_cpu) are less than the
621 * value of tick.
622 */
623 clock_offset.tv_usec += time_update;
624 if (clock_offset.tv_usec >= 1000000) {
625 clock_offset.tv_sec++;
626 clock_offset.tv_usec -= 1000000;
627 }
628 if (clock_offset.tv_usec < 0) {
629 clock_offset.tv_sec--;
630 clock_offset.tv_usec += 1000000;
631 }
632 time.tv_usec += clock_cpu;
633 clock_cpu = 0;
634 #else
635 time.tv_usec += time_update;
636 #endif /* HIGHBALL */
637
638 /*
639 * On rollover of the second the phase adjustment to be used for
640 * the next second is calculated. Also, the maximum error is
641 * increased by the tolerance. If the PPS frequency discipline
642 * code is present, the phase is increased to compensate for the
643 * CPU clock oscillator frequency error.
644 *
645 * On a 32-bit machine and given parameters in the timex.h
646 * header file, the maximum phase adjustment is +-512 ms and
647 * maximum frequency offset is a tad less than) +-512 ppm. On a
648 * 64-bit machine, you shouldn't need to ask.
649 */
650 if (time.tv_usec >= 1000000) {
651 time.tv_usec -= 1000000;
652 time.tv_sec++;
653 time_maxerror += time_tolerance >> SHIFT_USEC;
654
655 /*
656 * Leap second processing. If in leap-insert state at
657 * the end of the day, the system clock is set back one
658 * second; if in leap-delete state, the system clock is
659 * set ahead one second. The microtime() routine or
660 * external clock driver will insure that reported time
661 * is always monotonic. The ugly divides should be
662 * replaced.
663 */
664 switch (time_state) {
665 case TIME_OK:
666 if (time_status & STA_INS)
667 time_state = TIME_INS;
668 else if (time_status & STA_DEL)
669 time_state = TIME_DEL;
670 break;
671
672 case TIME_INS:
673 if (time.tv_sec % 86400 == 0) {
674 time.tv_sec--;
675 time_state = TIME_OOP;
676 }
677 break;
678
679 case TIME_DEL:
680 if ((time.tv_sec + 1) % 86400 == 0) {
681 time.tv_sec++;
682 time_state = TIME_WAIT;
683 }
684 break;
685
686 case TIME_OOP:
687 time_state = TIME_WAIT;
688 break;
689
690 case TIME_WAIT:
691 if (!(time_status & (STA_INS | STA_DEL)))
692 time_state = TIME_OK;
693 break;
694 }
695
696 /*
697 * Compute the phase adjustment for the next second. In
698 * PLL mode, the offset is reduced by a fixed factor
699 * times the time constant. In FLL mode the offset is
700 * used directly. In either mode, the maximum phase
701 * adjustment for each second is clamped so as to spread
702 * the adjustment over not more than the number of
703 * seconds between updates.
704 */
705 if (time_offset < 0) {
706 ltemp = -time_offset;
707 if (!(time_status & STA_FLL))
708 ltemp >>= SHIFT_KG + time_constant;
709 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
710 ltemp = (MAXPHASE / MINSEC) <<
711 SHIFT_UPDATE;
712 time_offset += ltemp;
713 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
714 } else if (time_offset > 0) {
715 ltemp = time_offset;
716 if (!(time_status & STA_FLL))
717 ltemp >>= SHIFT_KG + time_constant;
718 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
719 ltemp = (MAXPHASE / MINSEC) <<
720 SHIFT_UPDATE;
721 time_offset -= ltemp;
722 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
723 } else
724 time_adj = 0;
725
726 /*
727 * Compute the frequency estimate and additional phase
728 * adjustment due to frequency error for the next
729 * second. When the PPS signal is engaged, gnaw on the
730 * watchdog counter and update the frequency computed by
731 * the pll and the PPS signal.
732 */
733 #ifdef PPS_SYNC
734 pps_valid++;
735 if (pps_valid == PPS_VALID) {
736 pps_jitter = MAXTIME;
737 pps_stabil = MAXFREQ;
738 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
739 STA_PPSWANDER | STA_PPSERROR);
740 }
741 ltemp = time_freq + pps_freq;
742 #else
743 ltemp = time_freq;
744 #endif /* PPS_SYNC */
745
746 if (ltemp < 0)
747 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
748 else
749 time_adj += ltemp >> (SHIFT_USEC - shifthz);
750 time_adj += (long)fixtick << shifthz;
751
752 /*
753 * When the CPU clock oscillator frequency is not a
754 * power of 2 in Hz, shifthz is only an approximate
755 * scale factor.
756 *
757 * To determine the adjustment, you can do the following:
758 * bc -q
759 * scale=24
760 * obase=2
761 * idealhz/realhz
762 * where `idealhz' is the next higher power of 2, and `realhz'
763 * is the actual value. You may need to factor this result
764 * into a sequence of 2 multipliers to get better precision.
765 *
766 * Likewise, the error can be calculated with (e.g. for 100Hz):
767 * bc -q
768 * scale=24
769 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
770 * (and then multiply by 1000000 to get ppm).
771 */
772 switch (hz) {
773 case 60:
774 /* A factor of 1.000100010001 gives about 15ppm
775 error. */
776 if (time_adj < 0) {
777 time_adj -= (-time_adj >> 4);
778 time_adj -= (-time_adj >> 8);
779 } else {
780 time_adj += (time_adj >> 4);
781 time_adj += (time_adj >> 8);
782 }
783 break;
784
785 case 96:
786 /* A factor of 1.0101010101 gives about 244ppm error. */
787 if (time_adj < 0) {
788 time_adj -= (-time_adj >> 2);
789 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
790 } else {
791 time_adj += (time_adj >> 2);
792 time_adj += (time_adj >> 4) + (time_adj >> 8);
793 }
794 break;
795
796 case 100:
797 /* A factor of 1.010001111010111 gives about 1ppm
798 error. */
799 if (time_adj < 0) {
800 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
801 time_adj += (-time_adj >> 10);
802 } else {
803 time_adj += (time_adj >> 2) + (time_adj >> 5);
804 time_adj -= (time_adj >> 10);
805 }
806 break;
807
808 case 1000:
809 /* A factor of 1.000001100010100001 gives about 50ppm
810 error. */
811 if (time_adj < 0) {
812 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
813 time_adj -= (-time_adj >> 7);
814 } else {
815 time_adj += (time_adj >> 6) + (time_adj >> 11);
816 time_adj += (time_adj >> 7);
817 }
818 break;
819
820 case 1200:
821 /* A factor of 1.1011010011100001 gives about 64ppm
822 error. */
823 if (time_adj < 0) {
824 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
825 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
826 } else {
827 time_adj += (time_adj >> 1) + (time_adj >> 6);
828 time_adj += (time_adj >> 3) + (time_adj >> 10);
829 }
830 break;
831 }
832
833 #ifdef EXT_CLOCK
834 /*
835 * If an external clock is present, it is necessary to
836 * discipline the kernel time variable anyway, since not
837 * all system components use the microtime() interface.
838 * Here, the time offset between the external clock and
839 * kernel time variable is computed every so often.
840 */
841 clock_count++;
842 if (clock_count > CLOCK_INTERVAL) {
843 clock_count = 0;
844 microtime(&clock_ext);
845 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
846 delta.tv_usec = clock_ext.tv_usec -
847 time.tv_usec;
848 if (delta.tv_usec < 0)
849 delta.tv_sec--;
850 if (delta.tv_usec >= 500000) {
851 delta.tv_usec -= 1000000;
852 delta.tv_sec++;
853 }
854 if (delta.tv_usec < -500000) {
855 delta.tv_usec += 1000000;
856 delta.tv_sec--;
857 }
858 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
859 delta.tv_usec > MAXPHASE) ||
860 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
861 delta.tv_usec < -MAXPHASE)) {
862 time = clock_ext;
863 delta.tv_sec = 0;
864 delta.tv_usec = 0;
865 }
866 #ifdef HIGHBALL
867 clock_cpu = delta.tv_usec;
868 #else /* HIGHBALL */
869 hardupdate(delta.tv_usec);
870 #endif /* HIGHBALL */
871 }
872 #endif /* EXT_CLOCK */
873 }
874
875 #endif /* NTP */
876
877 /*
878 * Process callouts at a very low cpu priority, so we don't keep the
879 * relatively high clock interrupt priority any longer than necessary.
880 */
881 simple_lock(&callwheel_slock); /* already at splclock() */
882 hardclock_ticks++;
883 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
884 simple_unlock(&callwheel_slock);
885 if (CLKF_BASEPRI(frame)) {
886 /*
887 * Save the overhead of a software interrupt;
888 * it will happen as soon as we return, so do
889 * it now.
890 *
891 * NOTE: If we're at ``base priority'', softclock()
892 * was not already running.
893 */
894 spllowersoftclock();
895 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
896 softclock(NULL);
897 KERNEL_UNLOCK();
898 } else {
899 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
900 softintr_schedule(softclock_si);
901 #else
902 setsoftclock();
903 #endif
904 }
905 return;
906 } else if (softclock_running == 0 &&
907 (softclock_ticks + 1) == hardclock_ticks) {
908 softclock_ticks++;
909 }
910 simple_unlock(&callwheel_slock);
911 }
912
913 /*
914 * Software (low priority) clock interrupt.
915 * Run periodic events from timeout queue.
916 */
917 /*ARGSUSED*/
918 void
919 softclock(void *v)
920 {
921 struct callout_queue *bucket;
922 struct callout *c;
923 void (*func)(void *);
924 void *arg;
925 int s, idx;
926 int steps = 0;
927
928 CALLWHEEL_LOCK(s);
929
930 softclock_running = 1;
931
932 #ifdef CALLWHEEL_STATS
933 callwheel_softclocks++;
934 #endif
935
936 while (softclock_ticks != hardclock_ticks) {
937 softclock_ticks++;
938 idx = (int)(softclock_ticks & callwheelmask);
939 bucket = &callwheel[idx];
940 c = TAILQ_FIRST(bucket);
941 #ifdef CALLWHEEL_STATS
942 if (c == NULL)
943 callwheel_softempty++;
944 #endif
945 while (c != NULL) {
946 #ifdef CALLWHEEL_STATS
947 callwheel_softchecks++;
948 #endif
949 if (c->c_time != softclock_ticks) {
950 c = TAILQ_NEXT(c, c_link);
951 if (++steps >= MAX_SOFTCLOCK_STEPS) {
952 nextsoftcheck = c;
953 /* Give interrupts a chance. */
954 CALLWHEEL_UNLOCK(s);
955 CALLWHEEL_LOCK(s);
956 c = nextsoftcheck;
957 steps = 0;
958 }
959 } else {
960 nextsoftcheck = TAILQ_NEXT(c, c_link);
961 TAILQ_REMOVE(bucket, c, c_link);
962 #ifdef CALLWHEEL_STATS
963 callwheel_sizes[idx]--;
964 callwheel_fired++;
965 callwheel_count--;
966 #endif
967 func = c->c_func;
968 arg = c->c_arg;
969 c->c_func = NULL;
970 c->c_flags &= ~CALLOUT_PENDING;
971 CALLWHEEL_UNLOCK(s);
972 (*func)(arg);
973 CALLWHEEL_LOCK(s);
974 steps = 0;
975 c = nextsoftcheck;
976 }
977 }
978 }
979 nextsoftcheck = NULL;
980 softclock_running = 0;
981 CALLWHEEL_UNLOCK(s);
982 }
983
984 /*
985 * callout_setsize:
986 *
987 * Determine how many callwheels are necessary and
988 * set hash mask. Called from allocsys().
989 */
990 void
991 callout_setsize(void)
992 {
993
994 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
995 /* loop */ ;
996 callwheelmask = callwheelsize - 1;
997 }
998
999 /*
1000 * callout_startup:
1001 *
1002 * Initialize the callwheel buckets.
1003 */
1004 void
1005 callout_startup(void)
1006 {
1007 int i;
1008
1009 for (i = 0; i < callwheelsize; i++)
1010 TAILQ_INIT(&callwheel[i]);
1011
1012 simple_lock_init(&callwheel_slock);
1013 }
1014
1015 /*
1016 * callout_init:
1017 *
1018 * Initialize a callout structure so that it can be used
1019 * by callout_reset() and callout_stop().
1020 */
1021 void
1022 callout_init(struct callout *c)
1023 {
1024
1025 memset(c, 0, sizeof(*c));
1026 }
1027
1028 /*
1029 * callout_reset:
1030 *
1031 * Establish or change a timeout.
1032 */
1033 void
1034 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1035 {
1036 struct callout_queue *bucket;
1037 int s;
1038
1039 if (ticks <= 0)
1040 ticks = 1;
1041
1042 CALLWHEEL_LOCK(s);
1043
1044 /*
1045 * If this callout's timer is already running, cancel it
1046 * before we modify it.
1047 */
1048 if (c->c_flags & CALLOUT_PENDING) {
1049 callout_stop_locked(c); /* Already locked */
1050 #ifdef CALLWHEEL_STATS
1051 callwheel_changed++;
1052 #endif
1053 }
1054
1055 c->c_arg = arg;
1056 c->c_func = func;
1057 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1058 c->c_time = hardclock_ticks + ticks;
1059
1060 bucket = &callwheel[c->c_time & callwheelmask];
1061
1062 #ifdef CALLWHEEL_STATS
1063 if (TAILQ_FIRST(bucket) != NULL)
1064 callwheel_collisions++;
1065 #endif
1066
1067 TAILQ_INSERT_TAIL(bucket, c, c_link);
1068
1069 #ifdef CALLWHEEL_STATS
1070 callwheel_count++;
1071 callwheel_established++;
1072 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1073 callwheel_maxlength =
1074 callwheel_sizes[c->c_time & callwheelmask];
1075 #endif
1076
1077 CALLWHEEL_UNLOCK(s);
1078 }
1079
1080 /*
1081 * callout_stop_locked:
1082 *
1083 * Disestablish a timeout. Callwheel is locked.
1084 */
1085 static void
1086 callout_stop_locked(struct callout *c)
1087 {
1088
1089 /*
1090 * Don't attempt to delete a callout that's not on the queue.
1091 */
1092 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1093 c->c_flags &= ~CALLOUT_ACTIVE;
1094 return;
1095 }
1096
1097 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1098
1099 if (nextsoftcheck == c)
1100 nextsoftcheck = TAILQ_NEXT(c, c_link);
1101
1102 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1103 #ifdef CALLWHEEL_STATS
1104 callwheel_count--;
1105 callwheel_disestablished++;
1106 callwheel_sizes[c->c_time & callwheelmask]--;
1107 #endif
1108
1109 c->c_func = NULL;
1110 }
1111
1112 /*
1113 * callout_stop:
1114 *
1115 * Disestablish a timeout. Callwheel is unlocked. This is
1116 * the standard entry point.
1117 */
1118 void
1119 callout_stop(struct callout *c)
1120 {
1121 int s;
1122
1123 CALLWHEEL_LOCK(s);
1124 callout_stop_locked(c);
1125 CALLWHEEL_UNLOCK(s);
1126 }
1127
1128 #ifdef CALLWHEEL_STATS
1129 /*
1130 * callout_showstats:
1131 *
1132 * Display callout statistics. Call it from DDB.
1133 */
1134 void
1135 callout_showstats(void)
1136 {
1137 u_int64_t curticks;
1138 int s;
1139
1140 s = splclock();
1141 curticks = softclock_ticks;
1142 splx(s);
1143
1144 printf("Callwheel statistics:\n");
1145 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1146 printf("\tCallouts established: %llu\n", callwheel_established);
1147 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1148 if (callwheel_changed != 0)
1149 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1150 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1151 printf("\tNumber of buckets: %d\n", callwheelsize);
1152 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1153 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1154 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1155 callwheel_softclocks, callwheel_softchecks);
1156 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1157 }
1158 #endif
1159
1160 /*
1161 * Compute number of hz until specified time. Used to compute second
1162 * argument to callout_reset() from an absolute time.
1163 */
1164 int
1165 hzto(struct timeval *tv)
1166 {
1167 unsigned long ticks;
1168 long sec, usec;
1169 int s;
1170
1171 /*
1172 * If the number of usecs in the whole seconds part of the time
1173 * difference fits in a long, then the total number of usecs will
1174 * fit in an unsigned long. Compute the total and convert it to
1175 * ticks, rounding up and adding 1 to allow for the current tick
1176 * to expire. Rounding also depends on unsigned long arithmetic
1177 * to avoid overflow.
1178 *
1179 * Otherwise, if the number of ticks in the whole seconds part of
1180 * the time difference fits in a long, then convert the parts to
1181 * ticks separately and add, using similar rounding methods and
1182 * overflow avoidance. This method would work in the previous
1183 * case, but it is slightly slower and assume that hz is integral.
1184 *
1185 * Otherwise, round the time difference down to the maximum
1186 * representable value.
1187 *
1188 * If ints are 32-bit, then the maximum value for any timeout in
1189 * 10ms ticks is 248 days.
1190 */
1191 s = splclock();
1192 sec = tv->tv_sec - time.tv_sec;
1193 usec = tv->tv_usec - time.tv_usec;
1194 splx(s);
1195
1196 if (usec < 0) {
1197 sec--;
1198 usec += 1000000;
1199 }
1200
1201 if (sec < 0 || (sec == 0 && usec <= 0)) {
1202 /*
1203 * Would expire now or in the past. Return 0 ticks.
1204 * This is different from the legacy hzto() interface,
1205 * and callers need to check for it.
1206 */
1207 ticks = 0;
1208 } else if (sec <= (LONG_MAX / 1000000))
1209 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1210 / tick) + 1;
1211 else if (sec <= (LONG_MAX / hz))
1212 ticks = (sec * hz) +
1213 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1214 else
1215 ticks = LONG_MAX;
1216
1217 if (ticks > INT_MAX)
1218 ticks = INT_MAX;
1219
1220 return ((int)ticks);
1221 }
1222
1223 /*
1224 * Start profiling on a process.
1225 *
1226 * Kernel profiling passes proc0 which never exits and hence
1227 * keeps the profile clock running constantly.
1228 */
1229 void
1230 startprofclock(struct proc *p)
1231 {
1232
1233 if ((p->p_flag & P_PROFIL) == 0) {
1234 p->p_flag |= P_PROFIL;
1235 if (++profprocs == 1 && stathz != 0)
1236 psdiv = psratio;
1237 }
1238 }
1239
1240 /*
1241 * Stop profiling on a process.
1242 */
1243 void
1244 stopprofclock(struct proc *p)
1245 {
1246
1247 if (p->p_flag & P_PROFIL) {
1248 p->p_flag &= ~P_PROFIL;
1249 if (--profprocs == 0 && stathz != 0)
1250 psdiv = 1;
1251 }
1252 }
1253
1254 /*
1255 * Statistics clock. Grab profile sample, and if divider reaches 0,
1256 * do process and kernel statistics.
1257 */
1258 void
1259 statclock(struct clockframe *frame)
1260 {
1261 #ifdef GPROF
1262 struct gmonparam *g;
1263 intptr_t i;
1264 #endif
1265 struct cpu_info *ci = curcpu();
1266 struct schedstate_percpu *spc = &ci->ci_schedstate;
1267 struct proc *p;
1268
1269 /*
1270 * Notice changes in divisor frequency, and adjust clock
1271 * frequency accordingly.
1272 */
1273 if (spc->spc_psdiv != psdiv) {
1274 spc->spc_psdiv = psdiv;
1275 spc->spc_pscnt = psdiv;
1276 if (psdiv == 1) {
1277 setstatclockrate(stathz);
1278 } else {
1279 setstatclockrate(profhz);
1280 }
1281 }
1282 p = curproc;
1283 if (CLKF_USERMODE(frame)) {
1284 if (p->p_flag & P_PROFIL)
1285 addupc_intr(p, CLKF_PC(frame));
1286 if (--spc->spc_pscnt > 0)
1287 return;
1288 /*
1289 * Came from user mode; CPU was in user state.
1290 * If this process is being profiled record the tick.
1291 */
1292 p->p_uticks++;
1293 if (p->p_nice > NZERO)
1294 spc->spc_cp_time[CP_NICE]++;
1295 else
1296 spc->spc_cp_time[CP_USER]++;
1297 } else {
1298 #ifdef GPROF
1299 /*
1300 * Kernel statistics are just like addupc_intr, only easier.
1301 */
1302 g = &_gmonparam;
1303 if (g->state == GMON_PROF_ON) {
1304 i = CLKF_PC(frame) - g->lowpc;
1305 if (i < g->textsize) {
1306 i /= HISTFRACTION * sizeof(*g->kcount);
1307 g->kcount[i]++;
1308 }
1309 }
1310 #endif
1311 #ifdef PROC_PC
1312 if (p && p->p_flag & P_PROFIL)
1313 addupc_intr(p, PROC_PC(p));
1314 #endif
1315 if (--spc->spc_pscnt > 0)
1316 return;
1317 /*
1318 * Came from kernel mode, so we were:
1319 * - handling an interrupt,
1320 * - doing syscall or trap work on behalf of the current
1321 * user process, or
1322 * - spinning in the idle loop.
1323 * Whichever it is, charge the time as appropriate.
1324 * Note that we charge interrupts to the current process,
1325 * regardless of whether they are ``for'' that process,
1326 * so that we know how much of its real time was spent
1327 * in ``non-process'' (i.e., interrupt) work.
1328 */
1329 if (CLKF_INTR(frame)) {
1330 if (p != NULL)
1331 p->p_iticks++;
1332 spc->spc_cp_time[CP_INTR]++;
1333 } else if (p != NULL) {
1334 p->p_sticks++;
1335 spc->spc_cp_time[CP_SYS]++;
1336 } else
1337 spc->spc_cp_time[CP_IDLE]++;
1338 }
1339 spc->spc_pscnt = psdiv;
1340
1341 if (p != NULL) {
1342 ++p->p_cpticks;
1343 /*
1344 * If no separate schedclock is provided, call it here
1345 * at ~~12-25 Hz, ~~16 Hz is best
1346 */
1347 if (schedhz == 0)
1348 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1349 schedclock(p);
1350 }
1351 }
1352
1353
1354 #ifdef NTP /* NTP phase-locked loop in kernel */
1355
1356 /*
1357 * hardupdate() - local clock update
1358 *
1359 * This routine is called by ntp_adjtime() to update the local clock
1360 * phase and frequency. The implementation is of an adaptive-parameter,
1361 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1362 * time and frequency offset estimates for each call. If the kernel PPS
1363 * discipline code is configured (PPS_SYNC), the PPS signal itself
1364 * determines the new time offset, instead of the calling argument.
1365 * Presumably, calls to ntp_adjtime() occur only when the caller
1366 * believes the local clock is valid within some bound (+-128 ms with
1367 * NTP). If the caller's time is far different than the PPS time, an
1368 * argument will ensue, and it's not clear who will lose.
1369 *
1370 * For uncompensated quartz crystal oscillatores and nominal update
1371 * intervals less than 1024 s, operation should be in phase-lock mode
1372 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1373 * intervals greater than thiss, operation should be in frequency-lock
1374 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1375 *
1376 * Note: splclock() is in effect.
1377 */
1378 void
1379 hardupdate(long offset)
1380 {
1381 long ltemp, mtemp;
1382
1383 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1384 return;
1385 ltemp = offset;
1386 #ifdef PPS_SYNC
1387 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1388 ltemp = pps_offset;
1389 #endif /* PPS_SYNC */
1390
1391 /*
1392 * Scale the phase adjustment and clamp to the operating range.
1393 */
1394 if (ltemp > MAXPHASE)
1395 time_offset = MAXPHASE << SHIFT_UPDATE;
1396 else if (ltemp < -MAXPHASE)
1397 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1398 else
1399 time_offset = ltemp << SHIFT_UPDATE;
1400
1401 /*
1402 * Select whether the frequency is to be controlled and in which
1403 * mode (PLL or FLL). Clamp to the operating range. Ugly
1404 * multiply/divide should be replaced someday.
1405 */
1406 if (time_status & STA_FREQHOLD || time_reftime == 0)
1407 time_reftime = time.tv_sec;
1408 mtemp = time.tv_sec - time_reftime;
1409 time_reftime = time.tv_sec;
1410 if (time_status & STA_FLL) {
1411 if (mtemp >= MINSEC) {
1412 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1413 SHIFT_UPDATE));
1414 if (ltemp < 0)
1415 time_freq -= -ltemp >> SHIFT_KH;
1416 else
1417 time_freq += ltemp >> SHIFT_KH;
1418 }
1419 } else {
1420 if (mtemp < MAXSEC) {
1421 ltemp *= mtemp;
1422 if (ltemp < 0)
1423 time_freq -= -ltemp >> (time_constant +
1424 time_constant + SHIFT_KF -
1425 SHIFT_USEC);
1426 else
1427 time_freq += ltemp >> (time_constant +
1428 time_constant + SHIFT_KF -
1429 SHIFT_USEC);
1430 }
1431 }
1432 if (time_freq > time_tolerance)
1433 time_freq = time_tolerance;
1434 else if (time_freq < -time_tolerance)
1435 time_freq = -time_tolerance;
1436 }
1437
1438 #ifdef PPS_SYNC
1439 /*
1440 * hardpps() - discipline CPU clock oscillator to external PPS signal
1441 *
1442 * This routine is called at each PPS interrupt in order to discipline
1443 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1444 * and leaves it in a handy spot for the hardclock() routine. It
1445 * integrates successive PPS phase differences and calculates the
1446 * frequency offset. This is used in hardclock() to discipline the CPU
1447 * clock oscillator so that intrinsic frequency error is cancelled out.
1448 * The code requires the caller to capture the time and hardware counter
1449 * value at the on-time PPS signal transition.
1450 *
1451 * Note that, on some Unix systems, this routine runs at an interrupt
1452 * priority level higher than the timer interrupt routine hardclock().
1453 * Therefore, the variables used are distinct from the hardclock()
1454 * variables, except for certain exceptions: The PPS frequency pps_freq
1455 * and phase pps_offset variables are determined by this routine and
1456 * updated atomically. The time_tolerance variable can be considered a
1457 * constant, since it is infrequently changed, and then only when the
1458 * PPS signal is disabled. The watchdog counter pps_valid is updated
1459 * once per second by hardclock() and is atomically cleared in this
1460 * routine.
1461 */
1462 void
1463 hardpps(struct timeval *tvp, /* time at PPS */
1464 long usec /* hardware counter at PPS */)
1465 {
1466 long u_usec, v_usec, bigtick;
1467 long cal_sec, cal_usec;
1468
1469 /*
1470 * An occasional glitch can be produced when the PPS interrupt
1471 * occurs in the hardclock() routine before the time variable is
1472 * updated. Here the offset is discarded when the difference
1473 * between it and the last one is greater than tick/2, but not
1474 * if the interval since the first discard exceeds 30 s.
1475 */
1476 time_status |= STA_PPSSIGNAL;
1477 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1478 pps_valid = 0;
1479 u_usec = -tvp->tv_usec;
1480 if (u_usec < -500000)
1481 u_usec += 1000000;
1482 v_usec = pps_offset - u_usec;
1483 if (v_usec < 0)
1484 v_usec = -v_usec;
1485 if (v_usec > (tick >> 1)) {
1486 if (pps_glitch > MAXGLITCH) {
1487 pps_glitch = 0;
1488 pps_tf[2] = u_usec;
1489 pps_tf[1] = u_usec;
1490 } else {
1491 pps_glitch++;
1492 u_usec = pps_offset;
1493 }
1494 } else
1495 pps_glitch = 0;
1496
1497 /*
1498 * A three-stage median filter is used to help deglitch the pps
1499 * time. The median sample becomes the time offset estimate; the
1500 * difference between the other two samples becomes the time
1501 * dispersion (jitter) estimate.
1502 */
1503 pps_tf[2] = pps_tf[1];
1504 pps_tf[1] = pps_tf[0];
1505 pps_tf[0] = u_usec;
1506 if (pps_tf[0] > pps_tf[1]) {
1507 if (pps_tf[1] > pps_tf[2]) {
1508 pps_offset = pps_tf[1]; /* 0 1 2 */
1509 v_usec = pps_tf[0] - pps_tf[2];
1510 } else if (pps_tf[2] > pps_tf[0]) {
1511 pps_offset = pps_tf[0]; /* 2 0 1 */
1512 v_usec = pps_tf[2] - pps_tf[1];
1513 } else {
1514 pps_offset = pps_tf[2]; /* 0 2 1 */
1515 v_usec = pps_tf[0] - pps_tf[1];
1516 }
1517 } else {
1518 if (pps_tf[1] < pps_tf[2]) {
1519 pps_offset = pps_tf[1]; /* 2 1 0 */
1520 v_usec = pps_tf[2] - pps_tf[0];
1521 } else if (pps_tf[2] < pps_tf[0]) {
1522 pps_offset = pps_tf[0]; /* 1 0 2 */
1523 v_usec = pps_tf[1] - pps_tf[2];
1524 } else {
1525 pps_offset = pps_tf[2]; /* 1 2 0 */
1526 v_usec = pps_tf[1] - pps_tf[0];
1527 }
1528 }
1529 if (v_usec > MAXTIME)
1530 pps_jitcnt++;
1531 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1532 if (v_usec < 0)
1533 pps_jitter -= -v_usec >> PPS_AVG;
1534 else
1535 pps_jitter += v_usec >> PPS_AVG;
1536 if (pps_jitter > (MAXTIME >> 1))
1537 time_status |= STA_PPSJITTER;
1538
1539 /*
1540 * During the calibration interval adjust the starting time when
1541 * the tick overflows. At the end of the interval compute the
1542 * duration of the interval and the difference of the hardware
1543 * counters at the beginning and end of the interval. This code
1544 * is deliciously complicated by the fact valid differences may
1545 * exceed the value of tick when using long calibration
1546 * intervals and small ticks. Note that the counter can be
1547 * greater than tick if caught at just the wrong instant, but
1548 * the values returned and used here are correct.
1549 */
1550 bigtick = (long)tick << SHIFT_USEC;
1551 pps_usec -= pps_freq;
1552 if (pps_usec >= bigtick)
1553 pps_usec -= bigtick;
1554 if (pps_usec < 0)
1555 pps_usec += bigtick;
1556 pps_time.tv_sec++;
1557 pps_count++;
1558 if (pps_count < (1 << pps_shift))
1559 return;
1560 pps_count = 0;
1561 pps_calcnt++;
1562 u_usec = usec << SHIFT_USEC;
1563 v_usec = pps_usec - u_usec;
1564 if (v_usec >= bigtick >> 1)
1565 v_usec -= bigtick;
1566 if (v_usec < -(bigtick >> 1))
1567 v_usec += bigtick;
1568 if (v_usec < 0)
1569 v_usec = -(-v_usec >> pps_shift);
1570 else
1571 v_usec = v_usec >> pps_shift;
1572 pps_usec = u_usec;
1573 cal_sec = tvp->tv_sec;
1574 cal_usec = tvp->tv_usec;
1575 cal_sec -= pps_time.tv_sec;
1576 cal_usec -= pps_time.tv_usec;
1577 if (cal_usec < 0) {
1578 cal_usec += 1000000;
1579 cal_sec--;
1580 }
1581 pps_time = *tvp;
1582
1583 /*
1584 * Check for lost interrupts, noise, excessive jitter and
1585 * excessive frequency error. The number of timer ticks during
1586 * the interval may vary +-1 tick. Add to this a margin of one
1587 * tick for the PPS signal jitter and maximum frequency
1588 * deviation. If the limits are exceeded, the calibration
1589 * interval is reset to the minimum and we start over.
1590 */
1591 u_usec = (long)tick << 1;
1592 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1593 || (cal_sec == 0 && cal_usec < u_usec))
1594 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1595 pps_errcnt++;
1596 pps_shift = PPS_SHIFT;
1597 pps_intcnt = 0;
1598 time_status |= STA_PPSERROR;
1599 return;
1600 }
1601
1602 /*
1603 * A three-stage median filter is used to help deglitch the pps
1604 * frequency. The median sample becomes the frequency offset
1605 * estimate; the difference between the other two samples
1606 * becomes the frequency dispersion (stability) estimate.
1607 */
1608 pps_ff[2] = pps_ff[1];
1609 pps_ff[1] = pps_ff[0];
1610 pps_ff[0] = v_usec;
1611 if (pps_ff[0] > pps_ff[1]) {
1612 if (pps_ff[1] > pps_ff[2]) {
1613 u_usec = pps_ff[1]; /* 0 1 2 */
1614 v_usec = pps_ff[0] - pps_ff[2];
1615 } else if (pps_ff[2] > pps_ff[0]) {
1616 u_usec = pps_ff[0]; /* 2 0 1 */
1617 v_usec = pps_ff[2] - pps_ff[1];
1618 } else {
1619 u_usec = pps_ff[2]; /* 0 2 1 */
1620 v_usec = pps_ff[0] - pps_ff[1];
1621 }
1622 } else {
1623 if (pps_ff[1] < pps_ff[2]) {
1624 u_usec = pps_ff[1]; /* 2 1 0 */
1625 v_usec = pps_ff[2] - pps_ff[0];
1626 } else if (pps_ff[2] < pps_ff[0]) {
1627 u_usec = pps_ff[0]; /* 1 0 2 */
1628 v_usec = pps_ff[1] - pps_ff[2];
1629 } else {
1630 u_usec = pps_ff[2]; /* 1 2 0 */
1631 v_usec = pps_ff[1] - pps_ff[0];
1632 }
1633 }
1634
1635 /*
1636 * Here the frequency dispersion (stability) is updated. If it
1637 * is less than one-fourth the maximum (MAXFREQ), the frequency
1638 * offset is updated as well, but clamped to the tolerance. It
1639 * will be processed later by the hardclock() routine.
1640 */
1641 v_usec = (v_usec >> 1) - pps_stabil;
1642 if (v_usec < 0)
1643 pps_stabil -= -v_usec >> PPS_AVG;
1644 else
1645 pps_stabil += v_usec >> PPS_AVG;
1646 if (pps_stabil > MAXFREQ >> 2) {
1647 pps_stbcnt++;
1648 time_status |= STA_PPSWANDER;
1649 return;
1650 }
1651 if (time_status & STA_PPSFREQ) {
1652 if (u_usec < 0) {
1653 pps_freq -= -u_usec >> PPS_AVG;
1654 if (pps_freq < -time_tolerance)
1655 pps_freq = -time_tolerance;
1656 u_usec = -u_usec;
1657 } else {
1658 pps_freq += u_usec >> PPS_AVG;
1659 if (pps_freq > time_tolerance)
1660 pps_freq = time_tolerance;
1661 }
1662 }
1663
1664 /*
1665 * Here the calibration interval is adjusted. If the maximum
1666 * time difference is greater than tick / 4, reduce the interval
1667 * by half. If this is not the case for four consecutive
1668 * intervals, double the interval.
1669 */
1670 if (u_usec << pps_shift > bigtick >> 2) {
1671 pps_intcnt = 0;
1672 if (pps_shift > PPS_SHIFT)
1673 pps_shift--;
1674 } else if (pps_intcnt >= 4) {
1675 pps_intcnt = 0;
1676 if (pps_shift < PPS_SHIFTMAX)
1677 pps_shift++;
1678 } else
1679 pps_intcnt++;
1680 }
1681 #endif /* PPS_SYNC */
1682 #endif /* NTP */
1683
1684 /*
1685 * Return information about system clocks.
1686 */
1687 int
1688 sysctl_clockrate(void *where, size_t *sizep)
1689 {
1690 struct clockinfo clkinfo;
1691
1692 /*
1693 * Construct clockinfo structure.
1694 */
1695 clkinfo.tick = tick;
1696 clkinfo.tickadj = tickadj;
1697 clkinfo.hz = hz;
1698 clkinfo.profhz = profhz;
1699 clkinfo.stathz = stathz ? stathz : hz;
1700 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1701 }
1702