kern_clock.c revision 1.75 1 /* $NetBSD: kern_clock.c,v 1.75 2001/05/06 13:46:34 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 #include <machine/intr.h>
98 #endif
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the cpu
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * cpu ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifdef NTP /* NTP phase-locked loop in kernel */
129 /*
130 * Phase/frequency-lock loop (PLL/FLL) definitions
131 *
132 * The following variables are read and set by the ntp_adjtime() system
133 * call.
134 *
135 * time_state shows the state of the system clock, with values defined
136 * in the timex.h header file.
137 *
138 * time_status shows the status of the system clock, with bits defined
139 * in the timex.h header file.
140 *
141 * time_offset is used by the PLL/FLL to adjust the system time in small
142 * increments.
143 *
144 * time_constant determines the bandwidth or "stiffness" of the PLL.
145 *
146 * time_tolerance determines maximum frequency error or tolerance of the
147 * CPU clock oscillator and is a property of the architecture; however,
148 * in principle it could change as result of the presence of external
149 * discipline signals, for instance.
150 *
151 * time_precision is usually equal to the kernel tick variable; however,
152 * in cases where a precision clock counter or external clock is
153 * available, the resolution can be much less than this and depend on
154 * whether the external clock is working or not.
155 *
156 * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 * the kernel once each second to reflect the maximum error bound
158 * growth.
159 *
160 * time_esterror is set and read by the ntp_adjtime() call, but
161 * otherwise not used by the kernel.
162 */
163 int time_state = TIME_OK; /* clock state */
164 int time_status = STA_UNSYNC; /* clock status bits */
165 long time_offset = 0; /* time offset (us) */
166 long time_constant = 0; /* pll time constant */
167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 long time_precision = 1; /* clock precision (us) */
169 long time_maxerror = MAXPHASE; /* maximum error (us) */
170 long time_esterror = MAXPHASE; /* estimated error (us) */
171
172 /*
173 * The following variables establish the state of the PLL/FLL and the
174 * residual time and frequency offset of the local clock. The scale
175 * factors are defined in the timex.h header file.
176 *
177 * time_phase and time_freq are the phase increment and the frequency
178 * increment, respectively, of the kernel time variable.
179 *
180 * time_freq is set via ntp_adjtime() from a value stored in a file when
181 * the synchronization daemon is first started. Its value is retrieved
182 * via ntp_adjtime() and written to the file about once per hour by the
183 * daemon.
184 *
185 * time_adj is the adjustment added to the value of tick at each timer
186 * interrupt and is recomputed from time_phase and time_freq at each
187 * seconds rollover.
188 *
189 * time_reftime is the second's portion of the system time at the last
190 * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 * and to increase the time_maxerror as the time since last update
192 * increases.
193 */
194 long time_phase = 0; /* phase offset (scaled us) */
195 long time_freq = 0; /* frequency offset (scaled ppm) */
196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0; /* time at last adjustment (s) */
198
199 #ifdef PPS_SYNC
200 /*
201 * The following variables are used only if the kernel PPS discipline
202 * code is configured (PPS_SYNC). The scale factors are defined in the
203 * timex.h header file.
204 *
205 * pps_time contains the time at each calibration interval, as read by
206 * microtime(). pps_count counts the seconds of the calibration
207 * interval, the duration of which is nominally pps_shift in powers of
208 * two.
209 *
210 * pps_offset is the time offset produced by the time median filter
211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 * this filter.
213 *
214 * pps_freq is the frequency offset produced by the frequency median
215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 * by this filter.
217 *
218 * pps_usec is latched from a high resolution counter or external clock
219 * at pps_time. Here we want the hardware counter contents only, not the
220 * contents plus the time_tv.usec as usual.
221 *
222 * pps_valid counts the number of seconds since the last PPS update. It
223 * is used as a watchdog timer to disable the PPS discipline should the
224 * PPS signal be lost.
225 *
226 * pps_glitch counts the number of seconds since the beginning of an
227 * offset burst more than tick/2 from current nominal offset. It is used
228 * mainly to suppress error bursts due to priority conflicts between the
229 * PPS interrupt and timer interrupt.
230 *
231 * pps_intcnt counts the calibration intervals for use in the interval-
232 * adaptation algorithm. It's just too complicated for words.
233 */
234 struct timeval pps_time; /* kernel time at last interval */
235 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
236 long pps_offset = 0; /* pps time offset (us) */
237 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
238 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
239 long pps_freq = 0; /* frequency offset (scaled ppm) */
240 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
241 long pps_usec = 0; /* microsec counter at last interval */
242 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
243 int pps_glitch = 0; /* pps signal glitch counter */
244 int pps_count = 0; /* calibration interval counter (s) */
245 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
246 int pps_intcnt = 0; /* intervals at current duration */
247
248 /*
249 * PPS signal quality monitors
250 *
251 * pps_jitcnt counts the seconds that have been discarded because the
252 * jitter measured by the time median filter exceeds the limit MAXTIME
253 * (100 us).
254 *
255 * pps_calcnt counts the frequency calibration intervals, which are
256 * variable from 4 s to 256 s.
257 *
258 * pps_errcnt counts the calibration intervals which have been discarded
259 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
260 * calibration interval jitter exceeds two ticks.
261 *
262 * pps_stbcnt counts the calibration intervals that have been discarded
263 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
264 */
265 long pps_jitcnt = 0; /* jitter limit exceeded */
266 long pps_calcnt = 0; /* calibration intervals */
267 long pps_errcnt = 0; /* calibration errors */
268 long pps_stbcnt = 0; /* stability limit exceeded */
269 #endif /* PPS_SYNC */
270
271 #ifdef EXT_CLOCK
272 /*
273 * External clock definitions
274 *
275 * The following definitions and declarations are used only if an
276 * external clock is configured on the system.
277 */
278 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
279
280 /*
281 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
282 * interrupt and decremented once each second.
283 */
284 int clock_count = 0; /* CPU clock counter */
285
286 #ifdef HIGHBALL
287 /*
288 * The clock_offset and clock_cpu variables are used by the HIGHBALL
289 * interface. The clock_offset variable defines the offset between
290 * system time and the HIGBALL counters. The clock_cpu variable contains
291 * the offset between the system clock and the HIGHBALL clock for use in
292 * disciplining the kernel time variable.
293 */
294 extern struct timeval clock_offset; /* Highball clock offset */
295 long clock_cpu = 0; /* CPU clock adjust */
296 #endif /* HIGHBALL */
297 #endif /* EXT_CLOCK */
298 #endif /* NTP */
299
300
301 /*
302 * Bump a timeval by a small number of usec's.
303 */
304 #define BUMPTIME(t, usec) { \
305 volatile struct timeval *tp = (t); \
306 long us; \
307 \
308 tp->tv_usec = us = tp->tv_usec + (usec); \
309 if (us >= 1000000) { \
310 tp->tv_usec = us - 1000000; \
311 tp->tv_sec++; \
312 } \
313 }
314
315 int stathz;
316 int profhz;
317 int schedhz;
318 int profprocs;
319 int softclock_running; /* 1 => softclock() is running */
320 static int psdiv; /* prof => stat divider */
321 int psratio; /* ratio: prof / stat */
322 int tickfix, tickfixinterval; /* used if tick not really integral */
323 #ifndef NTP
324 static int tickfixcnt; /* accumulated fractional error */
325 #else
326 int fixtick; /* used by NTP for same */
327 int shifthz;
328 #endif
329
330 /*
331 * We might want ldd to load the both words from time at once.
332 * To succeed we need to be quadword aligned.
333 * The sparc already does that, and that it has worked so far is a fluke.
334 */
335 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
336 volatile struct timeval mono_time;
337
338 /*
339 * The callout mechanism is based on the work of Adam M. Costello and
340 * George Varghese, published in a technical report entitled "Redesigning
341 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
342 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
343 *
344 * The original work on the data structures used in this implementation
345 * was published by G. Varghese and A. Lauck in the paper "Hashed and
346 * Hierarchical Timing Wheels: Data Structures for the Efficient
347 * Implementation of a Timer Facility" in the Proceedings of the 11th
348 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
349 * November 1987.
350 */
351 struct callout_queue *callwheel;
352 int callwheelsize, callwheelbits, callwheelmask;
353
354 static struct callout *nextsoftcheck; /* next callout to be checked */
355
356 #ifdef CALLWHEEL_STATS
357 int callwheel_collisions; /* number of hash collisions */
358 int callwheel_maxlength; /* length of the longest hash chain */
359 int *callwheel_sizes; /* per-bucket length count */
360 u_int64_t callwheel_count; /* # callouts currently */
361 u_int64_t callwheel_established; /* # callouts established */
362 u_int64_t callwheel_fired; /* # callouts that fired */
363 u_int64_t callwheel_disestablished; /* # callouts disestablished */
364 u_int64_t callwheel_changed; /* # callouts changed */
365 u_int64_t callwheel_softclocks; /* # times softclock() called */
366 u_int64_t callwheel_softchecks; /* # checks per softclock() */
367 u_int64_t callwheel_softempty; /* # empty buckets seen */
368 #endif /* CALLWHEEL_STATS */
369
370 /*
371 * This value indicates the number of consecutive callouts that
372 * will be checked before we allow interrupts to have a chance
373 * again.
374 */
375 #ifndef MAX_SOFTCLOCK_STEPS
376 #define MAX_SOFTCLOCK_STEPS 100
377 #endif
378
379 struct simplelock callwheel_slock;
380
381 #define CALLWHEEL_LOCK(s) \
382 do { \
383 s = splclock(); \
384 simple_lock(&callwheel_slock); \
385 } while (0)
386
387 #define CALLWHEEL_UNLOCK(s) \
388 do { \
389 simple_unlock(&callwheel_slock); \
390 splx(s); \
391 } while (0)
392
393 static void callout_stop_locked(struct callout *);
394
395 /*
396 * These are both protected by callwheel_lock.
397 * XXX SHOULD BE STATIC!!
398 */
399 u_int64_t hardclock_ticks, softclock_ticks;
400
401 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
402 void softclock(void *);
403 void *softclock_si;
404 #endif
405
406 /*
407 * Initialize clock frequencies and start both clocks running.
408 */
409 void
410 initclocks(void)
411 {
412 int i;
413
414 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
415 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
416 if (softclock_si == NULL)
417 panic("initclocks: unable to register softclock intr");
418 #endif
419
420 /*
421 * Set divisors to 1 (normal case) and let the machine-specific
422 * code do its bit.
423 */
424 psdiv = 1;
425 cpu_initclocks();
426
427 /*
428 * Compute profhz/stathz/rrticks, and fix profhz if needed.
429 */
430 i = stathz ? stathz : hz;
431 if (profhz == 0)
432 profhz = i;
433 psratio = profhz / i;
434 rrticks = hz / 10;
435
436 #ifdef NTP
437 switch (hz) {
438 case 1:
439 shifthz = SHIFT_SCALE - 0;
440 break;
441 case 2:
442 shifthz = SHIFT_SCALE - 1;
443 break;
444 case 4:
445 shifthz = SHIFT_SCALE - 2;
446 break;
447 case 8:
448 shifthz = SHIFT_SCALE - 3;
449 break;
450 case 16:
451 shifthz = SHIFT_SCALE - 4;
452 break;
453 case 32:
454 shifthz = SHIFT_SCALE - 5;
455 break;
456 case 60:
457 case 64:
458 shifthz = SHIFT_SCALE - 6;
459 break;
460 case 96:
461 case 100:
462 case 128:
463 shifthz = SHIFT_SCALE - 7;
464 break;
465 case 256:
466 shifthz = SHIFT_SCALE - 8;
467 break;
468 case 512:
469 shifthz = SHIFT_SCALE - 9;
470 break;
471 case 1000:
472 case 1024:
473 shifthz = SHIFT_SCALE - 10;
474 break;
475 case 1200:
476 case 2048:
477 shifthz = SHIFT_SCALE - 11;
478 break;
479 case 4096:
480 shifthz = SHIFT_SCALE - 12;
481 break;
482 case 8192:
483 shifthz = SHIFT_SCALE - 13;
484 break;
485 case 16384:
486 shifthz = SHIFT_SCALE - 14;
487 break;
488 case 32768:
489 shifthz = SHIFT_SCALE - 15;
490 break;
491 case 65536:
492 shifthz = SHIFT_SCALE - 16;
493 break;
494 default:
495 panic("weird hz");
496 }
497 if (fixtick == 0) {
498 /*
499 * Give MD code a chance to set this to a better
500 * value; but, if it doesn't, we should.
501 */
502 fixtick = (1000000 - (hz*tick));
503 }
504 #endif
505 }
506
507 /*
508 * The real-time timer, interrupting hz times per second.
509 */
510 void
511 hardclock(struct clockframe *frame)
512 {
513 struct proc *p;
514 int delta;
515 extern int tickdelta;
516 extern long timedelta;
517 struct cpu_info *ci = curcpu();
518 #ifdef NTP
519 int time_update;
520 int ltemp;
521 #endif
522
523 p = curproc;
524 if (p) {
525 struct pstats *pstats;
526
527 /*
528 * Run current process's virtual and profile time, as needed.
529 */
530 pstats = p->p_stats;
531 if (CLKF_USERMODE(frame) &&
532 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
533 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
534 psignal(p, SIGVTALRM);
535 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
536 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
537 psignal(p, SIGPROF);
538 }
539
540 /*
541 * If no separate statistics clock is available, run it from here.
542 */
543 if (stathz == 0)
544 statclock(frame);
545 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
546 roundrobin(ci);
547
548 #if defined(MULTIPROCESSOR)
549 /*
550 * If we are not the primary CPU, we're not allowed to do
551 * any more work.
552 */
553 if (CPU_IS_PRIMARY(ci) == 0)
554 return;
555 #endif
556
557 /*
558 * Increment the time-of-day. The increment is normally just
559 * ``tick''. If the machine is one which has a clock frequency
560 * such that ``hz'' would not divide the second evenly into
561 * milliseconds, a periodic adjustment must be applied. Finally,
562 * if we are still adjusting the time (see adjtime()),
563 * ``tickdelta'' may also be added in.
564 */
565 delta = tick;
566
567 #ifndef NTP
568 if (tickfix) {
569 tickfixcnt += tickfix;
570 if (tickfixcnt >= tickfixinterval) {
571 delta++;
572 tickfixcnt -= tickfixinterval;
573 }
574 }
575 #endif /* !NTP */
576 /* Imprecise 4bsd adjtime() handling */
577 if (timedelta != 0) {
578 delta += tickdelta;
579 timedelta -= tickdelta;
580 }
581
582 #ifdef notyet
583 microset();
584 #endif
585
586 #ifndef NTP
587 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
588 #endif
589 BUMPTIME(&mono_time, delta);
590
591 #ifdef NTP
592 time_update = delta;
593
594 /*
595 * Compute the phase adjustment. If the low-order bits
596 * (time_phase) of the update overflow, bump the high-order bits
597 * (time_update).
598 */
599 time_phase += time_adj;
600 if (time_phase <= -FINEUSEC) {
601 ltemp = -time_phase >> SHIFT_SCALE;
602 time_phase += ltemp << SHIFT_SCALE;
603 time_update -= ltemp;
604 } else if (time_phase >= FINEUSEC) {
605 ltemp = time_phase >> SHIFT_SCALE;
606 time_phase -= ltemp << SHIFT_SCALE;
607 time_update += ltemp;
608 }
609
610 #ifdef HIGHBALL
611 /*
612 * If the HIGHBALL board is installed, we need to adjust the
613 * external clock offset in order to close the hardware feedback
614 * loop. This will adjust the external clock phase and frequency
615 * in small amounts. The additional phase noise and frequency
616 * wander this causes should be minimal. We also need to
617 * discipline the kernel time variable, since the PLL is used to
618 * discipline the external clock. If the Highball board is not
619 * present, we discipline kernel time with the PLL as usual. We
620 * assume that the external clock phase adjustment (time_update)
621 * and kernel phase adjustment (clock_cpu) are less than the
622 * value of tick.
623 */
624 clock_offset.tv_usec += time_update;
625 if (clock_offset.tv_usec >= 1000000) {
626 clock_offset.tv_sec++;
627 clock_offset.tv_usec -= 1000000;
628 }
629 if (clock_offset.tv_usec < 0) {
630 clock_offset.tv_sec--;
631 clock_offset.tv_usec += 1000000;
632 }
633 time.tv_usec += clock_cpu;
634 clock_cpu = 0;
635 #else
636 time.tv_usec += time_update;
637 #endif /* HIGHBALL */
638
639 /*
640 * On rollover of the second the phase adjustment to be used for
641 * the next second is calculated. Also, the maximum error is
642 * increased by the tolerance. If the PPS frequency discipline
643 * code is present, the phase is increased to compensate for the
644 * CPU clock oscillator frequency error.
645 *
646 * On a 32-bit machine and given parameters in the timex.h
647 * header file, the maximum phase adjustment is +-512 ms and
648 * maximum frequency offset is a tad less than) +-512 ppm. On a
649 * 64-bit machine, you shouldn't need to ask.
650 */
651 if (time.tv_usec >= 1000000) {
652 time.tv_usec -= 1000000;
653 time.tv_sec++;
654 time_maxerror += time_tolerance >> SHIFT_USEC;
655
656 /*
657 * Leap second processing. If in leap-insert state at
658 * the end of the day, the system clock is set back one
659 * second; if in leap-delete state, the system clock is
660 * set ahead one second. The microtime() routine or
661 * external clock driver will insure that reported time
662 * is always monotonic. The ugly divides should be
663 * replaced.
664 */
665 switch (time_state) {
666 case TIME_OK:
667 if (time_status & STA_INS)
668 time_state = TIME_INS;
669 else if (time_status & STA_DEL)
670 time_state = TIME_DEL;
671 break;
672
673 case TIME_INS:
674 if (time.tv_sec % 86400 == 0) {
675 time.tv_sec--;
676 time_state = TIME_OOP;
677 }
678 break;
679
680 case TIME_DEL:
681 if ((time.tv_sec + 1) % 86400 == 0) {
682 time.tv_sec++;
683 time_state = TIME_WAIT;
684 }
685 break;
686
687 case TIME_OOP:
688 time_state = TIME_WAIT;
689 break;
690
691 case TIME_WAIT:
692 if (!(time_status & (STA_INS | STA_DEL)))
693 time_state = TIME_OK;
694 break;
695 }
696
697 /*
698 * Compute the phase adjustment for the next second. In
699 * PLL mode, the offset is reduced by a fixed factor
700 * times the time constant. In FLL mode the offset is
701 * used directly. In either mode, the maximum phase
702 * adjustment for each second is clamped so as to spread
703 * the adjustment over not more than the number of
704 * seconds between updates.
705 */
706 if (time_offset < 0) {
707 ltemp = -time_offset;
708 if (!(time_status & STA_FLL))
709 ltemp >>= SHIFT_KG + time_constant;
710 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
711 ltemp = (MAXPHASE / MINSEC) <<
712 SHIFT_UPDATE;
713 time_offset += ltemp;
714 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
715 } else if (time_offset > 0) {
716 ltemp = time_offset;
717 if (!(time_status & STA_FLL))
718 ltemp >>= SHIFT_KG + time_constant;
719 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
720 ltemp = (MAXPHASE / MINSEC) <<
721 SHIFT_UPDATE;
722 time_offset -= ltemp;
723 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
724 } else
725 time_adj = 0;
726
727 /*
728 * Compute the frequency estimate and additional phase
729 * adjustment due to frequency error for the next
730 * second. When the PPS signal is engaged, gnaw on the
731 * watchdog counter and update the frequency computed by
732 * the pll and the PPS signal.
733 */
734 #ifdef PPS_SYNC
735 pps_valid++;
736 if (pps_valid == PPS_VALID) {
737 pps_jitter = MAXTIME;
738 pps_stabil = MAXFREQ;
739 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
740 STA_PPSWANDER | STA_PPSERROR);
741 }
742 ltemp = time_freq + pps_freq;
743 #else
744 ltemp = time_freq;
745 #endif /* PPS_SYNC */
746
747 if (ltemp < 0)
748 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
749 else
750 time_adj += ltemp >> (SHIFT_USEC - shifthz);
751 time_adj += (long)fixtick << shifthz;
752
753 /*
754 * When the CPU clock oscillator frequency is not a
755 * power of 2 in Hz, shifthz is only an approximate
756 * scale factor.
757 *
758 * To determine the adjustment, you can do the following:
759 * bc -q
760 * scale=24
761 * obase=2
762 * idealhz/realhz
763 * where `idealhz' is the next higher power of 2, and `realhz'
764 * is the actual value. You may need to factor this result
765 * into a sequence of 2 multipliers to get better precision.
766 *
767 * Likewise, the error can be calculated with (e.g. for 100Hz):
768 * bc -q
769 * scale=24
770 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
771 * (and then multiply by 1000000 to get ppm).
772 */
773 switch (hz) {
774 case 60:
775 /* A factor of 1.000100010001 gives about 15ppm
776 error. */
777 if (time_adj < 0) {
778 time_adj -= (-time_adj >> 4);
779 time_adj -= (-time_adj >> 8);
780 } else {
781 time_adj += (time_adj >> 4);
782 time_adj += (time_adj >> 8);
783 }
784 break;
785
786 case 96:
787 /* A factor of 1.0101010101 gives about 244ppm error. */
788 if (time_adj < 0) {
789 time_adj -= (-time_adj >> 2);
790 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
791 } else {
792 time_adj += (time_adj >> 2);
793 time_adj += (time_adj >> 4) + (time_adj >> 8);
794 }
795 break;
796
797 case 100:
798 /* A factor of 1.010001111010111 gives about 1ppm
799 error. */
800 if (time_adj < 0) {
801 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
802 time_adj += (-time_adj >> 10);
803 } else {
804 time_adj += (time_adj >> 2) + (time_adj >> 5);
805 time_adj -= (time_adj >> 10);
806 }
807 break;
808
809 case 1000:
810 /* A factor of 1.000001100010100001 gives about 50ppm
811 error. */
812 if (time_adj < 0) {
813 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
814 time_adj -= (-time_adj >> 7);
815 } else {
816 time_adj += (time_adj >> 6) + (time_adj >> 11);
817 time_adj += (time_adj >> 7);
818 }
819 break;
820
821 case 1200:
822 /* A factor of 1.1011010011100001 gives about 64ppm
823 error. */
824 if (time_adj < 0) {
825 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
826 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
827 } else {
828 time_adj += (time_adj >> 1) + (time_adj >> 6);
829 time_adj += (time_adj >> 3) + (time_adj >> 10);
830 }
831 break;
832 }
833
834 #ifdef EXT_CLOCK
835 /*
836 * If an external clock is present, it is necessary to
837 * discipline the kernel time variable anyway, since not
838 * all system components use the microtime() interface.
839 * Here, the time offset between the external clock and
840 * kernel time variable is computed every so often.
841 */
842 clock_count++;
843 if (clock_count > CLOCK_INTERVAL) {
844 clock_count = 0;
845 microtime(&clock_ext);
846 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
847 delta.tv_usec = clock_ext.tv_usec -
848 time.tv_usec;
849 if (delta.tv_usec < 0)
850 delta.tv_sec--;
851 if (delta.tv_usec >= 500000) {
852 delta.tv_usec -= 1000000;
853 delta.tv_sec++;
854 }
855 if (delta.tv_usec < -500000) {
856 delta.tv_usec += 1000000;
857 delta.tv_sec--;
858 }
859 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
860 delta.tv_usec > MAXPHASE) ||
861 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
862 delta.tv_usec < -MAXPHASE)) {
863 time = clock_ext;
864 delta.tv_sec = 0;
865 delta.tv_usec = 0;
866 }
867 #ifdef HIGHBALL
868 clock_cpu = delta.tv_usec;
869 #else /* HIGHBALL */
870 hardupdate(delta.tv_usec);
871 #endif /* HIGHBALL */
872 }
873 #endif /* EXT_CLOCK */
874 }
875
876 #endif /* NTP */
877
878 /*
879 * Process callouts at a very low cpu priority, so we don't keep the
880 * relatively high clock interrupt priority any longer than necessary.
881 */
882 simple_lock(&callwheel_slock); /* already at splclock() */
883 hardclock_ticks++;
884 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
885 simple_unlock(&callwheel_slock);
886 if (CLKF_BASEPRI(frame)) {
887 /*
888 * Save the overhead of a software interrupt;
889 * it will happen as soon as we return, so do
890 * it now.
891 *
892 * NOTE: If we're at ``base priority'', softclock()
893 * was not already running.
894 */
895 spllowersoftclock();
896 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
897 softclock(NULL);
898 KERNEL_UNLOCK();
899 } else {
900 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
901 softintr_schedule(softclock_si);
902 #else
903 setsoftclock();
904 #endif
905 }
906 return;
907 } else if (softclock_running == 0 &&
908 (softclock_ticks + 1) == hardclock_ticks) {
909 softclock_ticks++;
910 }
911 simple_unlock(&callwheel_slock);
912 }
913
914 /*
915 * Software (low priority) clock interrupt.
916 * Run periodic events from timeout queue.
917 */
918 /*ARGSUSED*/
919 void
920 softclock(void *v)
921 {
922 struct callout_queue *bucket;
923 struct callout *c;
924 void (*func)(void *);
925 void *arg;
926 int s, idx;
927 int steps = 0;
928
929 CALLWHEEL_LOCK(s);
930
931 softclock_running = 1;
932
933 #ifdef CALLWHEEL_STATS
934 callwheel_softclocks++;
935 #endif
936
937 while (softclock_ticks != hardclock_ticks) {
938 softclock_ticks++;
939 idx = (int)(softclock_ticks & callwheelmask);
940 bucket = &callwheel[idx];
941 c = TAILQ_FIRST(bucket);
942 #ifdef CALLWHEEL_STATS
943 if (c == NULL)
944 callwheel_softempty++;
945 #endif
946 while (c != NULL) {
947 #ifdef CALLWHEEL_STATS
948 callwheel_softchecks++;
949 #endif
950 if (c->c_time != softclock_ticks) {
951 c = TAILQ_NEXT(c, c_link);
952 if (++steps >= MAX_SOFTCLOCK_STEPS) {
953 nextsoftcheck = c;
954 /* Give interrupts a chance. */
955 CALLWHEEL_UNLOCK(s);
956 CALLWHEEL_LOCK(s);
957 c = nextsoftcheck;
958 steps = 0;
959 }
960 } else {
961 nextsoftcheck = TAILQ_NEXT(c, c_link);
962 TAILQ_REMOVE(bucket, c, c_link);
963 #ifdef CALLWHEEL_STATS
964 callwheel_sizes[idx]--;
965 callwheel_fired++;
966 callwheel_count--;
967 #endif
968 func = c->c_func;
969 arg = c->c_arg;
970 c->c_func = NULL;
971 c->c_flags &= ~CALLOUT_PENDING;
972 CALLWHEEL_UNLOCK(s);
973 (*func)(arg);
974 CALLWHEEL_LOCK(s);
975 steps = 0;
976 c = nextsoftcheck;
977 }
978 }
979 }
980 nextsoftcheck = NULL;
981 softclock_running = 0;
982 CALLWHEEL_UNLOCK(s);
983 }
984
985 /*
986 * callout_setsize:
987 *
988 * Determine how many callwheels are necessary and
989 * set hash mask. Called from allocsys().
990 */
991 void
992 callout_setsize(void)
993 {
994
995 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
996 /* loop */ ;
997 callwheelmask = callwheelsize - 1;
998 }
999
1000 /*
1001 * callout_startup:
1002 *
1003 * Initialize the callwheel buckets.
1004 */
1005 void
1006 callout_startup(void)
1007 {
1008 int i;
1009
1010 for (i = 0; i < callwheelsize; i++)
1011 TAILQ_INIT(&callwheel[i]);
1012
1013 simple_lock_init(&callwheel_slock);
1014 }
1015
1016 /*
1017 * callout_init:
1018 *
1019 * Initialize a callout structure so that it can be used
1020 * by callout_reset() and callout_stop().
1021 */
1022 void
1023 callout_init(struct callout *c)
1024 {
1025
1026 memset(c, 0, sizeof(*c));
1027 }
1028
1029 /*
1030 * callout_reset:
1031 *
1032 * Establish or change a timeout.
1033 */
1034 void
1035 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1036 {
1037 struct callout_queue *bucket;
1038 int s;
1039
1040 if (ticks <= 0)
1041 ticks = 1;
1042
1043 CALLWHEEL_LOCK(s);
1044
1045 /*
1046 * If this callout's timer is already running, cancel it
1047 * before we modify it.
1048 */
1049 if (c->c_flags & CALLOUT_PENDING) {
1050 callout_stop_locked(c); /* Already locked */
1051 #ifdef CALLWHEEL_STATS
1052 callwheel_changed++;
1053 #endif
1054 }
1055
1056 c->c_arg = arg;
1057 c->c_func = func;
1058 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1059 c->c_time = hardclock_ticks + ticks;
1060
1061 bucket = &callwheel[c->c_time & callwheelmask];
1062
1063 #ifdef CALLWHEEL_STATS
1064 if (TAILQ_FIRST(bucket) != NULL)
1065 callwheel_collisions++;
1066 #endif
1067
1068 TAILQ_INSERT_TAIL(bucket, c, c_link);
1069
1070 #ifdef CALLWHEEL_STATS
1071 callwheel_count++;
1072 callwheel_established++;
1073 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1074 callwheel_maxlength =
1075 callwheel_sizes[c->c_time & callwheelmask];
1076 #endif
1077
1078 CALLWHEEL_UNLOCK(s);
1079 }
1080
1081 /*
1082 * callout_stop_locked:
1083 *
1084 * Disestablish a timeout. Callwheel is locked.
1085 */
1086 static void
1087 callout_stop_locked(struct callout *c)
1088 {
1089
1090 /*
1091 * Don't attempt to delete a callout that's not on the queue.
1092 */
1093 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1094 c->c_flags &= ~CALLOUT_ACTIVE;
1095 return;
1096 }
1097
1098 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1099
1100 if (nextsoftcheck == c)
1101 nextsoftcheck = TAILQ_NEXT(c, c_link);
1102
1103 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1104 #ifdef CALLWHEEL_STATS
1105 callwheel_count--;
1106 callwheel_disestablished++;
1107 callwheel_sizes[c->c_time & callwheelmask]--;
1108 #endif
1109
1110 c->c_func = NULL;
1111 }
1112
1113 /*
1114 * callout_stop:
1115 *
1116 * Disestablish a timeout. Callwheel is unlocked. This is
1117 * the standard entry point.
1118 */
1119 void
1120 callout_stop(struct callout *c)
1121 {
1122 int s;
1123
1124 CALLWHEEL_LOCK(s);
1125 callout_stop_locked(c);
1126 CALLWHEEL_UNLOCK(s);
1127 }
1128
1129 #ifdef CALLWHEEL_STATS
1130 /*
1131 * callout_showstats:
1132 *
1133 * Display callout statistics. Call it from DDB.
1134 */
1135 void
1136 callout_showstats(void)
1137 {
1138 u_int64_t curticks;
1139 int s;
1140
1141 s = splclock();
1142 curticks = softclock_ticks;
1143 splx(s);
1144
1145 printf("Callwheel statistics:\n");
1146 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1147 printf("\tCallouts established: %llu\n", callwheel_established);
1148 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1149 if (callwheel_changed != 0)
1150 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1151 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1152 printf("\tNumber of buckets: %d\n", callwheelsize);
1153 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1154 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1155 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1156 callwheel_softclocks, callwheel_softchecks);
1157 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1158 }
1159 #endif
1160
1161 /*
1162 * Compute number of hz until specified time. Used to compute second
1163 * argument to callout_reset() from an absolute time.
1164 */
1165 int
1166 hzto(struct timeval *tv)
1167 {
1168 unsigned long ticks;
1169 long sec, usec;
1170 int s;
1171
1172 /*
1173 * If the number of usecs in the whole seconds part of the time
1174 * difference fits in a long, then the total number of usecs will
1175 * fit in an unsigned long. Compute the total and convert it to
1176 * ticks, rounding up and adding 1 to allow for the current tick
1177 * to expire. Rounding also depends on unsigned long arithmetic
1178 * to avoid overflow.
1179 *
1180 * Otherwise, if the number of ticks in the whole seconds part of
1181 * the time difference fits in a long, then convert the parts to
1182 * ticks separately and add, using similar rounding methods and
1183 * overflow avoidance. This method would work in the previous
1184 * case, but it is slightly slower and assume that hz is integral.
1185 *
1186 * Otherwise, round the time difference down to the maximum
1187 * representable value.
1188 *
1189 * If ints are 32-bit, then the maximum value for any timeout in
1190 * 10ms ticks is 248 days.
1191 */
1192 s = splclock();
1193 sec = tv->tv_sec - time.tv_sec;
1194 usec = tv->tv_usec - time.tv_usec;
1195 splx(s);
1196
1197 if (usec < 0) {
1198 sec--;
1199 usec += 1000000;
1200 }
1201
1202 if (sec < 0 || (sec == 0 && usec <= 0)) {
1203 /*
1204 * Would expire now or in the past. Return 0 ticks.
1205 * This is different from the legacy hzto() interface,
1206 * and callers need to check for it.
1207 */
1208 ticks = 0;
1209 } else if (sec <= (LONG_MAX / 1000000))
1210 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1211 / tick) + 1;
1212 else if (sec <= (LONG_MAX / hz))
1213 ticks = (sec * hz) +
1214 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1215 else
1216 ticks = LONG_MAX;
1217
1218 if (ticks > INT_MAX)
1219 ticks = INT_MAX;
1220
1221 return ((int)ticks);
1222 }
1223
1224 /*
1225 * Start profiling on a process.
1226 *
1227 * Kernel profiling passes proc0 which never exits and hence
1228 * keeps the profile clock running constantly.
1229 */
1230 void
1231 startprofclock(struct proc *p)
1232 {
1233
1234 if ((p->p_flag & P_PROFIL) == 0) {
1235 p->p_flag |= P_PROFIL;
1236 if (++profprocs == 1 && stathz != 0)
1237 psdiv = psratio;
1238 }
1239 }
1240
1241 /*
1242 * Stop profiling on a process.
1243 */
1244 void
1245 stopprofclock(struct proc *p)
1246 {
1247
1248 if (p->p_flag & P_PROFIL) {
1249 p->p_flag &= ~P_PROFIL;
1250 if (--profprocs == 0 && stathz != 0)
1251 psdiv = 1;
1252 }
1253 }
1254
1255 /*
1256 * Statistics clock. Grab profile sample, and if divider reaches 0,
1257 * do process and kernel statistics.
1258 */
1259 void
1260 statclock(struct clockframe *frame)
1261 {
1262 #ifdef GPROF
1263 struct gmonparam *g;
1264 intptr_t i;
1265 #endif
1266 struct cpu_info *ci = curcpu();
1267 struct schedstate_percpu *spc = &ci->ci_schedstate;
1268 struct proc *p;
1269
1270 /*
1271 * Notice changes in divisor frequency, and adjust clock
1272 * frequency accordingly.
1273 */
1274 if (spc->spc_psdiv != psdiv) {
1275 spc->spc_psdiv = psdiv;
1276 spc->spc_pscnt = psdiv;
1277 if (psdiv == 1) {
1278 setstatclockrate(stathz);
1279 } else {
1280 setstatclockrate(profhz);
1281 }
1282 }
1283 p = curproc;
1284 if (CLKF_USERMODE(frame)) {
1285 if (p->p_flag & P_PROFIL)
1286 addupc_intr(p, CLKF_PC(frame));
1287 if (--spc->spc_pscnt > 0)
1288 return;
1289 /*
1290 * Came from user mode; CPU was in user state.
1291 * If this process is being profiled record the tick.
1292 */
1293 p->p_uticks++;
1294 if (p->p_nice > NZERO)
1295 spc->spc_cp_time[CP_NICE]++;
1296 else
1297 spc->spc_cp_time[CP_USER]++;
1298 } else {
1299 #ifdef GPROF
1300 /*
1301 * Kernel statistics are just like addupc_intr, only easier.
1302 */
1303 g = &_gmonparam;
1304 if (g->state == GMON_PROF_ON) {
1305 i = CLKF_PC(frame) - g->lowpc;
1306 if (i < g->textsize) {
1307 i /= HISTFRACTION * sizeof(*g->kcount);
1308 g->kcount[i]++;
1309 }
1310 }
1311 #endif
1312 #ifdef PROC_PC
1313 if (p && p->p_flag & P_PROFIL)
1314 addupc_intr(p, PROC_PC(p));
1315 #endif
1316 if (--spc->spc_pscnt > 0)
1317 return;
1318 /*
1319 * Came from kernel mode, so we were:
1320 * - handling an interrupt,
1321 * - doing syscall or trap work on behalf of the current
1322 * user process, or
1323 * - spinning in the idle loop.
1324 * Whichever it is, charge the time as appropriate.
1325 * Note that we charge interrupts to the current process,
1326 * regardless of whether they are ``for'' that process,
1327 * so that we know how much of its real time was spent
1328 * in ``non-process'' (i.e., interrupt) work.
1329 */
1330 if (CLKF_INTR(frame)) {
1331 if (p != NULL)
1332 p->p_iticks++;
1333 spc->spc_cp_time[CP_INTR]++;
1334 } else if (p != NULL) {
1335 p->p_sticks++;
1336 spc->spc_cp_time[CP_SYS]++;
1337 } else
1338 spc->spc_cp_time[CP_IDLE]++;
1339 }
1340 spc->spc_pscnt = psdiv;
1341
1342 if (p != NULL) {
1343 ++p->p_cpticks;
1344 /*
1345 * If no separate schedclock is provided, call it here
1346 * at ~~12-25 Hz, ~~16 Hz is best
1347 */
1348 if (schedhz == 0)
1349 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1350 schedclock(p);
1351 }
1352 }
1353
1354
1355 #ifdef NTP /* NTP phase-locked loop in kernel */
1356
1357 /*
1358 * hardupdate() - local clock update
1359 *
1360 * This routine is called by ntp_adjtime() to update the local clock
1361 * phase and frequency. The implementation is of an adaptive-parameter,
1362 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1363 * time and frequency offset estimates for each call. If the kernel PPS
1364 * discipline code is configured (PPS_SYNC), the PPS signal itself
1365 * determines the new time offset, instead of the calling argument.
1366 * Presumably, calls to ntp_adjtime() occur only when the caller
1367 * believes the local clock is valid within some bound (+-128 ms with
1368 * NTP). If the caller's time is far different than the PPS time, an
1369 * argument will ensue, and it's not clear who will lose.
1370 *
1371 * For uncompensated quartz crystal oscillatores and nominal update
1372 * intervals less than 1024 s, operation should be in phase-lock mode
1373 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1374 * intervals greater than thiss, operation should be in frequency-lock
1375 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1376 *
1377 * Note: splclock() is in effect.
1378 */
1379 void
1380 hardupdate(long offset)
1381 {
1382 long ltemp, mtemp;
1383
1384 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1385 return;
1386 ltemp = offset;
1387 #ifdef PPS_SYNC
1388 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1389 ltemp = pps_offset;
1390 #endif /* PPS_SYNC */
1391
1392 /*
1393 * Scale the phase adjustment and clamp to the operating range.
1394 */
1395 if (ltemp > MAXPHASE)
1396 time_offset = MAXPHASE << SHIFT_UPDATE;
1397 else if (ltemp < -MAXPHASE)
1398 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1399 else
1400 time_offset = ltemp << SHIFT_UPDATE;
1401
1402 /*
1403 * Select whether the frequency is to be controlled and in which
1404 * mode (PLL or FLL). Clamp to the operating range. Ugly
1405 * multiply/divide should be replaced someday.
1406 */
1407 if (time_status & STA_FREQHOLD || time_reftime == 0)
1408 time_reftime = time.tv_sec;
1409 mtemp = time.tv_sec - time_reftime;
1410 time_reftime = time.tv_sec;
1411 if (time_status & STA_FLL) {
1412 if (mtemp >= MINSEC) {
1413 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1414 SHIFT_UPDATE));
1415 if (ltemp < 0)
1416 time_freq -= -ltemp >> SHIFT_KH;
1417 else
1418 time_freq += ltemp >> SHIFT_KH;
1419 }
1420 } else {
1421 if (mtemp < MAXSEC) {
1422 ltemp *= mtemp;
1423 if (ltemp < 0)
1424 time_freq -= -ltemp >> (time_constant +
1425 time_constant + SHIFT_KF -
1426 SHIFT_USEC);
1427 else
1428 time_freq += ltemp >> (time_constant +
1429 time_constant + SHIFT_KF -
1430 SHIFT_USEC);
1431 }
1432 }
1433 if (time_freq > time_tolerance)
1434 time_freq = time_tolerance;
1435 else if (time_freq < -time_tolerance)
1436 time_freq = -time_tolerance;
1437 }
1438
1439 #ifdef PPS_SYNC
1440 /*
1441 * hardpps() - discipline CPU clock oscillator to external PPS signal
1442 *
1443 * This routine is called at each PPS interrupt in order to discipline
1444 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1445 * and leaves it in a handy spot for the hardclock() routine. It
1446 * integrates successive PPS phase differences and calculates the
1447 * frequency offset. This is used in hardclock() to discipline the CPU
1448 * clock oscillator so that intrinsic frequency error is cancelled out.
1449 * The code requires the caller to capture the time and hardware counter
1450 * value at the on-time PPS signal transition.
1451 *
1452 * Note that, on some Unix systems, this routine runs at an interrupt
1453 * priority level higher than the timer interrupt routine hardclock().
1454 * Therefore, the variables used are distinct from the hardclock()
1455 * variables, except for certain exceptions: The PPS frequency pps_freq
1456 * and phase pps_offset variables are determined by this routine and
1457 * updated atomically. The time_tolerance variable can be considered a
1458 * constant, since it is infrequently changed, and then only when the
1459 * PPS signal is disabled. The watchdog counter pps_valid is updated
1460 * once per second by hardclock() and is atomically cleared in this
1461 * routine.
1462 */
1463 void
1464 hardpps(struct timeval *tvp, /* time at PPS */
1465 long usec /* hardware counter at PPS */)
1466 {
1467 long u_usec, v_usec, bigtick;
1468 long cal_sec, cal_usec;
1469
1470 /*
1471 * An occasional glitch can be produced when the PPS interrupt
1472 * occurs in the hardclock() routine before the time variable is
1473 * updated. Here the offset is discarded when the difference
1474 * between it and the last one is greater than tick/2, but not
1475 * if the interval since the first discard exceeds 30 s.
1476 */
1477 time_status |= STA_PPSSIGNAL;
1478 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1479 pps_valid = 0;
1480 u_usec = -tvp->tv_usec;
1481 if (u_usec < -500000)
1482 u_usec += 1000000;
1483 v_usec = pps_offset - u_usec;
1484 if (v_usec < 0)
1485 v_usec = -v_usec;
1486 if (v_usec > (tick >> 1)) {
1487 if (pps_glitch > MAXGLITCH) {
1488 pps_glitch = 0;
1489 pps_tf[2] = u_usec;
1490 pps_tf[1] = u_usec;
1491 } else {
1492 pps_glitch++;
1493 u_usec = pps_offset;
1494 }
1495 } else
1496 pps_glitch = 0;
1497
1498 /*
1499 * A three-stage median filter is used to help deglitch the pps
1500 * time. The median sample becomes the time offset estimate; the
1501 * difference between the other two samples becomes the time
1502 * dispersion (jitter) estimate.
1503 */
1504 pps_tf[2] = pps_tf[1];
1505 pps_tf[1] = pps_tf[0];
1506 pps_tf[0] = u_usec;
1507 if (pps_tf[0] > pps_tf[1]) {
1508 if (pps_tf[1] > pps_tf[2]) {
1509 pps_offset = pps_tf[1]; /* 0 1 2 */
1510 v_usec = pps_tf[0] - pps_tf[2];
1511 } else if (pps_tf[2] > pps_tf[0]) {
1512 pps_offset = pps_tf[0]; /* 2 0 1 */
1513 v_usec = pps_tf[2] - pps_tf[1];
1514 } else {
1515 pps_offset = pps_tf[2]; /* 0 2 1 */
1516 v_usec = pps_tf[0] - pps_tf[1];
1517 }
1518 } else {
1519 if (pps_tf[1] < pps_tf[2]) {
1520 pps_offset = pps_tf[1]; /* 2 1 0 */
1521 v_usec = pps_tf[2] - pps_tf[0];
1522 } else if (pps_tf[2] < pps_tf[0]) {
1523 pps_offset = pps_tf[0]; /* 1 0 2 */
1524 v_usec = pps_tf[1] - pps_tf[2];
1525 } else {
1526 pps_offset = pps_tf[2]; /* 1 2 0 */
1527 v_usec = pps_tf[1] - pps_tf[0];
1528 }
1529 }
1530 if (v_usec > MAXTIME)
1531 pps_jitcnt++;
1532 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1533 if (v_usec < 0)
1534 pps_jitter -= -v_usec >> PPS_AVG;
1535 else
1536 pps_jitter += v_usec >> PPS_AVG;
1537 if (pps_jitter > (MAXTIME >> 1))
1538 time_status |= STA_PPSJITTER;
1539
1540 /*
1541 * During the calibration interval adjust the starting time when
1542 * the tick overflows. At the end of the interval compute the
1543 * duration of the interval and the difference of the hardware
1544 * counters at the beginning and end of the interval. This code
1545 * is deliciously complicated by the fact valid differences may
1546 * exceed the value of tick when using long calibration
1547 * intervals and small ticks. Note that the counter can be
1548 * greater than tick if caught at just the wrong instant, but
1549 * the values returned and used here are correct.
1550 */
1551 bigtick = (long)tick << SHIFT_USEC;
1552 pps_usec -= pps_freq;
1553 if (pps_usec >= bigtick)
1554 pps_usec -= bigtick;
1555 if (pps_usec < 0)
1556 pps_usec += bigtick;
1557 pps_time.tv_sec++;
1558 pps_count++;
1559 if (pps_count < (1 << pps_shift))
1560 return;
1561 pps_count = 0;
1562 pps_calcnt++;
1563 u_usec = usec << SHIFT_USEC;
1564 v_usec = pps_usec - u_usec;
1565 if (v_usec >= bigtick >> 1)
1566 v_usec -= bigtick;
1567 if (v_usec < -(bigtick >> 1))
1568 v_usec += bigtick;
1569 if (v_usec < 0)
1570 v_usec = -(-v_usec >> pps_shift);
1571 else
1572 v_usec = v_usec >> pps_shift;
1573 pps_usec = u_usec;
1574 cal_sec = tvp->tv_sec;
1575 cal_usec = tvp->tv_usec;
1576 cal_sec -= pps_time.tv_sec;
1577 cal_usec -= pps_time.tv_usec;
1578 if (cal_usec < 0) {
1579 cal_usec += 1000000;
1580 cal_sec--;
1581 }
1582 pps_time = *tvp;
1583
1584 /*
1585 * Check for lost interrupts, noise, excessive jitter and
1586 * excessive frequency error. The number of timer ticks during
1587 * the interval may vary +-1 tick. Add to this a margin of one
1588 * tick for the PPS signal jitter and maximum frequency
1589 * deviation. If the limits are exceeded, the calibration
1590 * interval is reset to the minimum and we start over.
1591 */
1592 u_usec = (long)tick << 1;
1593 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1594 || (cal_sec == 0 && cal_usec < u_usec))
1595 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1596 pps_errcnt++;
1597 pps_shift = PPS_SHIFT;
1598 pps_intcnt = 0;
1599 time_status |= STA_PPSERROR;
1600 return;
1601 }
1602
1603 /*
1604 * A three-stage median filter is used to help deglitch the pps
1605 * frequency. The median sample becomes the frequency offset
1606 * estimate; the difference between the other two samples
1607 * becomes the frequency dispersion (stability) estimate.
1608 */
1609 pps_ff[2] = pps_ff[1];
1610 pps_ff[1] = pps_ff[0];
1611 pps_ff[0] = v_usec;
1612 if (pps_ff[0] > pps_ff[1]) {
1613 if (pps_ff[1] > pps_ff[2]) {
1614 u_usec = pps_ff[1]; /* 0 1 2 */
1615 v_usec = pps_ff[0] - pps_ff[2];
1616 } else if (pps_ff[2] > pps_ff[0]) {
1617 u_usec = pps_ff[0]; /* 2 0 1 */
1618 v_usec = pps_ff[2] - pps_ff[1];
1619 } else {
1620 u_usec = pps_ff[2]; /* 0 2 1 */
1621 v_usec = pps_ff[0] - pps_ff[1];
1622 }
1623 } else {
1624 if (pps_ff[1] < pps_ff[2]) {
1625 u_usec = pps_ff[1]; /* 2 1 0 */
1626 v_usec = pps_ff[2] - pps_ff[0];
1627 } else if (pps_ff[2] < pps_ff[0]) {
1628 u_usec = pps_ff[0]; /* 1 0 2 */
1629 v_usec = pps_ff[1] - pps_ff[2];
1630 } else {
1631 u_usec = pps_ff[2]; /* 1 2 0 */
1632 v_usec = pps_ff[1] - pps_ff[0];
1633 }
1634 }
1635
1636 /*
1637 * Here the frequency dispersion (stability) is updated. If it
1638 * is less than one-fourth the maximum (MAXFREQ), the frequency
1639 * offset is updated as well, but clamped to the tolerance. It
1640 * will be processed later by the hardclock() routine.
1641 */
1642 v_usec = (v_usec >> 1) - pps_stabil;
1643 if (v_usec < 0)
1644 pps_stabil -= -v_usec >> PPS_AVG;
1645 else
1646 pps_stabil += v_usec >> PPS_AVG;
1647 if (pps_stabil > MAXFREQ >> 2) {
1648 pps_stbcnt++;
1649 time_status |= STA_PPSWANDER;
1650 return;
1651 }
1652 if (time_status & STA_PPSFREQ) {
1653 if (u_usec < 0) {
1654 pps_freq -= -u_usec >> PPS_AVG;
1655 if (pps_freq < -time_tolerance)
1656 pps_freq = -time_tolerance;
1657 u_usec = -u_usec;
1658 } else {
1659 pps_freq += u_usec >> PPS_AVG;
1660 if (pps_freq > time_tolerance)
1661 pps_freq = time_tolerance;
1662 }
1663 }
1664
1665 /*
1666 * Here the calibration interval is adjusted. If the maximum
1667 * time difference is greater than tick / 4, reduce the interval
1668 * by half. If this is not the case for four consecutive
1669 * intervals, double the interval.
1670 */
1671 if (u_usec << pps_shift > bigtick >> 2) {
1672 pps_intcnt = 0;
1673 if (pps_shift > PPS_SHIFT)
1674 pps_shift--;
1675 } else if (pps_intcnt >= 4) {
1676 pps_intcnt = 0;
1677 if (pps_shift < PPS_SHIFTMAX)
1678 pps_shift++;
1679 } else
1680 pps_intcnt++;
1681 }
1682 #endif /* PPS_SYNC */
1683 #endif /* NTP */
1684
1685 /*
1686 * Return information about system clocks.
1687 */
1688 int
1689 sysctl_clockrate(void *where, size_t *sizep)
1690 {
1691 struct clockinfo clkinfo;
1692
1693 /*
1694 * Construct clockinfo structure.
1695 */
1696 clkinfo.tick = tick;
1697 clkinfo.tickadj = tickadj;
1698 clkinfo.hz = hz;
1699 clkinfo.profhz = profhz;
1700 clkinfo.stathz = stathz ? stathz : hz;
1701 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1702 }
1703