kern_clock.c revision 1.74.2.8 1 /* $NetBSD: kern_clock.c,v 1.74.2.8 2002/07/12 01:40:13 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.74.2.8 2002/07/12 01:40:13 nathanw Exp $");
82
83 #include "opt_callout.h"
84 #include "opt_ntp.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/dkstat.h>
89 #include <sys/callout.h>
90 #include <sys/kernel.h>
91 #include <sys/proc.h>
92 #include <sys/resourcevar.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/timex.h>
96 #include <sys/sched.h>
97 #include <sys/time.h>
98 #ifdef CALLWHEEL_STATS
99 #include <sys/device.h>
100 #endif
101
102 #include <machine/cpu.h>
103 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
104 #include <machine/intr.h>
105 #endif
106
107 #ifdef GPROF
108 #include <sys/gmon.h>
109 #endif
110
111 /*
112 * Clock handling routines.
113 *
114 * This code is written to operate with two timers that run independently of
115 * each other. The main clock, running hz times per second, is used to keep
116 * track of real time. The second timer handles kernel and user profiling,
117 * and does resource use estimation. If the second timer is programmable,
118 * it is randomized to avoid aliasing between the two clocks. For example,
119 * the randomization prevents an adversary from always giving up the cpu
120 * just before its quantum expires. Otherwise, it would never accumulate
121 * cpu ticks. The mean frequency of the second timer is stathz.
122 *
123 * If no second timer exists, stathz will be zero; in this case we drive
124 * profiling and statistics off the main clock. This WILL NOT be accurate;
125 * do not do it unless absolutely necessary.
126 *
127 * The statistics clock may (or may not) be run at a higher rate while
128 * profiling. This profile clock runs at profhz. We require that profhz
129 * be an integral multiple of stathz.
130 *
131 * If the statistics clock is running fast, it must be divided by the ratio
132 * profhz/stathz for statistics. (For profiling, every tick counts.)
133 */
134
135 #ifdef NTP /* NTP phase-locked loop in kernel */
136 /*
137 * Phase/frequency-lock loop (PLL/FLL) definitions
138 *
139 * The following variables are read and set by the ntp_adjtime() system
140 * call.
141 *
142 * time_state shows the state of the system clock, with values defined
143 * in the timex.h header file.
144 *
145 * time_status shows the status of the system clock, with bits defined
146 * in the timex.h header file.
147 *
148 * time_offset is used by the PLL/FLL to adjust the system time in small
149 * increments.
150 *
151 * time_constant determines the bandwidth or "stiffness" of the PLL.
152 *
153 * time_tolerance determines maximum frequency error or tolerance of the
154 * CPU clock oscillator and is a property of the architecture; however,
155 * in principle it could change as result of the presence of external
156 * discipline signals, for instance.
157 *
158 * time_precision is usually equal to the kernel tick variable; however,
159 * in cases where a precision clock counter or external clock is
160 * available, the resolution can be much less than this and depend on
161 * whether the external clock is working or not.
162 *
163 * time_maxerror is initialized by a ntp_adjtime() call and increased by
164 * the kernel once each second to reflect the maximum error bound
165 * growth.
166 *
167 * time_esterror is set and read by the ntp_adjtime() call, but
168 * otherwise not used by the kernel.
169 */
170 int time_state = TIME_OK; /* clock state */
171 int time_status = STA_UNSYNC; /* clock status bits */
172 long time_offset = 0; /* time offset (us) */
173 long time_constant = 0; /* pll time constant */
174 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
175 long time_precision = 1; /* clock precision (us) */
176 long time_maxerror = MAXPHASE; /* maximum error (us) */
177 long time_esterror = MAXPHASE; /* estimated error (us) */
178
179 /*
180 * The following variables establish the state of the PLL/FLL and the
181 * residual time and frequency offset of the local clock. The scale
182 * factors are defined in the timex.h header file.
183 *
184 * time_phase and time_freq are the phase increment and the frequency
185 * increment, respectively, of the kernel time variable.
186 *
187 * time_freq is set via ntp_adjtime() from a value stored in a file when
188 * the synchronization daemon is first started. Its value is retrieved
189 * via ntp_adjtime() and written to the file about once per hour by the
190 * daemon.
191 *
192 * time_adj is the adjustment added to the value of tick at each timer
193 * interrupt and is recomputed from time_phase and time_freq at each
194 * seconds rollover.
195 *
196 * time_reftime is the second's portion of the system time at the last
197 * call to ntp_adjtime(). It is used to adjust the time_freq variable
198 * and to increase the time_maxerror as the time since last update
199 * increases.
200 */
201 long time_phase = 0; /* phase offset (scaled us) */
202 long time_freq = 0; /* frequency offset (scaled ppm) */
203 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
204 long time_reftime = 0; /* time at last adjustment (s) */
205
206 #ifdef PPS_SYNC
207 /*
208 * The following variables are used only if the kernel PPS discipline
209 * code is configured (PPS_SYNC). The scale factors are defined in the
210 * timex.h header file.
211 *
212 * pps_time contains the time at each calibration interval, as read by
213 * microtime(). pps_count counts the seconds of the calibration
214 * interval, the duration of which is nominally pps_shift in powers of
215 * two.
216 *
217 * pps_offset is the time offset produced by the time median filter
218 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
219 * this filter.
220 *
221 * pps_freq is the frequency offset produced by the frequency median
222 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
223 * by this filter.
224 *
225 * pps_usec is latched from a high resolution counter or external clock
226 * at pps_time. Here we want the hardware counter contents only, not the
227 * contents plus the time_tv.usec as usual.
228 *
229 * pps_valid counts the number of seconds since the last PPS update. It
230 * is used as a watchdog timer to disable the PPS discipline should the
231 * PPS signal be lost.
232 *
233 * pps_glitch counts the number of seconds since the beginning of an
234 * offset burst more than tick/2 from current nominal offset. It is used
235 * mainly to suppress error bursts due to priority conflicts between the
236 * PPS interrupt and timer interrupt.
237 *
238 * pps_intcnt counts the calibration intervals for use in the interval-
239 * adaptation algorithm. It's just too complicated for words.
240 */
241 struct timeval pps_time; /* kernel time at last interval */
242 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
243 long pps_offset = 0; /* pps time offset (us) */
244 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
245 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
246 long pps_freq = 0; /* frequency offset (scaled ppm) */
247 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
248 long pps_usec = 0; /* microsec counter at last interval */
249 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
250 int pps_glitch = 0; /* pps signal glitch counter */
251 int pps_count = 0; /* calibration interval counter (s) */
252 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
253 int pps_intcnt = 0; /* intervals at current duration */
254
255 /*
256 * PPS signal quality monitors
257 *
258 * pps_jitcnt counts the seconds that have been discarded because the
259 * jitter measured by the time median filter exceeds the limit MAXTIME
260 * (100 us).
261 *
262 * pps_calcnt counts the frequency calibration intervals, which are
263 * variable from 4 s to 256 s.
264 *
265 * pps_errcnt counts the calibration intervals which have been discarded
266 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
267 * calibration interval jitter exceeds two ticks.
268 *
269 * pps_stbcnt counts the calibration intervals that have been discarded
270 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
271 */
272 long pps_jitcnt = 0; /* jitter limit exceeded */
273 long pps_calcnt = 0; /* calibration intervals */
274 long pps_errcnt = 0; /* calibration errors */
275 long pps_stbcnt = 0; /* stability limit exceeded */
276 #endif /* PPS_SYNC */
277
278 #ifdef EXT_CLOCK
279 /*
280 * External clock definitions
281 *
282 * The following definitions and declarations are used only if an
283 * external clock is configured on the system.
284 */
285 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
286
287 /*
288 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
289 * interrupt and decremented once each second.
290 */
291 int clock_count = 0; /* CPU clock counter */
292
293 #ifdef HIGHBALL
294 /*
295 * The clock_offset and clock_cpu variables are used by the HIGHBALL
296 * interface. The clock_offset variable defines the offset between
297 * system time and the HIGBALL counters. The clock_cpu variable contains
298 * the offset between the system clock and the HIGHBALL clock for use in
299 * disciplining the kernel time variable.
300 */
301 extern struct timeval clock_offset; /* Highball clock offset */
302 long clock_cpu = 0; /* CPU clock adjust */
303 #endif /* HIGHBALL */
304 #endif /* EXT_CLOCK */
305 #endif /* NTP */
306
307
308 /*
309 * Bump a timeval by a small number of usec's.
310 */
311 #define BUMPTIME(t, usec) { \
312 volatile struct timeval *tp = (t); \
313 long us; \
314 \
315 tp->tv_usec = us = tp->tv_usec + (usec); \
316 if (us >= 1000000) { \
317 tp->tv_usec = us - 1000000; \
318 tp->tv_sec++; \
319 } \
320 }
321
322 int stathz;
323 int profhz;
324 int schedhz;
325 int profprocs;
326 int softclock_running; /* 1 => softclock() is running */
327 static int psdiv; /* prof => stat divider */
328 int psratio; /* ratio: prof / stat */
329 int tickfix, tickfixinterval; /* used if tick not really integral */
330 #ifndef NTP
331 static int tickfixcnt; /* accumulated fractional error */
332 #else
333 int fixtick; /* used by NTP for same */
334 int shifthz;
335 #endif
336
337 /*
338 * We might want ldd to load the both words from time at once.
339 * To succeed we need to be quadword aligned.
340 * The sparc already does that, and that it has worked so far is a fluke.
341 */
342 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
343 volatile struct timeval mono_time;
344
345 /*
346 * The callout mechanism is based on the work of Adam M. Costello and
347 * George Varghese, published in a technical report entitled "Redesigning
348 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
349 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
350 *
351 * The original work on the data structures used in this implementation
352 * was published by G. Varghese and A. Lauck in the paper "Hashed and
353 * Hierarchical Timing Wheels: Data Structures for the Efficient
354 * Implementation of a Timer Facility" in the Proceedings of the 11th
355 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
356 * November 1987.
357 */
358 struct callout_queue *callwheel;
359 int callwheelsize, callwheelbits, callwheelmask;
360
361 static struct callout *nextsoftcheck; /* next callout to be checked */
362
363 #ifdef CALLWHEEL_STATS
364 int *callwheel_sizes; /* per-bucket length count */
365 struct evcnt callwheel_collisions; /* number of hash collisions */
366 struct evcnt callwheel_maxlength; /* length of the longest hash chain */
367 struct evcnt callwheel_count; /* # callouts currently */
368 struct evcnt callwheel_established; /* # callouts established */
369 struct evcnt callwheel_fired; /* # callouts that fired */
370 struct evcnt callwheel_disestablished; /* # callouts disestablished */
371 struct evcnt callwheel_changed; /* # callouts changed */
372 struct evcnt callwheel_softclocks; /* # times softclock() called */
373 struct evcnt callwheel_softchecks; /* # checks per softclock() */
374 struct evcnt callwheel_softempty; /* # empty buckets seen */
375 struct evcnt callwheel_hintworked; /* # times hint saved scan */
376 #endif /* CALLWHEEL_STATS */
377
378 /*
379 * This value indicates the number of consecutive callouts that
380 * will be checked before we allow interrupts to have a chance
381 * again.
382 */
383 #ifndef MAX_SOFTCLOCK_STEPS
384 #define MAX_SOFTCLOCK_STEPS 100
385 #endif
386
387 struct simplelock callwheel_slock;
388
389 #define CALLWHEEL_LOCK(s) \
390 do { \
391 s = splclock(); \
392 simple_lock(&callwheel_slock); \
393 } while (0)
394
395 #define CALLWHEEL_UNLOCK(s) \
396 do { \
397 simple_unlock(&callwheel_slock); \
398 splx(s); \
399 } while (0)
400
401 static void callout_stop_locked(struct callout *);
402
403 /*
404 * These are both protected by callwheel_lock.
405 * XXX SHOULD BE STATIC!!
406 */
407 u_int64_t hardclock_ticks, softclock_ticks;
408
409 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
410 void softclock(void *);
411 void *softclock_si;
412 #endif
413
414 /*
415 * Initialize clock frequencies and start both clocks running.
416 */
417 void
418 initclocks(void)
419 {
420 int i;
421
422 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
423 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
424 if (softclock_si == NULL)
425 panic("initclocks: unable to register softclock intr");
426 #endif
427
428 /*
429 * Set divisors to 1 (normal case) and let the machine-specific
430 * code do its bit.
431 */
432 psdiv = 1;
433 cpu_initclocks();
434
435 /*
436 * Compute profhz/stathz/rrticks, and fix profhz if needed.
437 */
438 i = stathz ? stathz : hz;
439 if (profhz == 0)
440 profhz = i;
441 psratio = profhz / i;
442 rrticks = hz / 10;
443
444 #ifdef NTP
445 switch (hz) {
446 case 1:
447 shifthz = SHIFT_SCALE - 0;
448 break;
449 case 2:
450 shifthz = SHIFT_SCALE - 1;
451 break;
452 case 4:
453 shifthz = SHIFT_SCALE - 2;
454 break;
455 case 8:
456 shifthz = SHIFT_SCALE - 3;
457 break;
458 case 16:
459 shifthz = SHIFT_SCALE - 4;
460 break;
461 case 32:
462 shifthz = SHIFT_SCALE - 5;
463 break;
464 case 60:
465 case 64:
466 shifthz = SHIFT_SCALE - 6;
467 break;
468 case 96:
469 case 100:
470 case 128:
471 shifthz = SHIFT_SCALE - 7;
472 break;
473 case 256:
474 shifthz = SHIFT_SCALE - 8;
475 break;
476 case 512:
477 shifthz = SHIFT_SCALE - 9;
478 break;
479 case 1000:
480 case 1024:
481 shifthz = SHIFT_SCALE - 10;
482 break;
483 case 1200:
484 case 2048:
485 shifthz = SHIFT_SCALE - 11;
486 break;
487 case 4096:
488 shifthz = SHIFT_SCALE - 12;
489 break;
490 case 8192:
491 shifthz = SHIFT_SCALE - 13;
492 break;
493 case 16384:
494 shifthz = SHIFT_SCALE - 14;
495 break;
496 case 32768:
497 shifthz = SHIFT_SCALE - 15;
498 break;
499 case 65536:
500 shifthz = SHIFT_SCALE - 16;
501 break;
502 default:
503 panic("weird hz");
504 }
505 if (fixtick == 0) {
506 /*
507 * Give MD code a chance to set this to a better
508 * value; but, if it doesn't, we should.
509 */
510 fixtick = (1000000 - (hz*tick));
511 }
512 #endif
513 }
514
515 /*
516 * The real-time timer, interrupting hz times per second.
517 */
518 void
519 hardclock(struct clockframe *frame)
520 {
521 struct lwp *l;
522 struct proc *p;
523 int delta;
524 extern int tickdelta;
525 extern long timedelta;
526 struct cpu_info *ci = curcpu();
527 #ifdef NTP
528 int time_update;
529 int ltemp;
530 #endif
531
532 l = curlwp;
533 if (l) {
534 p = l->l_proc;
535 /*
536 * Run current process's virtual and profile time, as needed.
537 */
538 if (CLKF_USERMODE(frame) &&
539 p->p_timers && p->p_timers[ITIMER_VIRTUAL] &&
540 timerisset(&p->p_timers[ITIMER_VIRTUAL]->pt_time.it_value) &&
541 (itimerdecr(&p->p_timers[ITIMER_VIRTUAL]->pt_time, tick) == 0))
542 psignal(p, SIGVTALRM);
543 if (p->p_timers && p->p_timers[ITIMER_PROF] &&
544 timerisset(&p->p_timers[ITIMER_PROF]->pt_time.it_value) &&
545 (itimerdecr(&p->p_timers[ITIMER_PROF]->pt_time, tick) == 0))
546 psignal(p, SIGPROF);
547 }
548
549 /*
550 * If no separate statistics clock is available, run it from here.
551 */
552 if (stathz == 0)
553 statclock(frame);
554 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
555 roundrobin(ci);
556
557 #if defined(MULTIPROCESSOR)
558 /*
559 * If we are not the primary CPU, we're not allowed to do
560 * any more work.
561 */
562 if (CPU_IS_PRIMARY(ci) == 0)
563 return;
564 #endif
565
566 /*
567 * Increment the time-of-day. The increment is normally just
568 * ``tick''. If the machine is one which has a clock frequency
569 * such that ``hz'' would not divide the second evenly into
570 * milliseconds, a periodic adjustment must be applied. Finally,
571 * if we are still adjusting the time (see adjtime()),
572 * ``tickdelta'' may also be added in.
573 */
574 delta = tick;
575
576 #ifndef NTP
577 if (tickfix) {
578 tickfixcnt += tickfix;
579 if (tickfixcnt >= tickfixinterval) {
580 delta++;
581 tickfixcnt -= tickfixinterval;
582 }
583 }
584 #endif /* !NTP */
585 /* Imprecise 4bsd adjtime() handling */
586 if (timedelta != 0) {
587 delta += tickdelta;
588 timedelta -= tickdelta;
589 }
590
591 #ifdef notyet
592 microset();
593 #endif
594
595 #ifndef NTP
596 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
597 #endif
598 BUMPTIME(&mono_time, delta);
599
600 #ifdef NTP
601 time_update = delta;
602
603 /*
604 * Compute the phase adjustment. If the low-order bits
605 * (time_phase) of the update overflow, bump the high-order bits
606 * (time_update).
607 */
608 time_phase += time_adj;
609 if (time_phase <= -FINEUSEC) {
610 ltemp = -time_phase >> SHIFT_SCALE;
611 time_phase += ltemp << SHIFT_SCALE;
612 time_update -= ltemp;
613 } else if (time_phase >= FINEUSEC) {
614 ltemp = time_phase >> SHIFT_SCALE;
615 time_phase -= ltemp << SHIFT_SCALE;
616 time_update += ltemp;
617 }
618
619 #ifdef HIGHBALL
620 /*
621 * If the HIGHBALL board is installed, we need to adjust the
622 * external clock offset in order to close the hardware feedback
623 * loop. This will adjust the external clock phase and frequency
624 * in small amounts. The additional phase noise and frequency
625 * wander this causes should be minimal. We also need to
626 * discipline the kernel time variable, since the PLL is used to
627 * discipline the external clock. If the Highball board is not
628 * present, we discipline kernel time with the PLL as usual. We
629 * assume that the external clock phase adjustment (time_update)
630 * and kernel phase adjustment (clock_cpu) are less than the
631 * value of tick.
632 */
633 clock_offset.tv_usec += time_update;
634 if (clock_offset.tv_usec >= 1000000) {
635 clock_offset.tv_sec++;
636 clock_offset.tv_usec -= 1000000;
637 }
638 if (clock_offset.tv_usec < 0) {
639 clock_offset.tv_sec--;
640 clock_offset.tv_usec += 1000000;
641 }
642 time.tv_usec += clock_cpu;
643 clock_cpu = 0;
644 #else
645 time.tv_usec += time_update;
646 #endif /* HIGHBALL */
647
648 /*
649 * On rollover of the second the phase adjustment to be used for
650 * the next second is calculated. Also, the maximum error is
651 * increased by the tolerance. If the PPS frequency discipline
652 * code is present, the phase is increased to compensate for the
653 * CPU clock oscillator frequency error.
654 *
655 * On a 32-bit machine and given parameters in the timex.h
656 * header file, the maximum phase adjustment is +-512 ms and
657 * maximum frequency offset is a tad less than) +-512 ppm. On a
658 * 64-bit machine, you shouldn't need to ask.
659 */
660 if (time.tv_usec >= 1000000) {
661 time.tv_usec -= 1000000;
662 time.tv_sec++;
663 time_maxerror += time_tolerance >> SHIFT_USEC;
664
665 /*
666 * Leap second processing. If in leap-insert state at
667 * the end of the day, the system clock is set back one
668 * second; if in leap-delete state, the system clock is
669 * set ahead one second. The microtime() routine or
670 * external clock driver will insure that reported time
671 * is always monotonic. The ugly divides should be
672 * replaced.
673 */
674 switch (time_state) {
675 case TIME_OK:
676 if (time_status & STA_INS)
677 time_state = TIME_INS;
678 else if (time_status & STA_DEL)
679 time_state = TIME_DEL;
680 break;
681
682 case TIME_INS:
683 if (time.tv_sec % 86400 == 0) {
684 time.tv_sec--;
685 time_state = TIME_OOP;
686 }
687 break;
688
689 case TIME_DEL:
690 if ((time.tv_sec + 1) % 86400 == 0) {
691 time.tv_sec++;
692 time_state = TIME_WAIT;
693 }
694 break;
695
696 case TIME_OOP:
697 time_state = TIME_WAIT;
698 break;
699
700 case TIME_WAIT:
701 if (!(time_status & (STA_INS | STA_DEL)))
702 time_state = TIME_OK;
703 break;
704 }
705
706 /*
707 * Compute the phase adjustment for the next second. In
708 * PLL mode, the offset is reduced by a fixed factor
709 * times the time constant. In FLL mode the offset is
710 * used directly. In either mode, the maximum phase
711 * adjustment for each second is clamped so as to spread
712 * the adjustment over not more than the number of
713 * seconds between updates.
714 */
715 if (time_offset < 0) {
716 ltemp = -time_offset;
717 if (!(time_status & STA_FLL))
718 ltemp >>= SHIFT_KG + time_constant;
719 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
720 ltemp = (MAXPHASE / MINSEC) <<
721 SHIFT_UPDATE;
722 time_offset += ltemp;
723 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
724 } else if (time_offset > 0) {
725 ltemp = time_offset;
726 if (!(time_status & STA_FLL))
727 ltemp >>= SHIFT_KG + time_constant;
728 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
729 ltemp = (MAXPHASE / MINSEC) <<
730 SHIFT_UPDATE;
731 time_offset -= ltemp;
732 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
733 } else
734 time_adj = 0;
735
736 /*
737 * Compute the frequency estimate and additional phase
738 * adjustment due to frequency error for the next
739 * second. When the PPS signal is engaged, gnaw on the
740 * watchdog counter and update the frequency computed by
741 * the pll and the PPS signal.
742 */
743 #ifdef PPS_SYNC
744 pps_valid++;
745 if (pps_valid == PPS_VALID) {
746 pps_jitter = MAXTIME;
747 pps_stabil = MAXFREQ;
748 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
749 STA_PPSWANDER | STA_PPSERROR);
750 }
751 ltemp = time_freq + pps_freq;
752 #else
753 ltemp = time_freq;
754 #endif /* PPS_SYNC */
755
756 if (ltemp < 0)
757 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
758 else
759 time_adj += ltemp >> (SHIFT_USEC - shifthz);
760 time_adj += (long)fixtick << shifthz;
761
762 /*
763 * When the CPU clock oscillator frequency is not a
764 * power of 2 in Hz, shifthz is only an approximate
765 * scale factor.
766 *
767 * To determine the adjustment, you can do the following:
768 * bc -q
769 * scale=24
770 * obase=2
771 * idealhz/realhz
772 * where `idealhz' is the next higher power of 2, and `realhz'
773 * is the actual value. You may need to factor this result
774 * into a sequence of 2 multipliers to get better precision.
775 *
776 * Likewise, the error can be calculated with (e.g. for 100Hz):
777 * bc -q
778 * scale=24
779 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
780 * (and then multiply by 1000000 to get ppm).
781 */
782 switch (hz) {
783 case 60:
784 /* A factor of 1.000100010001 gives about 15ppm
785 error. */
786 if (time_adj < 0) {
787 time_adj -= (-time_adj >> 4);
788 time_adj -= (-time_adj >> 8);
789 } else {
790 time_adj += (time_adj >> 4);
791 time_adj += (time_adj >> 8);
792 }
793 break;
794
795 case 96:
796 /* A factor of 1.0101010101 gives about 244ppm error. */
797 if (time_adj < 0) {
798 time_adj -= (-time_adj >> 2);
799 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
800 } else {
801 time_adj += (time_adj >> 2);
802 time_adj += (time_adj >> 4) + (time_adj >> 8);
803 }
804 break;
805
806 case 100:
807 /* A factor of 1.010001111010111 gives about 1ppm
808 error. */
809 if (time_adj < 0) {
810 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
811 time_adj += (-time_adj >> 10);
812 } else {
813 time_adj += (time_adj >> 2) + (time_adj >> 5);
814 time_adj -= (time_adj >> 10);
815 }
816 break;
817
818 case 1000:
819 /* A factor of 1.000001100010100001 gives about 50ppm
820 error. */
821 if (time_adj < 0) {
822 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
823 time_adj -= (-time_adj >> 7);
824 } else {
825 time_adj += (time_adj >> 6) + (time_adj >> 11);
826 time_adj += (time_adj >> 7);
827 }
828 break;
829
830 case 1200:
831 /* A factor of 1.1011010011100001 gives about 64ppm
832 error. */
833 if (time_adj < 0) {
834 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
835 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
836 } else {
837 time_adj += (time_adj >> 1) + (time_adj >> 6);
838 time_adj += (time_adj >> 3) + (time_adj >> 10);
839 }
840 break;
841 }
842
843 #ifdef EXT_CLOCK
844 /*
845 * If an external clock is present, it is necessary to
846 * discipline the kernel time variable anyway, since not
847 * all system components use the microtime() interface.
848 * Here, the time offset between the external clock and
849 * kernel time variable is computed every so often.
850 */
851 clock_count++;
852 if (clock_count > CLOCK_INTERVAL) {
853 clock_count = 0;
854 microtime(&clock_ext);
855 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
856 delta.tv_usec = clock_ext.tv_usec -
857 time.tv_usec;
858 if (delta.tv_usec < 0)
859 delta.tv_sec--;
860 if (delta.tv_usec >= 500000) {
861 delta.tv_usec -= 1000000;
862 delta.tv_sec++;
863 }
864 if (delta.tv_usec < -500000) {
865 delta.tv_usec += 1000000;
866 delta.tv_sec--;
867 }
868 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
869 delta.tv_usec > MAXPHASE) ||
870 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
871 delta.tv_usec < -MAXPHASE)) {
872 time = clock_ext;
873 delta.tv_sec = 0;
874 delta.tv_usec = 0;
875 }
876 #ifdef HIGHBALL
877 clock_cpu = delta.tv_usec;
878 #else /* HIGHBALL */
879 hardupdate(delta.tv_usec);
880 #endif /* HIGHBALL */
881 }
882 #endif /* EXT_CLOCK */
883 }
884
885 #endif /* NTP */
886
887 /*
888 * Process callouts at a very low cpu priority, so we don't keep the
889 * relatively high clock interrupt priority any longer than necessary.
890 */
891 simple_lock(&callwheel_slock); /* already at splclock() */
892 hardclock_ticks++;
893 if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
894 simple_unlock(&callwheel_slock);
895 if (CLKF_BASEPRI(frame)) {
896 /*
897 * Save the overhead of a software interrupt;
898 * it will happen as soon as we return, so do
899 * it now.
900 *
901 * NOTE: If we're at ``base priority'', softclock()
902 * was not already running.
903 */
904 spllowersoftclock();
905 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
906 softclock(NULL);
907 KERNEL_UNLOCK();
908 } else {
909 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
910 softintr_schedule(softclock_si);
911 #else
912 setsoftclock();
913 #endif
914 }
915 return;
916 } else if (softclock_running == 0 &&
917 (softclock_ticks + 1) == hardclock_ticks) {
918 softclock_ticks++;
919 }
920 simple_unlock(&callwheel_slock);
921 }
922
923 /*
924 * Software (low priority) clock interrupt.
925 * Run periodic events from timeout queue.
926 */
927 /*ARGSUSED*/
928 void
929 softclock(void *v)
930 {
931 struct callout_queue *bucket;
932 struct callout *c;
933 void (*func)(void *);
934 void *arg;
935 int s, idx;
936 int steps = 0;
937
938 CALLWHEEL_LOCK(s);
939
940 softclock_running = 1;
941
942 #ifdef CALLWHEEL_STATS
943 callwheel_softclocks.ev_count++;
944 #endif
945
946 while (softclock_ticks != hardclock_ticks) {
947 softclock_ticks++;
948 idx = (int)(softclock_ticks & callwheelmask);
949 bucket = &callwheel[idx];
950 c = TAILQ_FIRST(&bucket->cq_q);
951 if (c == NULL) {
952 #ifdef CALLWHEEL_STATS
953 callwheel_softempty.ev_count++;
954 #endif
955 continue;
956 }
957 if (softclock_ticks < bucket->cq_hint) {
958 #ifdef CALLWHEEL_STATS
959 callwheel_hintworked.ev_count++;
960 #endif
961 continue;
962 }
963 bucket->cq_hint = UQUAD_MAX;
964 while (c != NULL) {
965 #ifdef CALLWHEEL_STATS
966 callwheel_softchecks.ev_count++;
967 #endif
968 if (c->c_time != softclock_ticks) {
969 if (c->c_time < bucket->cq_hint)
970 bucket->cq_hint = c->c_time;
971 c = TAILQ_NEXT(c, c_link);
972 if (++steps >= MAX_SOFTCLOCK_STEPS) {
973 nextsoftcheck = c;
974 /* Give interrupts a chance. */
975 CALLWHEEL_UNLOCK(s);
976 CALLWHEEL_LOCK(s);
977 c = nextsoftcheck;
978 steps = 0;
979 }
980 } else {
981 nextsoftcheck = TAILQ_NEXT(c, c_link);
982 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
983 #ifdef CALLWHEEL_STATS
984 callwheel_sizes[idx]--;
985 callwheel_fired.ev_count++;
986 callwheel_count.ev_count--;
987 #endif
988 func = c->c_func;
989 arg = c->c_arg;
990 c->c_func = NULL;
991 c->c_flags &= ~CALLOUT_PENDING;
992 CALLWHEEL_UNLOCK(s);
993 (*func)(arg);
994 CALLWHEEL_LOCK(s);
995 steps = 0;
996 c = nextsoftcheck;
997 }
998 }
999 if (TAILQ_EMPTY(&bucket->cq_q))
1000 bucket->cq_hint = UQUAD_MAX;
1001 }
1002 nextsoftcheck = NULL;
1003 softclock_running = 0;
1004 CALLWHEEL_UNLOCK(s);
1005 }
1006
1007 /*
1008 * callout_setsize:
1009 *
1010 * Determine how many callwheels are necessary and
1011 * set hash mask. Called from allocsys().
1012 */
1013 void
1014 callout_setsize(void)
1015 {
1016
1017 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
1018 /* loop */ ;
1019 callwheelmask = callwheelsize - 1;
1020 }
1021
1022 /*
1023 * callout_startup:
1024 *
1025 * Initialize the callwheel buckets.
1026 */
1027 void
1028 callout_startup(void)
1029 {
1030 int i;
1031
1032 for (i = 0; i < callwheelsize; i++) {
1033 callwheel[i].cq_hint = UQUAD_MAX;
1034 TAILQ_INIT(&callwheel[i].cq_q);
1035 }
1036
1037 simple_lock_init(&callwheel_slock);
1038
1039 #ifdef CALLWHEEL_STATS
1040 evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
1041 NULL, "callwheel", "collisions");
1042 evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
1043 NULL, "callwheel", "maxlength");
1044 evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
1045 NULL, "callwheel", "count");
1046 evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
1047 NULL, "callwheel", "established");
1048 evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
1049 NULL, "callwheel", "fired");
1050 evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
1051 NULL, "callwheel", "disestablished");
1052 evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
1053 NULL, "callwheel", "changed");
1054 evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
1055 NULL, "callwheel", "softclocks");
1056 evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
1057 NULL, "callwheel", "softempty");
1058 evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
1059 NULL, "callwheel", "hintworked");
1060 #endif /* CALLWHEEL_STATS */
1061 }
1062
1063 /*
1064 * callout_init:
1065 *
1066 * Initialize a callout structure so that it can be used
1067 * by callout_reset() and callout_stop().
1068 */
1069 void
1070 callout_init(struct callout *c)
1071 {
1072
1073 memset(c, 0, sizeof(*c));
1074 }
1075
1076 /*
1077 * callout_reset:
1078 *
1079 * Establish or change a timeout.
1080 */
1081 void
1082 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1083 {
1084 struct callout_queue *bucket;
1085 int s;
1086
1087 if (ticks <= 0)
1088 ticks = 1;
1089
1090 CALLWHEEL_LOCK(s);
1091
1092 /*
1093 * If this callout's timer is already running, cancel it
1094 * before we modify it.
1095 */
1096 if (c->c_flags & CALLOUT_PENDING) {
1097 callout_stop_locked(c); /* Already locked */
1098 #ifdef CALLWHEEL_STATS
1099 callwheel_changed.ev_count++;
1100 #endif
1101 }
1102
1103 c->c_arg = arg;
1104 c->c_func = func;
1105 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1106 c->c_time = hardclock_ticks + ticks;
1107
1108 bucket = &callwheel[c->c_time & callwheelmask];
1109
1110 #ifdef CALLWHEEL_STATS
1111 if (! TAILQ_EMPTY(&bucket->cq_q))
1112 callwheel_collisions.ev_count++;
1113 #endif
1114
1115 TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
1116 if (c->c_time < bucket->cq_hint)
1117 bucket->cq_hint = c->c_time;
1118
1119 #ifdef CALLWHEEL_STATS
1120 callwheel_count.ev_count++;
1121 callwheel_established.ev_count++;
1122 if (++callwheel_sizes[c->c_time & callwheelmask] >
1123 callwheel_maxlength.ev_count)
1124 callwheel_maxlength.ev_count =
1125 callwheel_sizes[c->c_time & callwheelmask];
1126 #endif
1127
1128 CALLWHEEL_UNLOCK(s);
1129 }
1130
1131 /*
1132 * callout_stop_locked:
1133 *
1134 * Disestablish a timeout. Callwheel is locked.
1135 */
1136 static void
1137 callout_stop_locked(struct callout *c)
1138 {
1139 struct callout_queue *bucket;
1140
1141 /*
1142 * Don't attempt to delete a callout that's not on the queue.
1143 */
1144 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1145 c->c_flags &= ~CALLOUT_ACTIVE;
1146 return;
1147 }
1148
1149 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1150
1151 if (nextsoftcheck == c)
1152 nextsoftcheck = TAILQ_NEXT(c, c_link);
1153
1154 bucket = &callwheel[c->c_time & callwheelmask];
1155 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
1156 if (TAILQ_EMPTY(&bucket->cq_q))
1157 bucket->cq_hint = UQUAD_MAX;
1158 #ifdef CALLWHEEL_STATS
1159 callwheel_count.ev_count--;
1160 callwheel_disestablished.ev_count++;
1161 callwheel_sizes[c->c_time & callwheelmask]--;
1162 #endif
1163
1164 c->c_func = NULL;
1165 }
1166
1167 /*
1168 * callout_stop:
1169 *
1170 * Disestablish a timeout. Callwheel is unlocked. This is
1171 * the standard entry point.
1172 */
1173 void
1174 callout_stop(struct callout *c)
1175 {
1176 int s;
1177
1178 CALLWHEEL_LOCK(s);
1179 callout_stop_locked(c);
1180 CALLWHEEL_UNLOCK(s);
1181 }
1182
1183 #ifdef CALLWHEEL_STATS
1184 /*
1185 * callout_showstats:
1186 *
1187 * Display callout statistics. Call it from DDB.
1188 */
1189 void
1190 callout_showstats(void)
1191 {
1192 u_int64_t curticks;
1193 int s;
1194
1195 s = splclock();
1196 curticks = softclock_ticks;
1197 splx(s);
1198
1199 printf("Callwheel statistics:\n");
1200 printf("\tCallouts currently queued: %llu\n",
1201 (long long) callwheel_count.ev_count);
1202 printf("\tCallouts established: %llu\n",
1203 (long long) callwheel_established.ev_count);
1204 printf("\tCallouts disestablished: %llu\n",
1205 (long long) callwheel_disestablished.ev_count);
1206 if (callwheel_changed.ev_count != 0)
1207 printf("\t\tOf those, %llu were changes\n",
1208 (long long) callwheel_changed.ev_count);
1209 printf("\tCallouts that fired: %llu\n",
1210 (long long) callwheel_fired.ev_count);
1211 printf("\tNumber of buckets: %d\n", callwheelsize);
1212 printf("\tNumber of hash collisions: %llu\n",
1213 (long long) callwheel_collisions.ev_count);
1214 printf("\tMaximum hash chain length: %llu\n",
1215 (long long) callwheel_maxlength.ev_count);
1216 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1217 (long long) callwheel_softclocks.ev_count,
1218 (long long) callwheel_softchecks.ev_count);
1219 printf("\t\tEmpty buckets seen: %llu\n",
1220 (long long) callwheel_softempty.ev_count);
1221 printf("\t\tTimes hint saved scan: %llu\n",
1222 (long long) callwheel_hintworked.ev_count);
1223 }
1224 #endif
1225
1226 /*
1227 * Compute number of hz until specified time. Used to compute second
1228 * argument to callout_reset() from an absolute time.
1229 */
1230 int
1231 hzto(struct timeval *tv)
1232 {
1233 unsigned long ticks;
1234 long sec, usec;
1235 int s;
1236
1237 /*
1238 * If the number of usecs in the whole seconds part of the time
1239 * difference fits in a long, then the total number of usecs will
1240 * fit in an unsigned long. Compute the total and convert it to
1241 * ticks, rounding up and adding 1 to allow for the current tick
1242 * to expire. Rounding also depends on unsigned long arithmetic
1243 * to avoid overflow.
1244 *
1245 * Otherwise, if the number of ticks in the whole seconds part of
1246 * the time difference fits in a long, then convert the parts to
1247 * ticks separately and add, using similar rounding methods and
1248 * overflow avoidance. This method would work in the previous
1249 * case, but it is slightly slower and assume that hz is integral.
1250 *
1251 * Otherwise, round the time difference down to the maximum
1252 * representable value.
1253 *
1254 * If ints are 32-bit, then the maximum value for any timeout in
1255 * 10ms ticks is 248 days.
1256 */
1257 s = splclock();
1258 sec = tv->tv_sec - time.tv_sec;
1259 usec = tv->tv_usec - time.tv_usec;
1260 splx(s);
1261
1262 if (usec < 0) {
1263 sec--;
1264 usec += 1000000;
1265 }
1266
1267 if (sec < 0 || (sec == 0 && usec <= 0)) {
1268 /*
1269 * Would expire now or in the past. Return 0 ticks.
1270 * This is different from the legacy hzto() interface,
1271 * and callers need to check for it.
1272 */
1273 ticks = 0;
1274 } else if (sec <= (LONG_MAX / 1000000))
1275 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1276 / tick) + 1;
1277 else if (sec <= (LONG_MAX / hz))
1278 ticks = (sec * hz) +
1279 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1280 else
1281 ticks = LONG_MAX;
1282
1283 if (ticks > INT_MAX)
1284 ticks = INT_MAX;
1285
1286 return ((int)ticks);
1287 }
1288
1289 /*
1290 * Start profiling on a process.
1291 *
1292 * Kernel profiling passes proc0 which never exits and hence
1293 * keeps the profile clock running constantly.
1294 */
1295 void
1296 startprofclock(struct proc *p)
1297 {
1298
1299 if ((p->p_flag & P_PROFIL) == 0) {
1300 p->p_flag |= P_PROFIL;
1301 if (++profprocs == 1 && stathz != 0)
1302 psdiv = psratio;
1303 }
1304 }
1305
1306 /*
1307 * Stop profiling on a process.
1308 */
1309 void
1310 stopprofclock(struct proc *p)
1311 {
1312
1313 if (p->p_flag & P_PROFIL) {
1314 p->p_flag &= ~P_PROFIL;
1315 if (--profprocs == 0 && stathz != 0)
1316 psdiv = 1;
1317 }
1318 }
1319
1320 /*
1321 * Statistics clock. Grab profile sample, and if divider reaches 0,
1322 * do process and kernel statistics.
1323 */
1324 void
1325 statclock(struct clockframe *frame)
1326 {
1327 #ifdef GPROF
1328 struct gmonparam *g;
1329 intptr_t i;
1330 #endif
1331 struct cpu_info *ci = curcpu();
1332 struct schedstate_percpu *spc = &ci->ci_schedstate;
1333 struct lwp *l;
1334 struct proc *p;
1335
1336 /*
1337 * Notice changes in divisor frequency, and adjust clock
1338 * frequency accordingly.
1339 */
1340 if (spc->spc_psdiv != psdiv) {
1341 spc->spc_psdiv = psdiv;
1342 spc->spc_pscnt = psdiv;
1343 if (psdiv == 1) {
1344 setstatclockrate(stathz);
1345 } else {
1346 setstatclockrate(profhz);
1347 }
1348 }
1349 l = curlwp;
1350 p = (l ? l->l_proc : 0);
1351 if (CLKF_USERMODE(frame)) {
1352 if (p->p_flag & P_PROFIL)
1353 addupc_intr(p, CLKF_PC(frame));
1354 if (--spc->spc_pscnt > 0)
1355 return;
1356 /*
1357 * Came from user mode; CPU was in user state.
1358 * If this process is being profiled record the tick.
1359 */
1360 p->p_uticks++;
1361 if (p->p_nice > NZERO)
1362 spc->spc_cp_time[CP_NICE]++;
1363 else
1364 spc->spc_cp_time[CP_USER]++;
1365 } else {
1366 #ifdef GPROF
1367 /*
1368 * Kernel statistics are just like addupc_intr, only easier.
1369 */
1370 g = &_gmonparam;
1371 if (g->state == GMON_PROF_ON) {
1372 i = CLKF_PC(frame) - g->lowpc;
1373 if (i < g->textsize) {
1374 i /= HISTFRACTION * sizeof(*g->kcount);
1375 g->kcount[i]++;
1376 }
1377 }
1378 #endif
1379 #ifdef LWP_PC
1380 if (p && p->p_flag & P_PROFIL)
1381 addupc_intr(p, LWP_PC(l));
1382 #endif
1383 if (--spc->spc_pscnt > 0)
1384 return;
1385 /*
1386 * Came from kernel mode, so we were:
1387 * - handling an interrupt,
1388 * - doing syscall or trap work on behalf of the current
1389 * user process, or
1390 * - spinning in the idle loop.
1391 * Whichever it is, charge the time as appropriate.
1392 * Note that we charge interrupts to the current process,
1393 * regardless of whether they are ``for'' that process,
1394 * so that we know how much of its real time was spent
1395 * in ``non-process'' (i.e., interrupt) work.
1396 */
1397 if (CLKF_INTR(frame)) {
1398 if (p != NULL)
1399 p->p_iticks++;
1400 spc->spc_cp_time[CP_INTR]++;
1401 } else if (p != NULL) {
1402 p->p_sticks++;
1403 spc->spc_cp_time[CP_SYS]++;
1404 } else
1405 spc->spc_cp_time[CP_IDLE]++;
1406 }
1407 spc->spc_pscnt = psdiv;
1408
1409 if (l != NULL) {
1410 ++p->p_cpticks;
1411 /*
1412 * If no separate schedclock is provided, call it here
1413 * at ~~12-25 Hz, ~~16 Hz is best
1414 */
1415 if (schedhz == 0)
1416 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1417 schedclock(l);
1418 }
1419 }
1420
1421
1422 #ifdef NTP /* NTP phase-locked loop in kernel */
1423
1424 /*
1425 * hardupdate() - local clock update
1426 *
1427 * This routine is called by ntp_adjtime() to update the local clock
1428 * phase and frequency. The implementation is of an adaptive-parameter,
1429 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1430 * time and frequency offset estimates for each call. If the kernel PPS
1431 * discipline code is configured (PPS_SYNC), the PPS signal itself
1432 * determines the new time offset, instead of the calling argument.
1433 * Presumably, calls to ntp_adjtime() occur only when the caller
1434 * believes the local clock is valid within some bound (+-128 ms with
1435 * NTP). If the caller's time is far different than the PPS time, an
1436 * argument will ensue, and it's not clear who will lose.
1437 *
1438 * For uncompensated quartz crystal oscillatores and nominal update
1439 * intervals less than 1024 s, operation should be in phase-lock mode
1440 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1441 * intervals greater than thiss, operation should be in frequency-lock
1442 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1443 *
1444 * Note: splclock() is in effect.
1445 */
1446 void
1447 hardupdate(long offset)
1448 {
1449 long ltemp, mtemp;
1450
1451 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1452 return;
1453 ltemp = offset;
1454 #ifdef PPS_SYNC
1455 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1456 ltemp = pps_offset;
1457 #endif /* PPS_SYNC */
1458
1459 /*
1460 * Scale the phase adjustment and clamp to the operating range.
1461 */
1462 if (ltemp > MAXPHASE)
1463 time_offset = MAXPHASE << SHIFT_UPDATE;
1464 else if (ltemp < -MAXPHASE)
1465 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1466 else
1467 time_offset = ltemp << SHIFT_UPDATE;
1468
1469 /*
1470 * Select whether the frequency is to be controlled and in which
1471 * mode (PLL or FLL). Clamp to the operating range. Ugly
1472 * multiply/divide should be replaced someday.
1473 */
1474 if (time_status & STA_FREQHOLD || time_reftime == 0)
1475 time_reftime = time.tv_sec;
1476 mtemp = time.tv_sec - time_reftime;
1477 time_reftime = time.tv_sec;
1478 if (time_status & STA_FLL) {
1479 if (mtemp >= MINSEC) {
1480 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1481 SHIFT_UPDATE));
1482 if (ltemp < 0)
1483 time_freq -= -ltemp >> SHIFT_KH;
1484 else
1485 time_freq += ltemp >> SHIFT_KH;
1486 }
1487 } else {
1488 if (mtemp < MAXSEC) {
1489 ltemp *= mtemp;
1490 if (ltemp < 0)
1491 time_freq -= -ltemp >> (time_constant +
1492 time_constant + SHIFT_KF -
1493 SHIFT_USEC);
1494 else
1495 time_freq += ltemp >> (time_constant +
1496 time_constant + SHIFT_KF -
1497 SHIFT_USEC);
1498 }
1499 }
1500 if (time_freq > time_tolerance)
1501 time_freq = time_tolerance;
1502 else if (time_freq < -time_tolerance)
1503 time_freq = -time_tolerance;
1504 }
1505
1506 #ifdef PPS_SYNC
1507 /*
1508 * hardpps() - discipline CPU clock oscillator to external PPS signal
1509 *
1510 * This routine is called at each PPS interrupt in order to discipline
1511 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1512 * and leaves it in a handy spot for the hardclock() routine. It
1513 * integrates successive PPS phase differences and calculates the
1514 * frequency offset. This is used in hardclock() to discipline the CPU
1515 * clock oscillator so that intrinsic frequency error is cancelled out.
1516 * The code requires the caller to capture the time and hardware counter
1517 * value at the on-time PPS signal transition.
1518 *
1519 * Note that, on some Unix systems, this routine runs at an interrupt
1520 * priority level higher than the timer interrupt routine hardclock().
1521 * Therefore, the variables used are distinct from the hardclock()
1522 * variables, except for certain exceptions: The PPS frequency pps_freq
1523 * and phase pps_offset variables are determined by this routine and
1524 * updated atomically. The time_tolerance variable can be considered a
1525 * constant, since it is infrequently changed, and then only when the
1526 * PPS signal is disabled. The watchdog counter pps_valid is updated
1527 * once per second by hardclock() and is atomically cleared in this
1528 * routine.
1529 */
1530 void
1531 hardpps(struct timeval *tvp, /* time at PPS */
1532 long usec /* hardware counter at PPS */)
1533 {
1534 long u_usec, v_usec, bigtick;
1535 long cal_sec, cal_usec;
1536
1537 /*
1538 * An occasional glitch can be produced when the PPS interrupt
1539 * occurs in the hardclock() routine before the time variable is
1540 * updated. Here the offset is discarded when the difference
1541 * between it and the last one is greater than tick/2, but not
1542 * if the interval since the first discard exceeds 30 s.
1543 */
1544 time_status |= STA_PPSSIGNAL;
1545 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1546 pps_valid = 0;
1547 u_usec = -tvp->tv_usec;
1548 if (u_usec < -500000)
1549 u_usec += 1000000;
1550 v_usec = pps_offset - u_usec;
1551 if (v_usec < 0)
1552 v_usec = -v_usec;
1553 if (v_usec > (tick >> 1)) {
1554 if (pps_glitch > MAXGLITCH) {
1555 pps_glitch = 0;
1556 pps_tf[2] = u_usec;
1557 pps_tf[1] = u_usec;
1558 } else {
1559 pps_glitch++;
1560 u_usec = pps_offset;
1561 }
1562 } else
1563 pps_glitch = 0;
1564
1565 /*
1566 * A three-stage median filter is used to help deglitch the pps
1567 * time. The median sample becomes the time offset estimate; the
1568 * difference between the other two samples becomes the time
1569 * dispersion (jitter) estimate.
1570 */
1571 pps_tf[2] = pps_tf[1];
1572 pps_tf[1] = pps_tf[0];
1573 pps_tf[0] = u_usec;
1574 if (pps_tf[0] > pps_tf[1]) {
1575 if (pps_tf[1] > pps_tf[2]) {
1576 pps_offset = pps_tf[1]; /* 0 1 2 */
1577 v_usec = pps_tf[0] - pps_tf[2];
1578 } else if (pps_tf[2] > pps_tf[0]) {
1579 pps_offset = pps_tf[0]; /* 2 0 1 */
1580 v_usec = pps_tf[2] - pps_tf[1];
1581 } else {
1582 pps_offset = pps_tf[2]; /* 0 2 1 */
1583 v_usec = pps_tf[0] - pps_tf[1];
1584 }
1585 } else {
1586 if (pps_tf[1] < pps_tf[2]) {
1587 pps_offset = pps_tf[1]; /* 2 1 0 */
1588 v_usec = pps_tf[2] - pps_tf[0];
1589 } else if (pps_tf[2] < pps_tf[0]) {
1590 pps_offset = pps_tf[0]; /* 1 0 2 */
1591 v_usec = pps_tf[1] - pps_tf[2];
1592 } else {
1593 pps_offset = pps_tf[2]; /* 1 2 0 */
1594 v_usec = pps_tf[1] - pps_tf[0];
1595 }
1596 }
1597 if (v_usec > MAXTIME)
1598 pps_jitcnt++;
1599 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1600 if (v_usec < 0)
1601 pps_jitter -= -v_usec >> PPS_AVG;
1602 else
1603 pps_jitter += v_usec >> PPS_AVG;
1604 if (pps_jitter > (MAXTIME >> 1))
1605 time_status |= STA_PPSJITTER;
1606
1607 /*
1608 * During the calibration interval adjust the starting time when
1609 * the tick overflows. At the end of the interval compute the
1610 * duration of the interval and the difference of the hardware
1611 * counters at the beginning and end of the interval. This code
1612 * is deliciously complicated by the fact valid differences may
1613 * exceed the value of tick when using long calibration
1614 * intervals and small ticks. Note that the counter can be
1615 * greater than tick if caught at just the wrong instant, but
1616 * the values returned and used here are correct.
1617 */
1618 bigtick = (long)tick << SHIFT_USEC;
1619 pps_usec -= pps_freq;
1620 if (pps_usec >= bigtick)
1621 pps_usec -= bigtick;
1622 if (pps_usec < 0)
1623 pps_usec += bigtick;
1624 pps_time.tv_sec++;
1625 pps_count++;
1626 if (pps_count < (1 << pps_shift))
1627 return;
1628 pps_count = 0;
1629 pps_calcnt++;
1630 u_usec = usec << SHIFT_USEC;
1631 v_usec = pps_usec - u_usec;
1632 if (v_usec >= bigtick >> 1)
1633 v_usec -= bigtick;
1634 if (v_usec < -(bigtick >> 1))
1635 v_usec += bigtick;
1636 if (v_usec < 0)
1637 v_usec = -(-v_usec >> pps_shift);
1638 else
1639 v_usec = v_usec >> pps_shift;
1640 pps_usec = u_usec;
1641 cal_sec = tvp->tv_sec;
1642 cal_usec = tvp->tv_usec;
1643 cal_sec -= pps_time.tv_sec;
1644 cal_usec -= pps_time.tv_usec;
1645 if (cal_usec < 0) {
1646 cal_usec += 1000000;
1647 cal_sec--;
1648 }
1649 pps_time = *tvp;
1650
1651 /*
1652 * Check for lost interrupts, noise, excessive jitter and
1653 * excessive frequency error. The number of timer ticks during
1654 * the interval may vary +-1 tick. Add to this a margin of one
1655 * tick for the PPS signal jitter and maximum frequency
1656 * deviation. If the limits are exceeded, the calibration
1657 * interval is reset to the minimum and we start over.
1658 */
1659 u_usec = (long)tick << 1;
1660 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1661 || (cal_sec == 0 && cal_usec < u_usec))
1662 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1663 pps_errcnt++;
1664 pps_shift = PPS_SHIFT;
1665 pps_intcnt = 0;
1666 time_status |= STA_PPSERROR;
1667 return;
1668 }
1669
1670 /*
1671 * A three-stage median filter is used to help deglitch the pps
1672 * frequency. The median sample becomes the frequency offset
1673 * estimate; the difference between the other two samples
1674 * becomes the frequency dispersion (stability) estimate.
1675 */
1676 pps_ff[2] = pps_ff[1];
1677 pps_ff[1] = pps_ff[0];
1678 pps_ff[0] = v_usec;
1679 if (pps_ff[0] > pps_ff[1]) {
1680 if (pps_ff[1] > pps_ff[2]) {
1681 u_usec = pps_ff[1]; /* 0 1 2 */
1682 v_usec = pps_ff[0] - pps_ff[2];
1683 } else if (pps_ff[2] > pps_ff[0]) {
1684 u_usec = pps_ff[0]; /* 2 0 1 */
1685 v_usec = pps_ff[2] - pps_ff[1];
1686 } else {
1687 u_usec = pps_ff[2]; /* 0 2 1 */
1688 v_usec = pps_ff[0] - pps_ff[1];
1689 }
1690 } else {
1691 if (pps_ff[1] < pps_ff[2]) {
1692 u_usec = pps_ff[1]; /* 2 1 0 */
1693 v_usec = pps_ff[2] - pps_ff[0];
1694 } else if (pps_ff[2] < pps_ff[0]) {
1695 u_usec = pps_ff[0]; /* 1 0 2 */
1696 v_usec = pps_ff[1] - pps_ff[2];
1697 } else {
1698 u_usec = pps_ff[2]; /* 1 2 0 */
1699 v_usec = pps_ff[1] - pps_ff[0];
1700 }
1701 }
1702
1703 /*
1704 * Here the frequency dispersion (stability) is updated. If it
1705 * is less than one-fourth the maximum (MAXFREQ), the frequency
1706 * offset is updated as well, but clamped to the tolerance. It
1707 * will be processed later by the hardclock() routine.
1708 */
1709 v_usec = (v_usec >> 1) - pps_stabil;
1710 if (v_usec < 0)
1711 pps_stabil -= -v_usec >> PPS_AVG;
1712 else
1713 pps_stabil += v_usec >> PPS_AVG;
1714 if (pps_stabil > MAXFREQ >> 2) {
1715 pps_stbcnt++;
1716 time_status |= STA_PPSWANDER;
1717 return;
1718 }
1719 if (time_status & STA_PPSFREQ) {
1720 if (u_usec < 0) {
1721 pps_freq -= -u_usec >> PPS_AVG;
1722 if (pps_freq < -time_tolerance)
1723 pps_freq = -time_tolerance;
1724 u_usec = -u_usec;
1725 } else {
1726 pps_freq += u_usec >> PPS_AVG;
1727 if (pps_freq > time_tolerance)
1728 pps_freq = time_tolerance;
1729 }
1730 }
1731
1732 /*
1733 * Here the calibration interval is adjusted. If the maximum
1734 * time difference is greater than tick / 4, reduce the interval
1735 * by half. If this is not the case for four consecutive
1736 * intervals, double the interval.
1737 */
1738 if (u_usec << pps_shift > bigtick >> 2) {
1739 pps_intcnt = 0;
1740 if (pps_shift > PPS_SHIFT)
1741 pps_shift--;
1742 } else if (pps_intcnt >= 4) {
1743 pps_intcnt = 0;
1744 if (pps_shift < PPS_SHIFTMAX)
1745 pps_shift++;
1746 } else
1747 pps_intcnt++;
1748 }
1749 #endif /* PPS_SYNC */
1750 #endif /* NTP */
1751
1752 /*
1753 * Return information about system clocks.
1754 */
1755 int
1756 sysctl_clockrate(void *where, size_t *sizep)
1757 {
1758 struct clockinfo clkinfo;
1759
1760 /*
1761 * Construct clockinfo structure.
1762 */
1763 clkinfo.tick = tick;
1764 clkinfo.tickadj = tickadj;
1765 clkinfo.hz = hz;
1766 clkinfo.profhz = profhz;
1767 clkinfo.stathz = stathz ? stathz : hz;
1768 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1769 }
1770