kern_clock.c revision 1.74.2.2 1 /* $NetBSD: kern_clock.c,v 1.74.2.2 2001/06/21 20:06:45 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/lwp.h>
88 #include <sys/proc.h>
89 #include <sys/resourcevar.h>
90 #include <sys/signalvar.h>
91 #include <uvm/uvm_extern.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95
96 #include <machine/cpu.h>
97 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
98 #include <machine/intr.h>
99 #endif
100
101 #ifdef GPROF
102 #include <sys/gmon.h>
103 #endif
104
105 /*
106 * Clock handling routines.
107 *
108 * This code is written to operate with two timers that run independently of
109 * each other. The main clock, running hz times per second, is used to keep
110 * track of real time. The second timer handles kernel and user profiling,
111 * and does resource use estimation. If the second timer is programmable,
112 * it is randomized to avoid aliasing between the two clocks. For example,
113 * the randomization prevents an adversary from always giving up the cpu
114 * just before its quantum expires. Otherwise, it would never accumulate
115 * cpu ticks. The mean frequency of the second timer is stathz.
116 *
117 * If no second timer exists, stathz will be zero; in this case we drive
118 * profiling and statistics off the main clock. This WILL NOT be accurate;
119 * do not do it unless absolutely necessary.
120 *
121 * The statistics clock may (or may not) be run at a higher rate while
122 * profiling. This profile clock runs at profhz. We require that profhz
123 * be an integral multiple of stathz.
124 *
125 * If the statistics clock is running fast, it must be divided by the ratio
126 * profhz/stathz for statistics. (For profiling, every tick counts.)
127 */
128
129 #ifdef NTP /* NTP phase-locked loop in kernel */
130 /*
131 * Phase/frequency-lock loop (PLL/FLL) definitions
132 *
133 * The following variables are read and set by the ntp_adjtime() system
134 * call.
135 *
136 * time_state shows the state of the system clock, with values defined
137 * in the timex.h header file.
138 *
139 * time_status shows the status of the system clock, with bits defined
140 * in the timex.h header file.
141 *
142 * time_offset is used by the PLL/FLL to adjust the system time in small
143 * increments.
144 *
145 * time_constant determines the bandwidth or "stiffness" of the PLL.
146 *
147 * time_tolerance determines maximum frequency error or tolerance of the
148 * CPU clock oscillator and is a property of the architecture; however,
149 * in principle it could change as result of the presence of external
150 * discipline signals, for instance.
151 *
152 * time_precision is usually equal to the kernel tick variable; however,
153 * in cases where a precision clock counter or external clock is
154 * available, the resolution can be much less than this and depend on
155 * whether the external clock is working or not.
156 *
157 * time_maxerror is initialized by a ntp_adjtime() call and increased by
158 * the kernel once each second to reflect the maximum error bound
159 * growth.
160 *
161 * time_esterror is set and read by the ntp_adjtime() call, but
162 * otherwise not used by the kernel.
163 */
164 int time_state = TIME_OK; /* clock state */
165 int time_status = STA_UNSYNC; /* clock status bits */
166 long time_offset = 0; /* time offset (us) */
167 long time_constant = 0; /* pll time constant */
168 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
169 long time_precision = 1; /* clock precision (us) */
170 long time_maxerror = MAXPHASE; /* maximum error (us) */
171 long time_esterror = MAXPHASE; /* estimated error (us) */
172
173 /*
174 * The following variables establish the state of the PLL/FLL and the
175 * residual time and frequency offset of the local clock. The scale
176 * factors are defined in the timex.h header file.
177 *
178 * time_phase and time_freq are the phase increment and the frequency
179 * increment, respectively, of the kernel time variable.
180 *
181 * time_freq is set via ntp_adjtime() from a value stored in a file when
182 * the synchronization daemon is first started. Its value is retrieved
183 * via ntp_adjtime() and written to the file about once per hour by the
184 * daemon.
185 *
186 * time_adj is the adjustment added to the value of tick at each timer
187 * interrupt and is recomputed from time_phase and time_freq at each
188 * seconds rollover.
189 *
190 * time_reftime is the second's portion of the system time at the last
191 * call to ntp_adjtime(). It is used to adjust the time_freq variable
192 * and to increase the time_maxerror as the time since last update
193 * increases.
194 */
195 long time_phase = 0; /* phase offset (scaled us) */
196 long time_freq = 0; /* frequency offset (scaled ppm) */
197 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
198 long time_reftime = 0; /* time at last adjustment (s) */
199
200 #ifdef PPS_SYNC
201 /*
202 * The following variables are used only if the kernel PPS discipline
203 * code is configured (PPS_SYNC). The scale factors are defined in the
204 * timex.h header file.
205 *
206 * pps_time contains the time at each calibration interval, as read by
207 * microtime(). pps_count counts the seconds of the calibration
208 * interval, the duration of which is nominally pps_shift in powers of
209 * two.
210 *
211 * pps_offset is the time offset produced by the time median filter
212 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
213 * this filter.
214 *
215 * pps_freq is the frequency offset produced by the frequency median
216 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
217 * by this filter.
218 *
219 * pps_usec is latched from a high resolution counter or external clock
220 * at pps_time. Here we want the hardware counter contents only, not the
221 * contents plus the time_tv.usec as usual.
222 *
223 * pps_valid counts the number of seconds since the last PPS update. It
224 * is used as a watchdog timer to disable the PPS discipline should the
225 * PPS signal be lost.
226 *
227 * pps_glitch counts the number of seconds since the beginning of an
228 * offset burst more than tick/2 from current nominal offset. It is used
229 * mainly to suppress error bursts due to priority conflicts between the
230 * PPS interrupt and timer interrupt.
231 *
232 * pps_intcnt counts the calibration intervals for use in the interval-
233 * adaptation algorithm. It's just too complicated for words.
234 */
235 struct timeval pps_time; /* kernel time at last interval */
236 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
237 long pps_offset = 0; /* pps time offset (us) */
238 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
239 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
240 long pps_freq = 0; /* frequency offset (scaled ppm) */
241 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
242 long pps_usec = 0; /* microsec counter at last interval */
243 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
244 int pps_glitch = 0; /* pps signal glitch counter */
245 int pps_count = 0; /* calibration interval counter (s) */
246 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
247 int pps_intcnt = 0; /* intervals at current duration */
248
249 /*
250 * PPS signal quality monitors
251 *
252 * pps_jitcnt counts the seconds that have been discarded because the
253 * jitter measured by the time median filter exceeds the limit MAXTIME
254 * (100 us).
255 *
256 * pps_calcnt counts the frequency calibration intervals, which are
257 * variable from 4 s to 256 s.
258 *
259 * pps_errcnt counts the calibration intervals which have been discarded
260 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
261 * calibration interval jitter exceeds two ticks.
262 *
263 * pps_stbcnt counts the calibration intervals that have been discarded
264 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
265 */
266 long pps_jitcnt = 0; /* jitter limit exceeded */
267 long pps_calcnt = 0; /* calibration intervals */
268 long pps_errcnt = 0; /* calibration errors */
269 long pps_stbcnt = 0; /* stability limit exceeded */
270 #endif /* PPS_SYNC */
271
272 #ifdef EXT_CLOCK
273 /*
274 * External clock definitions
275 *
276 * The following definitions and declarations are used only if an
277 * external clock is configured on the system.
278 */
279 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
280
281 /*
282 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
283 * interrupt and decremented once each second.
284 */
285 int clock_count = 0; /* CPU clock counter */
286
287 #ifdef HIGHBALL
288 /*
289 * The clock_offset and clock_cpu variables are used by the HIGHBALL
290 * interface. The clock_offset variable defines the offset between
291 * system time and the HIGBALL counters. The clock_cpu variable contains
292 * the offset between the system clock and the HIGHBALL clock for use in
293 * disciplining the kernel time variable.
294 */
295 extern struct timeval clock_offset; /* Highball clock offset */
296 long clock_cpu = 0; /* CPU clock adjust */
297 #endif /* HIGHBALL */
298 #endif /* EXT_CLOCK */
299 #endif /* NTP */
300
301
302 /*
303 * Bump a timeval by a small number of usec's.
304 */
305 #define BUMPTIME(t, usec) { \
306 volatile struct timeval *tp = (t); \
307 long us; \
308 \
309 tp->tv_usec = us = tp->tv_usec + (usec); \
310 if (us >= 1000000) { \
311 tp->tv_usec = us - 1000000; \
312 tp->tv_sec++; \
313 } \
314 }
315
316 int stathz;
317 int profhz;
318 int schedhz;
319 int profprocs;
320 int softclock_running; /* 1 => softclock() is running */
321 static int psdiv; /* prof => stat divider */
322 int psratio; /* ratio: prof / stat */
323 int tickfix, tickfixinterval; /* used if tick not really integral */
324 #ifndef NTP
325 static int tickfixcnt; /* accumulated fractional error */
326 #else
327 int fixtick; /* used by NTP for same */
328 int shifthz;
329 #endif
330
331 /*
332 * We might want ldd to load the both words from time at once.
333 * To succeed we need to be quadword aligned.
334 * The sparc already does that, and that it has worked so far is a fluke.
335 */
336 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
337 volatile struct timeval mono_time;
338
339 /*
340 * The callout mechanism is based on the work of Adam M. Costello and
341 * George Varghese, published in a technical report entitled "Redesigning
342 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
343 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
344 *
345 * The original work on the data structures used in this implementation
346 * was published by G. Varghese and A. Lauck in the paper "Hashed and
347 * Hierarchical Timing Wheels: Data Structures for the Efficient
348 * Implementation of a Timer Facility" in the Proceedings of the 11th
349 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
350 * November 1987.
351 */
352 struct callout_queue *callwheel;
353 int callwheelsize, callwheelbits, callwheelmask;
354
355 static struct callout *nextsoftcheck; /* next callout to be checked */
356
357 #ifdef CALLWHEEL_STATS
358 int callwheel_collisions; /* number of hash collisions */
359 int callwheel_maxlength; /* length of the longest hash chain */
360 int *callwheel_sizes; /* per-bucket length count */
361 u_int64_t callwheel_count; /* # callouts currently */
362 u_int64_t callwheel_established; /* # callouts established */
363 u_int64_t callwheel_fired; /* # callouts that fired */
364 u_int64_t callwheel_disestablished; /* # callouts disestablished */
365 u_int64_t callwheel_changed; /* # callouts changed */
366 u_int64_t callwheel_softclocks; /* # times softclock() called */
367 u_int64_t callwheel_softchecks; /* # checks per softclock() */
368 u_int64_t callwheel_softempty; /* # empty buckets seen */
369 #endif /* CALLWHEEL_STATS */
370
371 /*
372 * This value indicates the number of consecutive callouts that
373 * will be checked before we allow interrupts to have a chance
374 * again.
375 */
376 #ifndef MAX_SOFTCLOCK_STEPS
377 #define MAX_SOFTCLOCK_STEPS 100
378 #endif
379
380 struct simplelock callwheel_slock;
381
382 #define CALLWHEEL_LOCK(s) \
383 do { \
384 s = splclock(); \
385 simple_lock(&callwheel_slock); \
386 } while (0)
387
388 #define CALLWHEEL_UNLOCK(s) \
389 do { \
390 simple_unlock(&callwheel_slock); \
391 splx(s); \
392 } while (0)
393
394 static void callout_stop_locked(struct callout *);
395
396 /*
397 * These are both protected by callwheel_lock.
398 * XXX SHOULD BE STATIC!!
399 */
400 u_int64_t hardclock_ticks, softclock_ticks;
401
402 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
403 void softclock(void *);
404 void *softclock_si;
405 #endif
406
407 /*
408 * Initialize clock frequencies and start both clocks running.
409 */
410 void
411 initclocks(void)
412 {
413 int i;
414
415 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
416 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
417 if (softclock_si == NULL)
418 panic("initclocks: unable to register softclock intr");
419 #endif
420
421 /*
422 * Set divisors to 1 (normal case) and let the machine-specific
423 * code do its bit.
424 */
425 psdiv = 1;
426 cpu_initclocks();
427
428 /*
429 * Compute profhz/stathz/rrticks, and fix profhz if needed.
430 */
431 i = stathz ? stathz : hz;
432 if (profhz == 0)
433 profhz = i;
434 psratio = profhz / i;
435 rrticks = hz / 10;
436
437 #ifdef NTP
438 switch (hz) {
439 case 1:
440 shifthz = SHIFT_SCALE - 0;
441 break;
442 case 2:
443 shifthz = SHIFT_SCALE - 1;
444 break;
445 case 4:
446 shifthz = SHIFT_SCALE - 2;
447 break;
448 case 8:
449 shifthz = SHIFT_SCALE - 3;
450 break;
451 case 16:
452 shifthz = SHIFT_SCALE - 4;
453 break;
454 case 32:
455 shifthz = SHIFT_SCALE - 5;
456 break;
457 case 60:
458 case 64:
459 shifthz = SHIFT_SCALE - 6;
460 break;
461 case 96:
462 case 100:
463 case 128:
464 shifthz = SHIFT_SCALE - 7;
465 break;
466 case 256:
467 shifthz = SHIFT_SCALE - 8;
468 break;
469 case 512:
470 shifthz = SHIFT_SCALE - 9;
471 break;
472 case 1000:
473 case 1024:
474 shifthz = SHIFT_SCALE - 10;
475 break;
476 case 1200:
477 case 2048:
478 shifthz = SHIFT_SCALE - 11;
479 break;
480 case 4096:
481 shifthz = SHIFT_SCALE - 12;
482 break;
483 case 8192:
484 shifthz = SHIFT_SCALE - 13;
485 break;
486 case 16384:
487 shifthz = SHIFT_SCALE - 14;
488 break;
489 case 32768:
490 shifthz = SHIFT_SCALE - 15;
491 break;
492 case 65536:
493 shifthz = SHIFT_SCALE - 16;
494 break;
495 default:
496 panic("weird hz");
497 }
498 if (fixtick == 0) {
499 /*
500 * Give MD code a chance to set this to a better
501 * value; but, if it doesn't, we should.
502 */
503 fixtick = (1000000 - (hz*tick));
504 }
505 #endif
506 }
507
508 /*
509 * The real-time timer, interrupting hz times per second.
510 */
511 void
512 hardclock(struct clockframe *frame)
513 {
514 struct lwp *l;
515 struct proc *p;
516 int delta;
517 extern int tickdelta;
518 extern long timedelta;
519 struct cpu_info *ci = curcpu();
520 #ifdef NTP
521 int time_update;
522 int ltemp;
523 #endif
524
525 l = curproc;
526 if (l) {
527 struct pstats *pstats;
528 p = l->l_proc;
529 /*
530 * Run current process's virtual and profile time, as needed.
531 */
532 pstats = p->p_stats;
533 if (CLKF_USERMODE(frame) &&
534 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
535 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
536 psignal(p, SIGVTALRM);
537 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
538 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
539 psignal(p, SIGPROF);
540 }
541
542 /*
543 * If no separate statistics clock is available, run it from here.
544 */
545 if (stathz == 0)
546 statclock(frame);
547 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
548 roundrobin(ci);
549
550 #if defined(MULTIPROCESSOR)
551 /*
552 * If we are not the primary CPU, we're not allowed to do
553 * any more work.
554 */
555 if (CPU_IS_PRIMARY(ci) == 0)
556 return;
557 #endif
558
559 /*
560 * Increment the time-of-day. The increment is normally just
561 * ``tick''. If the machine is one which has a clock frequency
562 * such that ``hz'' would not divide the second evenly into
563 * milliseconds, a periodic adjustment must be applied. Finally,
564 * if we are still adjusting the time (see adjtime()),
565 * ``tickdelta'' may also be added in.
566 */
567 delta = tick;
568
569 #ifndef NTP
570 if (tickfix) {
571 tickfixcnt += tickfix;
572 if (tickfixcnt >= tickfixinterval) {
573 delta++;
574 tickfixcnt -= tickfixinterval;
575 }
576 }
577 #endif /* !NTP */
578 /* Imprecise 4bsd adjtime() handling */
579 if (timedelta != 0) {
580 delta += tickdelta;
581 timedelta -= tickdelta;
582 }
583
584 #ifdef notyet
585 microset();
586 #endif
587
588 #ifndef NTP
589 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
590 #endif
591 BUMPTIME(&mono_time, delta);
592
593 #ifdef NTP
594 time_update = delta;
595
596 /*
597 * Compute the phase adjustment. If the low-order bits
598 * (time_phase) of the update overflow, bump the high-order bits
599 * (time_update).
600 */
601 time_phase += time_adj;
602 if (time_phase <= -FINEUSEC) {
603 ltemp = -time_phase >> SHIFT_SCALE;
604 time_phase += ltemp << SHIFT_SCALE;
605 time_update -= ltemp;
606 } else if (time_phase >= FINEUSEC) {
607 ltemp = time_phase >> SHIFT_SCALE;
608 time_phase -= ltemp << SHIFT_SCALE;
609 time_update += ltemp;
610 }
611
612 #ifdef HIGHBALL
613 /*
614 * If the HIGHBALL board is installed, we need to adjust the
615 * external clock offset in order to close the hardware feedback
616 * loop. This will adjust the external clock phase and frequency
617 * in small amounts. The additional phase noise and frequency
618 * wander this causes should be minimal. We also need to
619 * discipline the kernel time variable, since the PLL is used to
620 * discipline the external clock. If the Highball board is not
621 * present, we discipline kernel time with the PLL as usual. We
622 * assume that the external clock phase adjustment (time_update)
623 * and kernel phase adjustment (clock_cpu) are less than the
624 * value of tick.
625 */
626 clock_offset.tv_usec += time_update;
627 if (clock_offset.tv_usec >= 1000000) {
628 clock_offset.tv_sec++;
629 clock_offset.tv_usec -= 1000000;
630 }
631 if (clock_offset.tv_usec < 0) {
632 clock_offset.tv_sec--;
633 clock_offset.tv_usec += 1000000;
634 }
635 time.tv_usec += clock_cpu;
636 clock_cpu = 0;
637 #else
638 time.tv_usec += time_update;
639 #endif /* HIGHBALL */
640
641 /*
642 * On rollover of the second the phase adjustment to be used for
643 * the next second is calculated. Also, the maximum error is
644 * increased by the tolerance. If the PPS frequency discipline
645 * code is present, the phase is increased to compensate for the
646 * CPU clock oscillator frequency error.
647 *
648 * On a 32-bit machine and given parameters in the timex.h
649 * header file, the maximum phase adjustment is +-512 ms and
650 * maximum frequency offset is a tad less than) +-512 ppm. On a
651 * 64-bit machine, you shouldn't need to ask.
652 */
653 if (time.tv_usec >= 1000000) {
654 time.tv_usec -= 1000000;
655 time.tv_sec++;
656 time_maxerror += time_tolerance >> SHIFT_USEC;
657
658 /*
659 * Leap second processing. If in leap-insert state at
660 * the end of the day, the system clock is set back one
661 * second; if in leap-delete state, the system clock is
662 * set ahead one second. The microtime() routine or
663 * external clock driver will insure that reported time
664 * is always monotonic. The ugly divides should be
665 * replaced.
666 */
667 switch (time_state) {
668 case TIME_OK:
669 if (time_status & STA_INS)
670 time_state = TIME_INS;
671 else if (time_status & STA_DEL)
672 time_state = TIME_DEL;
673 break;
674
675 case TIME_INS:
676 if (time.tv_sec % 86400 == 0) {
677 time.tv_sec--;
678 time_state = TIME_OOP;
679 }
680 break;
681
682 case TIME_DEL:
683 if ((time.tv_sec + 1) % 86400 == 0) {
684 time.tv_sec++;
685 time_state = TIME_WAIT;
686 }
687 break;
688
689 case TIME_OOP:
690 time_state = TIME_WAIT;
691 break;
692
693 case TIME_WAIT:
694 if (!(time_status & (STA_INS | STA_DEL)))
695 time_state = TIME_OK;
696 break;
697 }
698
699 /*
700 * Compute the phase adjustment for the next second. In
701 * PLL mode, the offset is reduced by a fixed factor
702 * times the time constant. In FLL mode the offset is
703 * used directly. In either mode, the maximum phase
704 * adjustment for each second is clamped so as to spread
705 * the adjustment over not more than the number of
706 * seconds between updates.
707 */
708 if (time_offset < 0) {
709 ltemp = -time_offset;
710 if (!(time_status & STA_FLL))
711 ltemp >>= SHIFT_KG + time_constant;
712 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
713 ltemp = (MAXPHASE / MINSEC) <<
714 SHIFT_UPDATE;
715 time_offset += ltemp;
716 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
717 } else if (time_offset > 0) {
718 ltemp = time_offset;
719 if (!(time_status & STA_FLL))
720 ltemp >>= SHIFT_KG + time_constant;
721 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
722 ltemp = (MAXPHASE / MINSEC) <<
723 SHIFT_UPDATE;
724 time_offset -= ltemp;
725 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
726 } else
727 time_adj = 0;
728
729 /*
730 * Compute the frequency estimate and additional phase
731 * adjustment due to frequency error for the next
732 * second. When the PPS signal is engaged, gnaw on the
733 * watchdog counter and update the frequency computed by
734 * the pll and the PPS signal.
735 */
736 #ifdef PPS_SYNC
737 pps_valid++;
738 if (pps_valid == PPS_VALID) {
739 pps_jitter = MAXTIME;
740 pps_stabil = MAXFREQ;
741 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
742 STA_PPSWANDER | STA_PPSERROR);
743 }
744 ltemp = time_freq + pps_freq;
745 #else
746 ltemp = time_freq;
747 #endif /* PPS_SYNC */
748
749 if (ltemp < 0)
750 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
751 else
752 time_adj += ltemp >> (SHIFT_USEC - shifthz);
753 time_adj += (long)fixtick << shifthz;
754
755 /*
756 * When the CPU clock oscillator frequency is not a
757 * power of 2 in Hz, shifthz is only an approximate
758 * scale factor.
759 *
760 * To determine the adjustment, you can do the following:
761 * bc -q
762 * scale=24
763 * obase=2
764 * idealhz/realhz
765 * where `idealhz' is the next higher power of 2, and `realhz'
766 * is the actual value. You may need to factor this result
767 * into a sequence of 2 multipliers to get better precision.
768 *
769 * Likewise, the error can be calculated with (e.g. for 100Hz):
770 * bc -q
771 * scale=24
772 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
773 * (and then multiply by 1000000 to get ppm).
774 */
775 switch (hz) {
776 case 60:
777 /* A factor of 1.000100010001 gives about 15ppm
778 error. */
779 if (time_adj < 0) {
780 time_adj -= (-time_adj >> 4);
781 time_adj -= (-time_adj >> 8);
782 } else {
783 time_adj += (time_adj >> 4);
784 time_adj += (time_adj >> 8);
785 }
786 break;
787
788 case 96:
789 /* A factor of 1.0101010101 gives about 244ppm error. */
790 if (time_adj < 0) {
791 time_adj -= (-time_adj >> 2);
792 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
793 } else {
794 time_adj += (time_adj >> 2);
795 time_adj += (time_adj >> 4) + (time_adj >> 8);
796 }
797 break;
798
799 case 100:
800 /* A factor of 1.010001111010111 gives about 1ppm
801 error. */
802 if (time_adj < 0) {
803 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
804 time_adj += (-time_adj >> 10);
805 } else {
806 time_adj += (time_adj >> 2) + (time_adj >> 5);
807 time_adj -= (time_adj >> 10);
808 }
809 break;
810
811 case 1000:
812 /* A factor of 1.000001100010100001 gives about 50ppm
813 error. */
814 if (time_adj < 0) {
815 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
816 time_adj -= (-time_adj >> 7);
817 } else {
818 time_adj += (time_adj >> 6) + (time_adj >> 11);
819 time_adj += (time_adj >> 7);
820 }
821 break;
822
823 case 1200:
824 /* A factor of 1.1011010011100001 gives about 64ppm
825 error. */
826 if (time_adj < 0) {
827 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
828 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
829 } else {
830 time_adj += (time_adj >> 1) + (time_adj >> 6);
831 time_adj += (time_adj >> 3) + (time_adj >> 10);
832 }
833 break;
834 }
835
836 #ifdef EXT_CLOCK
837 /*
838 * If an external clock is present, it is necessary to
839 * discipline the kernel time variable anyway, since not
840 * all system components use the microtime() interface.
841 * Here, the time offset between the external clock and
842 * kernel time variable is computed every so often.
843 */
844 clock_count++;
845 if (clock_count > CLOCK_INTERVAL) {
846 clock_count = 0;
847 microtime(&clock_ext);
848 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
849 delta.tv_usec = clock_ext.tv_usec -
850 time.tv_usec;
851 if (delta.tv_usec < 0)
852 delta.tv_sec--;
853 if (delta.tv_usec >= 500000) {
854 delta.tv_usec -= 1000000;
855 delta.tv_sec++;
856 }
857 if (delta.tv_usec < -500000) {
858 delta.tv_usec += 1000000;
859 delta.tv_sec--;
860 }
861 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
862 delta.tv_usec > MAXPHASE) ||
863 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
864 delta.tv_usec < -MAXPHASE)) {
865 time = clock_ext;
866 delta.tv_sec = 0;
867 delta.tv_usec = 0;
868 }
869 #ifdef HIGHBALL
870 clock_cpu = delta.tv_usec;
871 #else /* HIGHBALL */
872 hardupdate(delta.tv_usec);
873 #endif /* HIGHBALL */
874 }
875 #endif /* EXT_CLOCK */
876 }
877
878 #endif /* NTP */
879
880 /*
881 * Process callouts at a very low cpu priority, so we don't keep the
882 * relatively high clock interrupt priority any longer than necessary.
883 */
884 simple_lock(&callwheel_slock); /* already at splclock() */
885 hardclock_ticks++;
886 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
887 simple_unlock(&callwheel_slock);
888 if (CLKF_BASEPRI(frame)) {
889 /*
890 * Save the overhead of a software interrupt;
891 * it will happen as soon as we return, so do
892 * it now.
893 *
894 * NOTE: If we're at ``base priority'', softclock()
895 * was not already running.
896 */
897 spllowersoftclock();
898 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
899 softclock(NULL);
900 KERNEL_UNLOCK();
901 } else {
902 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
903 softintr_schedule(softclock_si);
904 #else
905 setsoftclock();
906 #endif
907 }
908 return;
909 } else if (softclock_running == 0 &&
910 (softclock_ticks + 1) == hardclock_ticks) {
911 softclock_ticks++;
912 }
913 simple_unlock(&callwheel_slock);
914 }
915
916 /*
917 * Software (low priority) clock interrupt.
918 * Run periodic events from timeout queue.
919 */
920 /*ARGSUSED*/
921 void
922 softclock(void *v)
923 {
924 struct callout_queue *bucket;
925 struct callout *c;
926 void (*func)(void *);
927 void *arg;
928 int s, idx;
929 int steps = 0;
930
931 CALLWHEEL_LOCK(s);
932
933 softclock_running = 1;
934
935 #ifdef CALLWHEEL_STATS
936 callwheel_softclocks++;
937 #endif
938
939 while (softclock_ticks != hardclock_ticks) {
940 softclock_ticks++;
941 idx = (int)(softclock_ticks & callwheelmask);
942 bucket = &callwheel[idx];
943 c = TAILQ_FIRST(bucket);
944 #ifdef CALLWHEEL_STATS
945 if (c == NULL)
946 callwheel_softempty++;
947 #endif
948 while (c != NULL) {
949 #ifdef CALLWHEEL_STATS
950 callwheel_softchecks++;
951 #endif
952 if (c->c_time != softclock_ticks) {
953 c = TAILQ_NEXT(c, c_link);
954 if (++steps >= MAX_SOFTCLOCK_STEPS) {
955 nextsoftcheck = c;
956 /* Give interrupts a chance. */
957 CALLWHEEL_UNLOCK(s);
958 CALLWHEEL_LOCK(s);
959 c = nextsoftcheck;
960 steps = 0;
961 }
962 } else {
963 nextsoftcheck = TAILQ_NEXT(c, c_link);
964 TAILQ_REMOVE(bucket, c, c_link);
965 #ifdef CALLWHEEL_STATS
966 callwheel_sizes[idx]--;
967 callwheel_fired++;
968 callwheel_count--;
969 #endif
970 func = c->c_func;
971 arg = c->c_arg;
972 c->c_func = NULL;
973 c->c_flags &= ~CALLOUT_PENDING;
974 CALLWHEEL_UNLOCK(s);
975 (*func)(arg);
976 CALLWHEEL_LOCK(s);
977 steps = 0;
978 c = nextsoftcheck;
979 }
980 }
981 }
982 nextsoftcheck = NULL;
983 softclock_running = 0;
984 CALLWHEEL_UNLOCK(s);
985 }
986
987 /*
988 * callout_setsize:
989 *
990 * Determine how many callwheels are necessary and
991 * set hash mask. Called from allocsys().
992 */
993 void
994 callout_setsize(void)
995 {
996
997 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
998 /* loop */ ;
999 callwheelmask = callwheelsize - 1;
1000 }
1001
1002 /*
1003 * callout_startup:
1004 *
1005 * Initialize the callwheel buckets.
1006 */
1007 void
1008 callout_startup(void)
1009 {
1010 int i;
1011
1012 for (i = 0; i < callwheelsize; i++)
1013 TAILQ_INIT(&callwheel[i]);
1014
1015 simple_lock_init(&callwheel_slock);
1016 }
1017
1018 /*
1019 * callout_init:
1020 *
1021 * Initialize a callout structure so that it can be used
1022 * by callout_reset() and callout_stop().
1023 */
1024 void
1025 callout_init(struct callout *c)
1026 {
1027
1028 memset(c, 0, sizeof(*c));
1029 }
1030
1031 /*
1032 * callout_reset:
1033 *
1034 * Establish or change a timeout.
1035 */
1036 void
1037 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1038 {
1039 struct callout_queue *bucket;
1040 int s;
1041
1042 if (ticks <= 0)
1043 ticks = 1;
1044
1045 CALLWHEEL_LOCK(s);
1046
1047 /*
1048 * If this callout's timer is already running, cancel it
1049 * before we modify it.
1050 */
1051 if (c->c_flags & CALLOUT_PENDING) {
1052 callout_stop_locked(c); /* Already locked */
1053 #ifdef CALLWHEEL_STATS
1054 callwheel_changed++;
1055 #endif
1056 }
1057
1058 c->c_arg = arg;
1059 c->c_func = func;
1060 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1061 c->c_time = hardclock_ticks + ticks;
1062
1063 bucket = &callwheel[c->c_time & callwheelmask];
1064
1065 #ifdef CALLWHEEL_STATS
1066 if (TAILQ_FIRST(bucket) != NULL)
1067 callwheel_collisions++;
1068 #endif
1069
1070 TAILQ_INSERT_TAIL(bucket, c, c_link);
1071
1072 #ifdef CALLWHEEL_STATS
1073 callwheel_count++;
1074 callwheel_established++;
1075 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1076 callwheel_maxlength =
1077 callwheel_sizes[c->c_time & callwheelmask];
1078 #endif
1079
1080 CALLWHEEL_UNLOCK(s);
1081 }
1082
1083 /*
1084 * callout_stop_locked:
1085 *
1086 * Disestablish a timeout. Callwheel is locked.
1087 */
1088 static void
1089 callout_stop_locked(struct callout *c)
1090 {
1091
1092 /*
1093 * Don't attempt to delete a callout that's not on the queue.
1094 */
1095 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1096 c->c_flags &= ~CALLOUT_ACTIVE;
1097 return;
1098 }
1099
1100 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1101
1102 if (nextsoftcheck == c)
1103 nextsoftcheck = TAILQ_NEXT(c, c_link);
1104
1105 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1106 #ifdef CALLWHEEL_STATS
1107 callwheel_count--;
1108 callwheel_disestablished++;
1109 callwheel_sizes[c->c_time & callwheelmask]--;
1110 #endif
1111
1112 c->c_func = NULL;
1113 }
1114
1115 /*
1116 * callout_stop:
1117 *
1118 * Disestablish a timeout. Callwheel is unlocked. This is
1119 * the standard entry point.
1120 */
1121 void
1122 callout_stop(struct callout *c)
1123 {
1124 int s;
1125
1126 CALLWHEEL_LOCK(s);
1127 callout_stop_locked(c);
1128 CALLWHEEL_UNLOCK(s);
1129 }
1130
1131 #ifdef CALLWHEEL_STATS
1132 /*
1133 * callout_showstats:
1134 *
1135 * Display callout statistics. Call it from DDB.
1136 */
1137 void
1138 callout_showstats(void)
1139 {
1140 u_int64_t curticks;
1141 int s;
1142
1143 s = splclock();
1144 curticks = softclock_ticks;
1145 splx(s);
1146
1147 printf("Callwheel statistics:\n");
1148 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1149 printf("\tCallouts established: %llu\n", callwheel_established);
1150 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1151 if (callwheel_changed != 0)
1152 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1153 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1154 printf("\tNumber of buckets: %d\n", callwheelsize);
1155 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1156 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1157 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1158 callwheel_softclocks, callwheel_softchecks);
1159 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1160 }
1161 #endif
1162
1163 /*
1164 * Compute number of hz until specified time. Used to compute second
1165 * argument to callout_reset() from an absolute time.
1166 */
1167 int
1168 hzto(struct timeval *tv)
1169 {
1170 unsigned long ticks;
1171 long sec, usec;
1172 int s;
1173
1174 /*
1175 * If the number of usecs in the whole seconds part of the time
1176 * difference fits in a long, then the total number of usecs will
1177 * fit in an unsigned long. Compute the total and convert it to
1178 * ticks, rounding up and adding 1 to allow for the current tick
1179 * to expire. Rounding also depends on unsigned long arithmetic
1180 * to avoid overflow.
1181 *
1182 * Otherwise, if the number of ticks in the whole seconds part of
1183 * the time difference fits in a long, then convert the parts to
1184 * ticks separately and add, using similar rounding methods and
1185 * overflow avoidance. This method would work in the previous
1186 * case, but it is slightly slower and assume that hz is integral.
1187 *
1188 * Otherwise, round the time difference down to the maximum
1189 * representable value.
1190 *
1191 * If ints are 32-bit, then the maximum value for any timeout in
1192 * 10ms ticks is 248 days.
1193 */
1194 s = splclock();
1195 sec = tv->tv_sec - time.tv_sec;
1196 usec = tv->tv_usec - time.tv_usec;
1197 splx(s);
1198
1199 if (usec < 0) {
1200 sec--;
1201 usec += 1000000;
1202 }
1203
1204 if (sec < 0 || (sec == 0 && usec <= 0)) {
1205 /*
1206 * Would expire now or in the past. Return 0 ticks.
1207 * This is different from the legacy hzto() interface,
1208 * and callers need to check for it.
1209 */
1210 ticks = 0;
1211 } else if (sec <= (LONG_MAX / 1000000))
1212 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1213 / tick) + 1;
1214 else if (sec <= (LONG_MAX / hz))
1215 ticks = (sec * hz) +
1216 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1217 else
1218 ticks = LONG_MAX;
1219
1220 if (ticks > INT_MAX)
1221 ticks = INT_MAX;
1222
1223 return ((int)ticks);
1224 }
1225
1226 /*
1227 * Start profiling on a process.
1228 *
1229 * Kernel profiling passes proc0 which never exits and hence
1230 * keeps the profile clock running constantly.
1231 */
1232 void
1233 startprofclock(struct proc *p)
1234 {
1235
1236 if ((p->p_flag & P_PROFIL) == 0) {
1237 p->p_flag |= P_PROFIL;
1238 if (++profprocs == 1 && stathz != 0)
1239 psdiv = psratio;
1240 }
1241 }
1242
1243 /*
1244 * Stop profiling on a process.
1245 */
1246 void
1247 stopprofclock(struct proc *p)
1248 {
1249
1250 if (p->p_flag & P_PROFIL) {
1251 p->p_flag &= ~P_PROFIL;
1252 if (--profprocs == 0 && stathz != 0)
1253 psdiv = 1;
1254 }
1255 }
1256
1257 /*
1258 * Statistics clock. Grab profile sample, and if divider reaches 0,
1259 * do process and kernel statistics.
1260 */
1261 void
1262 statclock(struct clockframe *frame)
1263 {
1264 #ifdef GPROF
1265 struct gmonparam *g;
1266 intptr_t i;
1267 #endif
1268 struct cpu_info *ci = curcpu();
1269 struct schedstate_percpu *spc = &ci->ci_schedstate;
1270 struct lwp *l;
1271 struct proc *p;
1272
1273 /*
1274 * Notice changes in divisor frequency, and adjust clock
1275 * frequency accordingly.
1276 */
1277 if (spc->spc_psdiv != psdiv) {
1278 spc->spc_psdiv = psdiv;
1279 spc->spc_pscnt = psdiv;
1280 if (psdiv == 1) {
1281 setstatclockrate(stathz);
1282 } else {
1283 setstatclockrate(profhz);
1284 }
1285 }
1286 l = curproc;
1287 p = (l ? l->l_proc : 0);
1288 if (CLKF_USERMODE(frame)) {
1289 if (p->p_flag & P_PROFIL)
1290 addupc_intr(p, CLKF_PC(frame));
1291 if (--spc->spc_pscnt > 0)
1292 return;
1293 /*
1294 * Came from user mode; CPU was in user state.
1295 * If this process is being profiled record the tick.
1296 */
1297 p->p_uticks++;
1298 if (p->p_nice > NZERO)
1299 spc->spc_cp_time[CP_NICE]++;
1300 else
1301 spc->spc_cp_time[CP_USER]++;
1302 } else {
1303 #ifdef GPROF
1304 /*
1305 * Kernel statistics are just like addupc_intr, only easier.
1306 */
1307 g = &_gmonparam;
1308 if (g->state == GMON_PROF_ON) {
1309 i = CLKF_PC(frame) - g->lowpc;
1310 if (i < g->textsize) {
1311 i /= HISTFRACTION * sizeof(*g->kcount);
1312 g->kcount[i]++;
1313 }
1314 }
1315 #endif
1316 #ifdef LWP_PC
1317 if (p && p->p_flag & P_PROFIL)
1318 addupc_intr(p, LWP_PC(l));
1319 #endif
1320 if (--spc->spc_pscnt > 0)
1321 return;
1322 /*
1323 * Came from kernel mode, so we were:
1324 * - handling an interrupt,
1325 * - doing syscall or trap work on behalf of the current
1326 * user process, or
1327 * - spinning in the idle loop.
1328 * Whichever it is, charge the time as appropriate.
1329 * Note that we charge interrupts to the current process,
1330 * regardless of whether they are ``for'' that process,
1331 * so that we know how much of its real time was spent
1332 * in ``non-process'' (i.e., interrupt) work.
1333 */
1334 if (CLKF_INTR(frame)) {
1335 if (p != NULL)
1336 p->p_iticks++;
1337 spc->spc_cp_time[CP_INTR]++;
1338 } else if (p != NULL) {
1339 p->p_sticks++;
1340 spc->spc_cp_time[CP_SYS]++;
1341 } else
1342 spc->spc_cp_time[CP_IDLE]++;
1343 }
1344 spc->spc_pscnt = psdiv;
1345
1346 if (l != NULL) {
1347 ++p->p_cpticks;
1348 /*
1349 * If no separate schedclock is provided, call it here
1350 * at ~~12-25 Hz, ~~16 Hz is best
1351 */
1352 if (schedhz == 0)
1353 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1354 schedclock(l);
1355 }
1356 }
1357
1358
1359 #ifdef NTP /* NTP phase-locked loop in kernel */
1360
1361 /*
1362 * hardupdate() - local clock update
1363 *
1364 * This routine is called by ntp_adjtime() to update the local clock
1365 * phase and frequency. The implementation is of an adaptive-parameter,
1366 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1367 * time and frequency offset estimates for each call. If the kernel PPS
1368 * discipline code is configured (PPS_SYNC), the PPS signal itself
1369 * determines the new time offset, instead of the calling argument.
1370 * Presumably, calls to ntp_adjtime() occur only when the caller
1371 * believes the local clock is valid within some bound (+-128 ms with
1372 * NTP). If the caller's time is far different than the PPS time, an
1373 * argument will ensue, and it's not clear who will lose.
1374 *
1375 * For uncompensated quartz crystal oscillatores and nominal update
1376 * intervals less than 1024 s, operation should be in phase-lock mode
1377 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1378 * intervals greater than thiss, operation should be in frequency-lock
1379 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1380 *
1381 * Note: splclock() is in effect.
1382 */
1383 void
1384 hardupdate(long offset)
1385 {
1386 long ltemp, mtemp;
1387
1388 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1389 return;
1390 ltemp = offset;
1391 #ifdef PPS_SYNC
1392 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1393 ltemp = pps_offset;
1394 #endif /* PPS_SYNC */
1395
1396 /*
1397 * Scale the phase adjustment and clamp to the operating range.
1398 */
1399 if (ltemp > MAXPHASE)
1400 time_offset = MAXPHASE << SHIFT_UPDATE;
1401 else if (ltemp < -MAXPHASE)
1402 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1403 else
1404 time_offset = ltemp << SHIFT_UPDATE;
1405
1406 /*
1407 * Select whether the frequency is to be controlled and in which
1408 * mode (PLL or FLL). Clamp to the operating range. Ugly
1409 * multiply/divide should be replaced someday.
1410 */
1411 if (time_status & STA_FREQHOLD || time_reftime == 0)
1412 time_reftime = time.tv_sec;
1413 mtemp = time.tv_sec - time_reftime;
1414 time_reftime = time.tv_sec;
1415 if (time_status & STA_FLL) {
1416 if (mtemp >= MINSEC) {
1417 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1418 SHIFT_UPDATE));
1419 if (ltemp < 0)
1420 time_freq -= -ltemp >> SHIFT_KH;
1421 else
1422 time_freq += ltemp >> SHIFT_KH;
1423 }
1424 } else {
1425 if (mtemp < MAXSEC) {
1426 ltemp *= mtemp;
1427 if (ltemp < 0)
1428 time_freq -= -ltemp >> (time_constant +
1429 time_constant + SHIFT_KF -
1430 SHIFT_USEC);
1431 else
1432 time_freq += ltemp >> (time_constant +
1433 time_constant + SHIFT_KF -
1434 SHIFT_USEC);
1435 }
1436 }
1437 if (time_freq > time_tolerance)
1438 time_freq = time_tolerance;
1439 else if (time_freq < -time_tolerance)
1440 time_freq = -time_tolerance;
1441 }
1442
1443 #ifdef PPS_SYNC
1444 /*
1445 * hardpps() - discipline CPU clock oscillator to external PPS signal
1446 *
1447 * This routine is called at each PPS interrupt in order to discipline
1448 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1449 * and leaves it in a handy spot for the hardclock() routine. It
1450 * integrates successive PPS phase differences and calculates the
1451 * frequency offset. This is used in hardclock() to discipline the CPU
1452 * clock oscillator so that intrinsic frequency error is cancelled out.
1453 * The code requires the caller to capture the time and hardware counter
1454 * value at the on-time PPS signal transition.
1455 *
1456 * Note that, on some Unix systems, this routine runs at an interrupt
1457 * priority level higher than the timer interrupt routine hardclock().
1458 * Therefore, the variables used are distinct from the hardclock()
1459 * variables, except for certain exceptions: The PPS frequency pps_freq
1460 * and phase pps_offset variables are determined by this routine and
1461 * updated atomically. The time_tolerance variable can be considered a
1462 * constant, since it is infrequently changed, and then only when the
1463 * PPS signal is disabled. The watchdog counter pps_valid is updated
1464 * once per second by hardclock() and is atomically cleared in this
1465 * routine.
1466 */
1467 void
1468 hardpps(struct timeval *tvp, /* time at PPS */
1469 long usec /* hardware counter at PPS */)
1470 {
1471 long u_usec, v_usec, bigtick;
1472 long cal_sec, cal_usec;
1473
1474 /*
1475 * An occasional glitch can be produced when the PPS interrupt
1476 * occurs in the hardclock() routine before the time variable is
1477 * updated. Here the offset is discarded when the difference
1478 * between it and the last one is greater than tick/2, but not
1479 * if the interval since the first discard exceeds 30 s.
1480 */
1481 time_status |= STA_PPSSIGNAL;
1482 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1483 pps_valid = 0;
1484 u_usec = -tvp->tv_usec;
1485 if (u_usec < -500000)
1486 u_usec += 1000000;
1487 v_usec = pps_offset - u_usec;
1488 if (v_usec < 0)
1489 v_usec = -v_usec;
1490 if (v_usec > (tick >> 1)) {
1491 if (pps_glitch > MAXGLITCH) {
1492 pps_glitch = 0;
1493 pps_tf[2] = u_usec;
1494 pps_tf[1] = u_usec;
1495 } else {
1496 pps_glitch++;
1497 u_usec = pps_offset;
1498 }
1499 } else
1500 pps_glitch = 0;
1501
1502 /*
1503 * A three-stage median filter is used to help deglitch the pps
1504 * time. The median sample becomes the time offset estimate; the
1505 * difference between the other two samples becomes the time
1506 * dispersion (jitter) estimate.
1507 */
1508 pps_tf[2] = pps_tf[1];
1509 pps_tf[1] = pps_tf[0];
1510 pps_tf[0] = u_usec;
1511 if (pps_tf[0] > pps_tf[1]) {
1512 if (pps_tf[1] > pps_tf[2]) {
1513 pps_offset = pps_tf[1]; /* 0 1 2 */
1514 v_usec = pps_tf[0] - pps_tf[2];
1515 } else if (pps_tf[2] > pps_tf[0]) {
1516 pps_offset = pps_tf[0]; /* 2 0 1 */
1517 v_usec = pps_tf[2] - pps_tf[1];
1518 } else {
1519 pps_offset = pps_tf[2]; /* 0 2 1 */
1520 v_usec = pps_tf[0] - pps_tf[1];
1521 }
1522 } else {
1523 if (pps_tf[1] < pps_tf[2]) {
1524 pps_offset = pps_tf[1]; /* 2 1 0 */
1525 v_usec = pps_tf[2] - pps_tf[0];
1526 } else if (pps_tf[2] < pps_tf[0]) {
1527 pps_offset = pps_tf[0]; /* 1 0 2 */
1528 v_usec = pps_tf[1] - pps_tf[2];
1529 } else {
1530 pps_offset = pps_tf[2]; /* 1 2 0 */
1531 v_usec = pps_tf[1] - pps_tf[0];
1532 }
1533 }
1534 if (v_usec > MAXTIME)
1535 pps_jitcnt++;
1536 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1537 if (v_usec < 0)
1538 pps_jitter -= -v_usec >> PPS_AVG;
1539 else
1540 pps_jitter += v_usec >> PPS_AVG;
1541 if (pps_jitter > (MAXTIME >> 1))
1542 time_status |= STA_PPSJITTER;
1543
1544 /*
1545 * During the calibration interval adjust the starting time when
1546 * the tick overflows. At the end of the interval compute the
1547 * duration of the interval and the difference of the hardware
1548 * counters at the beginning and end of the interval. This code
1549 * is deliciously complicated by the fact valid differences may
1550 * exceed the value of tick when using long calibration
1551 * intervals and small ticks. Note that the counter can be
1552 * greater than tick if caught at just the wrong instant, but
1553 * the values returned and used here are correct.
1554 */
1555 bigtick = (long)tick << SHIFT_USEC;
1556 pps_usec -= pps_freq;
1557 if (pps_usec >= bigtick)
1558 pps_usec -= bigtick;
1559 if (pps_usec < 0)
1560 pps_usec += bigtick;
1561 pps_time.tv_sec++;
1562 pps_count++;
1563 if (pps_count < (1 << pps_shift))
1564 return;
1565 pps_count = 0;
1566 pps_calcnt++;
1567 u_usec = usec << SHIFT_USEC;
1568 v_usec = pps_usec - u_usec;
1569 if (v_usec >= bigtick >> 1)
1570 v_usec -= bigtick;
1571 if (v_usec < -(bigtick >> 1))
1572 v_usec += bigtick;
1573 if (v_usec < 0)
1574 v_usec = -(-v_usec >> pps_shift);
1575 else
1576 v_usec = v_usec >> pps_shift;
1577 pps_usec = u_usec;
1578 cal_sec = tvp->tv_sec;
1579 cal_usec = tvp->tv_usec;
1580 cal_sec -= pps_time.tv_sec;
1581 cal_usec -= pps_time.tv_usec;
1582 if (cal_usec < 0) {
1583 cal_usec += 1000000;
1584 cal_sec--;
1585 }
1586 pps_time = *tvp;
1587
1588 /*
1589 * Check for lost interrupts, noise, excessive jitter and
1590 * excessive frequency error. The number of timer ticks during
1591 * the interval may vary +-1 tick. Add to this a margin of one
1592 * tick for the PPS signal jitter and maximum frequency
1593 * deviation. If the limits are exceeded, the calibration
1594 * interval is reset to the minimum and we start over.
1595 */
1596 u_usec = (long)tick << 1;
1597 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1598 || (cal_sec == 0 && cal_usec < u_usec))
1599 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1600 pps_errcnt++;
1601 pps_shift = PPS_SHIFT;
1602 pps_intcnt = 0;
1603 time_status |= STA_PPSERROR;
1604 return;
1605 }
1606
1607 /*
1608 * A three-stage median filter is used to help deglitch the pps
1609 * frequency. The median sample becomes the frequency offset
1610 * estimate; the difference between the other two samples
1611 * becomes the frequency dispersion (stability) estimate.
1612 */
1613 pps_ff[2] = pps_ff[1];
1614 pps_ff[1] = pps_ff[0];
1615 pps_ff[0] = v_usec;
1616 if (pps_ff[0] > pps_ff[1]) {
1617 if (pps_ff[1] > pps_ff[2]) {
1618 u_usec = pps_ff[1]; /* 0 1 2 */
1619 v_usec = pps_ff[0] - pps_ff[2];
1620 } else if (pps_ff[2] > pps_ff[0]) {
1621 u_usec = pps_ff[0]; /* 2 0 1 */
1622 v_usec = pps_ff[2] - pps_ff[1];
1623 } else {
1624 u_usec = pps_ff[2]; /* 0 2 1 */
1625 v_usec = pps_ff[0] - pps_ff[1];
1626 }
1627 } else {
1628 if (pps_ff[1] < pps_ff[2]) {
1629 u_usec = pps_ff[1]; /* 2 1 0 */
1630 v_usec = pps_ff[2] - pps_ff[0];
1631 } else if (pps_ff[2] < pps_ff[0]) {
1632 u_usec = pps_ff[0]; /* 1 0 2 */
1633 v_usec = pps_ff[1] - pps_ff[2];
1634 } else {
1635 u_usec = pps_ff[2]; /* 1 2 0 */
1636 v_usec = pps_ff[1] - pps_ff[0];
1637 }
1638 }
1639
1640 /*
1641 * Here the frequency dispersion (stability) is updated. If it
1642 * is less than one-fourth the maximum (MAXFREQ), the frequency
1643 * offset is updated as well, but clamped to the tolerance. It
1644 * will be processed later by the hardclock() routine.
1645 */
1646 v_usec = (v_usec >> 1) - pps_stabil;
1647 if (v_usec < 0)
1648 pps_stabil -= -v_usec >> PPS_AVG;
1649 else
1650 pps_stabil += v_usec >> PPS_AVG;
1651 if (pps_stabil > MAXFREQ >> 2) {
1652 pps_stbcnt++;
1653 time_status |= STA_PPSWANDER;
1654 return;
1655 }
1656 if (time_status & STA_PPSFREQ) {
1657 if (u_usec < 0) {
1658 pps_freq -= -u_usec >> PPS_AVG;
1659 if (pps_freq < -time_tolerance)
1660 pps_freq = -time_tolerance;
1661 u_usec = -u_usec;
1662 } else {
1663 pps_freq += u_usec >> PPS_AVG;
1664 if (pps_freq > time_tolerance)
1665 pps_freq = time_tolerance;
1666 }
1667 }
1668
1669 /*
1670 * Here the calibration interval is adjusted. If the maximum
1671 * time difference is greater than tick / 4, reduce the interval
1672 * by half. If this is not the case for four consecutive
1673 * intervals, double the interval.
1674 */
1675 if (u_usec << pps_shift > bigtick >> 2) {
1676 pps_intcnt = 0;
1677 if (pps_shift > PPS_SHIFT)
1678 pps_shift--;
1679 } else if (pps_intcnt >= 4) {
1680 pps_intcnt = 0;
1681 if (pps_shift < PPS_SHIFTMAX)
1682 pps_shift++;
1683 } else
1684 pps_intcnt++;
1685 }
1686 #endif /* PPS_SYNC */
1687 #endif /* NTP */
1688
1689 /*
1690 * Return information about system clocks.
1691 */
1692 int
1693 sysctl_clockrate(void *where, size_t *sizep)
1694 {
1695 struct clockinfo clkinfo;
1696
1697 /*
1698 * Construct clockinfo structure.
1699 */
1700 clkinfo.tick = tick;
1701 clkinfo.tickadj = tickadj;
1702 clkinfo.hz = hz;
1703 clkinfo.profhz = profhz;
1704 clkinfo.stathz = stathz ? stathz : hz;
1705 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1706 }
1707