kern_clock.c revision 1.76 1 /* $NetBSD: kern_clock.c,v 1.76 2001/09/11 04:32:20 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94 #ifdef CALLWHEEL_STATS
95 #include <sys/device.h>
96 #endif
97
98 #include <machine/cpu.h>
99 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
100 #include <machine/intr.h>
101 #endif
102
103 #ifdef GPROF
104 #include <sys/gmon.h>
105 #endif
106
107 /*
108 * Clock handling routines.
109 *
110 * This code is written to operate with two timers that run independently of
111 * each other. The main clock, running hz times per second, is used to keep
112 * track of real time. The second timer handles kernel and user profiling,
113 * and does resource use estimation. If the second timer is programmable,
114 * it is randomized to avoid aliasing between the two clocks. For example,
115 * the randomization prevents an adversary from always giving up the cpu
116 * just before its quantum expires. Otherwise, it would never accumulate
117 * cpu ticks. The mean frequency of the second timer is stathz.
118 *
119 * If no second timer exists, stathz will be zero; in this case we drive
120 * profiling and statistics off the main clock. This WILL NOT be accurate;
121 * do not do it unless absolutely necessary.
122 *
123 * The statistics clock may (or may not) be run at a higher rate while
124 * profiling. This profile clock runs at profhz. We require that profhz
125 * be an integral multiple of stathz.
126 *
127 * If the statistics clock is running fast, it must be divided by the ratio
128 * profhz/stathz for statistics. (For profiling, every tick counts.)
129 */
130
131 #ifdef NTP /* NTP phase-locked loop in kernel */
132 /*
133 * Phase/frequency-lock loop (PLL/FLL) definitions
134 *
135 * The following variables are read and set by the ntp_adjtime() system
136 * call.
137 *
138 * time_state shows the state of the system clock, with values defined
139 * in the timex.h header file.
140 *
141 * time_status shows the status of the system clock, with bits defined
142 * in the timex.h header file.
143 *
144 * time_offset is used by the PLL/FLL to adjust the system time in small
145 * increments.
146 *
147 * time_constant determines the bandwidth or "stiffness" of the PLL.
148 *
149 * time_tolerance determines maximum frequency error or tolerance of the
150 * CPU clock oscillator and is a property of the architecture; however,
151 * in principle it could change as result of the presence of external
152 * discipline signals, for instance.
153 *
154 * time_precision is usually equal to the kernel tick variable; however,
155 * in cases where a precision clock counter or external clock is
156 * available, the resolution can be much less than this and depend on
157 * whether the external clock is working or not.
158 *
159 * time_maxerror is initialized by a ntp_adjtime() call and increased by
160 * the kernel once each second to reflect the maximum error bound
161 * growth.
162 *
163 * time_esterror is set and read by the ntp_adjtime() call, but
164 * otherwise not used by the kernel.
165 */
166 int time_state = TIME_OK; /* clock state */
167 int time_status = STA_UNSYNC; /* clock status bits */
168 long time_offset = 0; /* time offset (us) */
169 long time_constant = 0; /* pll time constant */
170 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
171 long time_precision = 1; /* clock precision (us) */
172 long time_maxerror = MAXPHASE; /* maximum error (us) */
173 long time_esterror = MAXPHASE; /* estimated error (us) */
174
175 /*
176 * The following variables establish the state of the PLL/FLL and the
177 * residual time and frequency offset of the local clock. The scale
178 * factors are defined in the timex.h header file.
179 *
180 * time_phase and time_freq are the phase increment and the frequency
181 * increment, respectively, of the kernel time variable.
182 *
183 * time_freq is set via ntp_adjtime() from a value stored in a file when
184 * the synchronization daemon is first started. Its value is retrieved
185 * via ntp_adjtime() and written to the file about once per hour by the
186 * daemon.
187 *
188 * time_adj is the adjustment added to the value of tick at each timer
189 * interrupt and is recomputed from time_phase and time_freq at each
190 * seconds rollover.
191 *
192 * time_reftime is the second's portion of the system time at the last
193 * call to ntp_adjtime(). It is used to adjust the time_freq variable
194 * and to increase the time_maxerror as the time since last update
195 * increases.
196 */
197 long time_phase = 0; /* phase offset (scaled us) */
198 long time_freq = 0; /* frequency offset (scaled ppm) */
199 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
200 long time_reftime = 0; /* time at last adjustment (s) */
201
202 #ifdef PPS_SYNC
203 /*
204 * The following variables are used only if the kernel PPS discipline
205 * code is configured (PPS_SYNC). The scale factors are defined in the
206 * timex.h header file.
207 *
208 * pps_time contains the time at each calibration interval, as read by
209 * microtime(). pps_count counts the seconds of the calibration
210 * interval, the duration of which is nominally pps_shift in powers of
211 * two.
212 *
213 * pps_offset is the time offset produced by the time median filter
214 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
215 * this filter.
216 *
217 * pps_freq is the frequency offset produced by the frequency median
218 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
219 * by this filter.
220 *
221 * pps_usec is latched from a high resolution counter or external clock
222 * at pps_time. Here we want the hardware counter contents only, not the
223 * contents plus the time_tv.usec as usual.
224 *
225 * pps_valid counts the number of seconds since the last PPS update. It
226 * is used as a watchdog timer to disable the PPS discipline should the
227 * PPS signal be lost.
228 *
229 * pps_glitch counts the number of seconds since the beginning of an
230 * offset burst more than tick/2 from current nominal offset. It is used
231 * mainly to suppress error bursts due to priority conflicts between the
232 * PPS interrupt and timer interrupt.
233 *
234 * pps_intcnt counts the calibration intervals for use in the interval-
235 * adaptation algorithm. It's just too complicated for words.
236 */
237 struct timeval pps_time; /* kernel time at last interval */
238 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
239 long pps_offset = 0; /* pps time offset (us) */
240 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
241 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
242 long pps_freq = 0; /* frequency offset (scaled ppm) */
243 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
244 long pps_usec = 0; /* microsec counter at last interval */
245 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
246 int pps_glitch = 0; /* pps signal glitch counter */
247 int pps_count = 0; /* calibration interval counter (s) */
248 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
249 int pps_intcnt = 0; /* intervals at current duration */
250
251 /*
252 * PPS signal quality monitors
253 *
254 * pps_jitcnt counts the seconds that have been discarded because the
255 * jitter measured by the time median filter exceeds the limit MAXTIME
256 * (100 us).
257 *
258 * pps_calcnt counts the frequency calibration intervals, which are
259 * variable from 4 s to 256 s.
260 *
261 * pps_errcnt counts the calibration intervals which have been discarded
262 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
263 * calibration interval jitter exceeds two ticks.
264 *
265 * pps_stbcnt counts the calibration intervals that have been discarded
266 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
267 */
268 long pps_jitcnt = 0; /* jitter limit exceeded */
269 long pps_calcnt = 0; /* calibration intervals */
270 long pps_errcnt = 0; /* calibration errors */
271 long pps_stbcnt = 0; /* stability limit exceeded */
272 #endif /* PPS_SYNC */
273
274 #ifdef EXT_CLOCK
275 /*
276 * External clock definitions
277 *
278 * The following definitions and declarations are used only if an
279 * external clock is configured on the system.
280 */
281 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
282
283 /*
284 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
285 * interrupt and decremented once each second.
286 */
287 int clock_count = 0; /* CPU clock counter */
288
289 #ifdef HIGHBALL
290 /*
291 * The clock_offset and clock_cpu variables are used by the HIGHBALL
292 * interface. The clock_offset variable defines the offset between
293 * system time and the HIGBALL counters. The clock_cpu variable contains
294 * the offset between the system clock and the HIGHBALL clock for use in
295 * disciplining the kernel time variable.
296 */
297 extern struct timeval clock_offset; /* Highball clock offset */
298 long clock_cpu = 0; /* CPU clock adjust */
299 #endif /* HIGHBALL */
300 #endif /* EXT_CLOCK */
301 #endif /* NTP */
302
303
304 /*
305 * Bump a timeval by a small number of usec's.
306 */
307 #define BUMPTIME(t, usec) { \
308 volatile struct timeval *tp = (t); \
309 long us; \
310 \
311 tp->tv_usec = us = tp->tv_usec + (usec); \
312 if (us >= 1000000) { \
313 tp->tv_usec = us - 1000000; \
314 tp->tv_sec++; \
315 } \
316 }
317
318 int stathz;
319 int profhz;
320 int schedhz;
321 int profprocs;
322 int softclock_running; /* 1 => softclock() is running */
323 static int psdiv; /* prof => stat divider */
324 int psratio; /* ratio: prof / stat */
325 int tickfix, tickfixinterval; /* used if tick not really integral */
326 #ifndef NTP
327 static int tickfixcnt; /* accumulated fractional error */
328 #else
329 int fixtick; /* used by NTP for same */
330 int shifthz;
331 #endif
332
333 /*
334 * We might want ldd to load the both words from time at once.
335 * To succeed we need to be quadword aligned.
336 * The sparc already does that, and that it has worked so far is a fluke.
337 */
338 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
339 volatile struct timeval mono_time;
340
341 /*
342 * The callout mechanism is based on the work of Adam M. Costello and
343 * George Varghese, published in a technical report entitled "Redesigning
344 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
345 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
346 *
347 * The original work on the data structures used in this implementation
348 * was published by G. Varghese and A. Lauck in the paper "Hashed and
349 * Hierarchical Timing Wheels: Data Structures for the Efficient
350 * Implementation of a Timer Facility" in the Proceedings of the 11th
351 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
352 * November 1987.
353 */
354 struct callout_queue *callwheel;
355 int callwheelsize, callwheelbits, callwheelmask;
356
357 static struct callout *nextsoftcheck; /* next callout to be checked */
358
359 #ifdef CALLWHEEL_STATS
360 int *callwheel_sizes; /* per-bucket length count */
361 struct evcnt callwheel_collisions; /* number of hash collisions */
362 struct evcnt callwheel_maxlength; /* length of the longest hash chain */
363 struct evcnt callwheel_count; /* # callouts currently */
364 struct evcnt callwheel_established; /* # callouts established */
365 struct evcnt callwheel_fired; /* # callouts that fired */
366 struct evcnt callwheel_disestablished; /* # callouts disestablished */
367 struct evcnt callwheel_changed; /* # callouts changed */
368 struct evcnt callwheel_softclocks; /* # times softclock() called */
369 struct evcnt callwheel_softchecks; /* # checks per softclock() */
370 struct evcnt callwheel_softempty; /* # empty buckets seen */
371 struct evcnt callwheel_hintworked; /* # times hint saved scan */
372 #endif /* CALLWHEEL_STATS */
373
374 /*
375 * This value indicates the number of consecutive callouts that
376 * will be checked before we allow interrupts to have a chance
377 * again.
378 */
379 #ifndef MAX_SOFTCLOCK_STEPS
380 #define MAX_SOFTCLOCK_STEPS 100
381 #endif
382
383 struct simplelock callwheel_slock;
384
385 #define CALLWHEEL_LOCK(s) \
386 do { \
387 s = splclock(); \
388 simple_lock(&callwheel_slock); \
389 } while (0)
390
391 #define CALLWHEEL_UNLOCK(s) \
392 do { \
393 simple_unlock(&callwheel_slock); \
394 splx(s); \
395 } while (0)
396
397 static void callout_stop_locked(struct callout *);
398
399 /*
400 * These are both protected by callwheel_lock.
401 * XXX SHOULD BE STATIC!!
402 */
403 u_int64_t hardclock_ticks, softclock_ticks;
404
405 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
406 void softclock(void *);
407 void *softclock_si;
408 #endif
409
410 /*
411 * Initialize clock frequencies and start both clocks running.
412 */
413 void
414 initclocks(void)
415 {
416 int i;
417
418 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
419 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
420 if (softclock_si == NULL)
421 panic("initclocks: unable to register softclock intr");
422 #endif
423
424 /*
425 * Set divisors to 1 (normal case) and let the machine-specific
426 * code do its bit.
427 */
428 psdiv = 1;
429 cpu_initclocks();
430
431 /*
432 * Compute profhz/stathz/rrticks, and fix profhz if needed.
433 */
434 i = stathz ? stathz : hz;
435 if (profhz == 0)
436 profhz = i;
437 psratio = profhz / i;
438 rrticks = hz / 10;
439
440 #ifdef NTP
441 switch (hz) {
442 case 1:
443 shifthz = SHIFT_SCALE - 0;
444 break;
445 case 2:
446 shifthz = SHIFT_SCALE - 1;
447 break;
448 case 4:
449 shifthz = SHIFT_SCALE - 2;
450 break;
451 case 8:
452 shifthz = SHIFT_SCALE - 3;
453 break;
454 case 16:
455 shifthz = SHIFT_SCALE - 4;
456 break;
457 case 32:
458 shifthz = SHIFT_SCALE - 5;
459 break;
460 case 60:
461 case 64:
462 shifthz = SHIFT_SCALE - 6;
463 break;
464 case 96:
465 case 100:
466 case 128:
467 shifthz = SHIFT_SCALE - 7;
468 break;
469 case 256:
470 shifthz = SHIFT_SCALE - 8;
471 break;
472 case 512:
473 shifthz = SHIFT_SCALE - 9;
474 break;
475 case 1000:
476 case 1024:
477 shifthz = SHIFT_SCALE - 10;
478 break;
479 case 1200:
480 case 2048:
481 shifthz = SHIFT_SCALE - 11;
482 break;
483 case 4096:
484 shifthz = SHIFT_SCALE - 12;
485 break;
486 case 8192:
487 shifthz = SHIFT_SCALE - 13;
488 break;
489 case 16384:
490 shifthz = SHIFT_SCALE - 14;
491 break;
492 case 32768:
493 shifthz = SHIFT_SCALE - 15;
494 break;
495 case 65536:
496 shifthz = SHIFT_SCALE - 16;
497 break;
498 default:
499 panic("weird hz");
500 }
501 if (fixtick == 0) {
502 /*
503 * Give MD code a chance to set this to a better
504 * value; but, if it doesn't, we should.
505 */
506 fixtick = (1000000 - (hz*tick));
507 }
508 #endif
509 }
510
511 /*
512 * The real-time timer, interrupting hz times per second.
513 */
514 void
515 hardclock(struct clockframe *frame)
516 {
517 struct proc *p;
518 int delta;
519 extern int tickdelta;
520 extern long timedelta;
521 struct cpu_info *ci = curcpu();
522 #ifdef NTP
523 int time_update;
524 int ltemp;
525 #endif
526
527 p = curproc;
528 if (p) {
529 struct pstats *pstats;
530
531 /*
532 * Run current process's virtual and profile time, as needed.
533 */
534 pstats = p->p_stats;
535 if (CLKF_USERMODE(frame) &&
536 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
537 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
538 psignal(p, SIGVTALRM);
539 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
540 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
541 psignal(p, SIGPROF);
542 }
543
544 /*
545 * If no separate statistics clock is available, run it from here.
546 */
547 if (stathz == 0)
548 statclock(frame);
549 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
550 roundrobin(ci);
551
552 #if defined(MULTIPROCESSOR)
553 /*
554 * If we are not the primary CPU, we're not allowed to do
555 * any more work.
556 */
557 if (CPU_IS_PRIMARY(ci) == 0)
558 return;
559 #endif
560
561 /*
562 * Increment the time-of-day. The increment is normally just
563 * ``tick''. If the machine is one which has a clock frequency
564 * such that ``hz'' would not divide the second evenly into
565 * milliseconds, a periodic adjustment must be applied. Finally,
566 * if we are still adjusting the time (see adjtime()),
567 * ``tickdelta'' may also be added in.
568 */
569 delta = tick;
570
571 #ifndef NTP
572 if (tickfix) {
573 tickfixcnt += tickfix;
574 if (tickfixcnt >= tickfixinterval) {
575 delta++;
576 tickfixcnt -= tickfixinterval;
577 }
578 }
579 #endif /* !NTP */
580 /* Imprecise 4bsd adjtime() handling */
581 if (timedelta != 0) {
582 delta += tickdelta;
583 timedelta -= tickdelta;
584 }
585
586 #ifdef notyet
587 microset();
588 #endif
589
590 #ifndef NTP
591 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
592 #endif
593 BUMPTIME(&mono_time, delta);
594
595 #ifdef NTP
596 time_update = delta;
597
598 /*
599 * Compute the phase adjustment. If the low-order bits
600 * (time_phase) of the update overflow, bump the high-order bits
601 * (time_update).
602 */
603 time_phase += time_adj;
604 if (time_phase <= -FINEUSEC) {
605 ltemp = -time_phase >> SHIFT_SCALE;
606 time_phase += ltemp << SHIFT_SCALE;
607 time_update -= ltemp;
608 } else if (time_phase >= FINEUSEC) {
609 ltemp = time_phase >> SHIFT_SCALE;
610 time_phase -= ltemp << SHIFT_SCALE;
611 time_update += ltemp;
612 }
613
614 #ifdef HIGHBALL
615 /*
616 * If the HIGHBALL board is installed, we need to adjust the
617 * external clock offset in order to close the hardware feedback
618 * loop. This will adjust the external clock phase and frequency
619 * in small amounts. The additional phase noise and frequency
620 * wander this causes should be minimal. We also need to
621 * discipline the kernel time variable, since the PLL is used to
622 * discipline the external clock. If the Highball board is not
623 * present, we discipline kernel time with the PLL as usual. We
624 * assume that the external clock phase adjustment (time_update)
625 * and kernel phase adjustment (clock_cpu) are less than the
626 * value of tick.
627 */
628 clock_offset.tv_usec += time_update;
629 if (clock_offset.tv_usec >= 1000000) {
630 clock_offset.tv_sec++;
631 clock_offset.tv_usec -= 1000000;
632 }
633 if (clock_offset.tv_usec < 0) {
634 clock_offset.tv_sec--;
635 clock_offset.tv_usec += 1000000;
636 }
637 time.tv_usec += clock_cpu;
638 clock_cpu = 0;
639 #else
640 time.tv_usec += time_update;
641 #endif /* HIGHBALL */
642
643 /*
644 * On rollover of the second the phase adjustment to be used for
645 * the next second is calculated. Also, the maximum error is
646 * increased by the tolerance. If the PPS frequency discipline
647 * code is present, the phase is increased to compensate for the
648 * CPU clock oscillator frequency error.
649 *
650 * On a 32-bit machine and given parameters in the timex.h
651 * header file, the maximum phase adjustment is +-512 ms and
652 * maximum frequency offset is a tad less than) +-512 ppm. On a
653 * 64-bit machine, you shouldn't need to ask.
654 */
655 if (time.tv_usec >= 1000000) {
656 time.tv_usec -= 1000000;
657 time.tv_sec++;
658 time_maxerror += time_tolerance >> SHIFT_USEC;
659
660 /*
661 * Leap second processing. If in leap-insert state at
662 * the end of the day, the system clock is set back one
663 * second; if in leap-delete state, the system clock is
664 * set ahead one second. The microtime() routine or
665 * external clock driver will insure that reported time
666 * is always monotonic. The ugly divides should be
667 * replaced.
668 */
669 switch (time_state) {
670 case TIME_OK:
671 if (time_status & STA_INS)
672 time_state = TIME_INS;
673 else if (time_status & STA_DEL)
674 time_state = TIME_DEL;
675 break;
676
677 case TIME_INS:
678 if (time.tv_sec % 86400 == 0) {
679 time.tv_sec--;
680 time_state = TIME_OOP;
681 }
682 break;
683
684 case TIME_DEL:
685 if ((time.tv_sec + 1) % 86400 == 0) {
686 time.tv_sec++;
687 time_state = TIME_WAIT;
688 }
689 break;
690
691 case TIME_OOP:
692 time_state = TIME_WAIT;
693 break;
694
695 case TIME_WAIT:
696 if (!(time_status & (STA_INS | STA_DEL)))
697 time_state = TIME_OK;
698 break;
699 }
700
701 /*
702 * Compute the phase adjustment for the next second. In
703 * PLL mode, the offset is reduced by a fixed factor
704 * times the time constant. In FLL mode the offset is
705 * used directly. In either mode, the maximum phase
706 * adjustment for each second is clamped so as to spread
707 * the adjustment over not more than the number of
708 * seconds between updates.
709 */
710 if (time_offset < 0) {
711 ltemp = -time_offset;
712 if (!(time_status & STA_FLL))
713 ltemp >>= SHIFT_KG + time_constant;
714 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
715 ltemp = (MAXPHASE / MINSEC) <<
716 SHIFT_UPDATE;
717 time_offset += ltemp;
718 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
719 } else if (time_offset > 0) {
720 ltemp = time_offset;
721 if (!(time_status & STA_FLL))
722 ltemp >>= SHIFT_KG + time_constant;
723 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
724 ltemp = (MAXPHASE / MINSEC) <<
725 SHIFT_UPDATE;
726 time_offset -= ltemp;
727 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
728 } else
729 time_adj = 0;
730
731 /*
732 * Compute the frequency estimate and additional phase
733 * adjustment due to frequency error for the next
734 * second. When the PPS signal is engaged, gnaw on the
735 * watchdog counter and update the frequency computed by
736 * the pll and the PPS signal.
737 */
738 #ifdef PPS_SYNC
739 pps_valid++;
740 if (pps_valid == PPS_VALID) {
741 pps_jitter = MAXTIME;
742 pps_stabil = MAXFREQ;
743 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
744 STA_PPSWANDER | STA_PPSERROR);
745 }
746 ltemp = time_freq + pps_freq;
747 #else
748 ltemp = time_freq;
749 #endif /* PPS_SYNC */
750
751 if (ltemp < 0)
752 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
753 else
754 time_adj += ltemp >> (SHIFT_USEC - shifthz);
755 time_adj += (long)fixtick << shifthz;
756
757 /*
758 * When the CPU clock oscillator frequency is not a
759 * power of 2 in Hz, shifthz is only an approximate
760 * scale factor.
761 *
762 * To determine the adjustment, you can do the following:
763 * bc -q
764 * scale=24
765 * obase=2
766 * idealhz/realhz
767 * where `idealhz' is the next higher power of 2, and `realhz'
768 * is the actual value. You may need to factor this result
769 * into a sequence of 2 multipliers to get better precision.
770 *
771 * Likewise, the error can be calculated with (e.g. for 100Hz):
772 * bc -q
773 * scale=24
774 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
775 * (and then multiply by 1000000 to get ppm).
776 */
777 switch (hz) {
778 case 60:
779 /* A factor of 1.000100010001 gives about 15ppm
780 error. */
781 if (time_adj < 0) {
782 time_adj -= (-time_adj >> 4);
783 time_adj -= (-time_adj >> 8);
784 } else {
785 time_adj += (time_adj >> 4);
786 time_adj += (time_adj >> 8);
787 }
788 break;
789
790 case 96:
791 /* A factor of 1.0101010101 gives about 244ppm error. */
792 if (time_adj < 0) {
793 time_adj -= (-time_adj >> 2);
794 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
795 } else {
796 time_adj += (time_adj >> 2);
797 time_adj += (time_adj >> 4) + (time_adj >> 8);
798 }
799 break;
800
801 case 100:
802 /* A factor of 1.010001111010111 gives about 1ppm
803 error. */
804 if (time_adj < 0) {
805 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
806 time_adj += (-time_adj >> 10);
807 } else {
808 time_adj += (time_adj >> 2) + (time_adj >> 5);
809 time_adj -= (time_adj >> 10);
810 }
811 break;
812
813 case 1000:
814 /* A factor of 1.000001100010100001 gives about 50ppm
815 error. */
816 if (time_adj < 0) {
817 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
818 time_adj -= (-time_adj >> 7);
819 } else {
820 time_adj += (time_adj >> 6) + (time_adj >> 11);
821 time_adj += (time_adj >> 7);
822 }
823 break;
824
825 case 1200:
826 /* A factor of 1.1011010011100001 gives about 64ppm
827 error. */
828 if (time_adj < 0) {
829 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
830 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
831 } else {
832 time_adj += (time_adj >> 1) + (time_adj >> 6);
833 time_adj += (time_adj >> 3) + (time_adj >> 10);
834 }
835 break;
836 }
837
838 #ifdef EXT_CLOCK
839 /*
840 * If an external clock is present, it is necessary to
841 * discipline the kernel time variable anyway, since not
842 * all system components use the microtime() interface.
843 * Here, the time offset between the external clock and
844 * kernel time variable is computed every so often.
845 */
846 clock_count++;
847 if (clock_count > CLOCK_INTERVAL) {
848 clock_count = 0;
849 microtime(&clock_ext);
850 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
851 delta.tv_usec = clock_ext.tv_usec -
852 time.tv_usec;
853 if (delta.tv_usec < 0)
854 delta.tv_sec--;
855 if (delta.tv_usec >= 500000) {
856 delta.tv_usec -= 1000000;
857 delta.tv_sec++;
858 }
859 if (delta.tv_usec < -500000) {
860 delta.tv_usec += 1000000;
861 delta.tv_sec--;
862 }
863 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
864 delta.tv_usec > MAXPHASE) ||
865 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
866 delta.tv_usec < -MAXPHASE)) {
867 time = clock_ext;
868 delta.tv_sec = 0;
869 delta.tv_usec = 0;
870 }
871 #ifdef HIGHBALL
872 clock_cpu = delta.tv_usec;
873 #else /* HIGHBALL */
874 hardupdate(delta.tv_usec);
875 #endif /* HIGHBALL */
876 }
877 #endif /* EXT_CLOCK */
878 }
879
880 #endif /* NTP */
881
882 /*
883 * Process callouts at a very low cpu priority, so we don't keep the
884 * relatively high clock interrupt priority any longer than necessary.
885 */
886 simple_lock(&callwheel_slock); /* already at splclock() */
887 hardclock_ticks++;
888 if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
889 simple_unlock(&callwheel_slock);
890 if (CLKF_BASEPRI(frame)) {
891 /*
892 * Save the overhead of a software interrupt;
893 * it will happen as soon as we return, so do
894 * it now.
895 *
896 * NOTE: If we're at ``base priority'', softclock()
897 * was not already running.
898 */
899 spllowersoftclock();
900 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
901 softclock(NULL);
902 KERNEL_UNLOCK();
903 } else {
904 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
905 softintr_schedule(softclock_si);
906 #else
907 setsoftclock();
908 #endif
909 }
910 return;
911 } else if (softclock_running == 0 &&
912 (softclock_ticks + 1) == hardclock_ticks) {
913 softclock_ticks++;
914 }
915 simple_unlock(&callwheel_slock);
916 }
917
918 /*
919 * Software (low priority) clock interrupt.
920 * Run periodic events from timeout queue.
921 */
922 /*ARGSUSED*/
923 void
924 softclock(void *v)
925 {
926 struct callout_queue *bucket;
927 struct callout *c;
928 void (*func)(void *);
929 void *arg;
930 int s, idx;
931 int steps = 0;
932
933 CALLWHEEL_LOCK(s);
934
935 softclock_running = 1;
936
937 #ifdef CALLWHEEL_STATS
938 callwheel_softclocks.ev_count++;
939 #endif
940
941 while (softclock_ticks != hardclock_ticks) {
942 softclock_ticks++;
943 idx = (int)(softclock_ticks & callwheelmask);
944 bucket = &callwheel[idx];
945 c = TAILQ_FIRST(&bucket->cq_q);
946 if (c == NULL) {
947 #ifdef CALLWHEEL_STATS
948 callwheel_softempty.ev_count++;
949 #endif
950 continue;
951 }
952 if (softclock_ticks < bucket->cq_hint) {
953 #ifdef CALLWHEEL_STATS
954 callwheel_hintworked.ev_count++;
955 #endif
956 continue;
957 }
958 bucket->cq_hint = UQUAD_MAX;
959 while (c != NULL) {
960 #ifdef CALLWHEEL_STATS
961 callwheel_softchecks.ev_count++;
962 #endif
963 if (c->c_time != softclock_ticks) {
964 if (c->c_time < bucket->cq_hint)
965 bucket->cq_hint = c->c_time;
966 c = TAILQ_NEXT(c, c_link);
967 if (++steps >= MAX_SOFTCLOCK_STEPS) {
968 nextsoftcheck = c;
969 /* Give interrupts a chance. */
970 CALLWHEEL_UNLOCK(s);
971 CALLWHEEL_LOCK(s);
972 c = nextsoftcheck;
973 steps = 0;
974 }
975 } else {
976 nextsoftcheck = TAILQ_NEXT(c, c_link);
977 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
978 #ifdef CALLWHEEL_STATS
979 callwheel_sizes[idx]--;
980 callwheel_fired.ev_count++;
981 callwheel_count.ev_count--;
982 #endif
983 func = c->c_func;
984 arg = c->c_arg;
985 c->c_func = NULL;
986 c->c_flags &= ~CALLOUT_PENDING;
987 CALLWHEEL_UNLOCK(s);
988 (*func)(arg);
989 CALLWHEEL_LOCK(s);
990 steps = 0;
991 c = nextsoftcheck;
992 }
993 }
994 if (TAILQ_EMPTY(&bucket->cq_q))
995 bucket->cq_hint = UQUAD_MAX;
996 }
997 nextsoftcheck = NULL;
998 softclock_running = 0;
999 CALLWHEEL_UNLOCK(s);
1000 }
1001
1002 /*
1003 * callout_setsize:
1004 *
1005 * Determine how many callwheels are necessary and
1006 * set hash mask. Called from allocsys().
1007 */
1008 void
1009 callout_setsize(void)
1010 {
1011
1012 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
1013 /* loop */ ;
1014 callwheelmask = callwheelsize - 1;
1015 }
1016
1017 /*
1018 * callout_startup:
1019 *
1020 * Initialize the callwheel buckets.
1021 */
1022 void
1023 callout_startup(void)
1024 {
1025 int i;
1026
1027 for (i = 0; i < callwheelsize; i++) {
1028 callwheel[i].cq_hint = UQUAD_MAX;
1029 TAILQ_INIT(&callwheel[i].cq_q);
1030 }
1031
1032 simple_lock_init(&callwheel_slock);
1033
1034 #ifdef CALLWHEEL_STATS
1035 evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
1036 NULL, "callwheel", "collisions");
1037 evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
1038 NULL, "callwheel", "maxlength");
1039 evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
1040 NULL, "callwheel", "count");
1041 evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
1042 NULL, "callwheel", "established");
1043 evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
1044 NULL, "callwheel", "fired");
1045 evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
1046 NULL, "callwheel", "disestablished");
1047 evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
1048 NULL, "callwheel", "changed");
1049 evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
1050 NULL, "callwheel", "softclocks");
1051 evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
1052 NULL, "callwheel", "softempty");
1053 evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
1054 NULL, "callwheel", "hintworked");
1055 #endif /* CALLWHEEL_STATS */
1056 }
1057
1058 /*
1059 * callout_init:
1060 *
1061 * Initialize a callout structure so that it can be used
1062 * by callout_reset() and callout_stop().
1063 */
1064 void
1065 callout_init(struct callout *c)
1066 {
1067
1068 memset(c, 0, sizeof(*c));
1069 }
1070
1071 /*
1072 * callout_reset:
1073 *
1074 * Establish or change a timeout.
1075 */
1076 void
1077 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1078 {
1079 struct callout_queue *bucket;
1080 int s;
1081
1082 if (ticks <= 0)
1083 ticks = 1;
1084
1085 CALLWHEEL_LOCK(s);
1086
1087 /*
1088 * If this callout's timer is already running, cancel it
1089 * before we modify it.
1090 */
1091 if (c->c_flags & CALLOUT_PENDING) {
1092 callout_stop_locked(c); /* Already locked */
1093 #ifdef CALLWHEEL_STATS
1094 callwheel_changed.ev_count++;
1095 #endif
1096 }
1097
1098 c->c_arg = arg;
1099 c->c_func = func;
1100 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1101 c->c_time = hardclock_ticks + ticks;
1102
1103 bucket = &callwheel[c->c_time & callwheelmask];
1104
1105 #ifdef CALLWHEEL_STATS
1106 if (! TAILQ_EMPTY(&bucket->cq_q))
1107 callwheel_collisions.ev_count++;
1108 #endif
1109
1110 TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
1111 if (c->c_time < bucket->cq_hint)
1112 bucket->cq_hint = c->c_time;
1113
1114 #ifdef CALLWHEEL_STATS
1115 callwheel_count.ev_count++;
1116 callwheel_established.ev_count++;
1117 if (++callwheel_sizes[c->c_time & callwheelmask] >
1118 callwheel_maxlength.ev_count)
1119 callwheel_maxlength.ev_count =
1120 callwheel_sizes[c->c_time & callwheelmask];
1121 #endif
1122
1123 CALLWHEEL_UNLOCK(s);
1124 }
1125
1126 /*
1127 * callout_stop_locked:
1128 *
1129 * Disestablish a timeout. Callwheel is locked.
1130 */
1131 static void
1132 callout_stop_locked(struct callout *c)
1133 {
1134 struct callout_queue *bucket;
1135
1136 /*
1137 * Don't attempt to delete a callout that's not on the queue.
1138 */
1139 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1140 c->c_flags &= ~CALLOUT_ACTIVE;
1141 return;
1142 }
1143
1144 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1145
1146 if (nextsoftcheck == c)
1147 nextsoftcheck = TAILQ_NEXT(c, c_link);
1148
1149 bucket = &callwheel[c->c_time & callwheelmask];
1150 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
1151 if (TAILQ_EMPTY(&bucket->cq_q))
1152 bucket->cq_hint = UQUAD_MAX;
1153 #ifdef CALLWHEEL_STATS
1154 callwheel_count.ev_count--;
1155 callwheel_disestablished.ev_count++;
1156 callwheel_sizes[c->c_time & callwheelmask]--;
1157 #endif
1158
1159 c->c_func = NULL;
1160 }
1161
1162 /*
1163 * callout_stop:
1164 *
1165 * Disestablish a timeout. Callwheel is unlocked. This is
1166 * the standard entry point.
1167 */
1168 void
1169 callout_stop(struct callout *c)
1170 {
1171 int s;
1172
1173 CALLWHEEL_LOCK(s);
1174 callout_stop_locked(c);
1175 CALLWHEEL_UNLOCK(s);
1176 }
1177
1178 #ifdef CALLWHEEL_STATS
1179 /*
1180 * callout_showstats:
1181 *
1182 * Display callout statistics. Call it from DDB.
1183 */
1184 void
1185 callout_showstats(void)
1186 {
1187 u_int64_t curticks;
1188 int s;
1189
1190 s = splclock();
1191 curticks = softclock_ticks;
1192 splx(s);
1193
1194 printf("Callwheel statistics:\n");
1195 printf("\tCallouts currently queued: %llu\n",
1196 (long long) callwheel_count.ev_count);
1197 printf("\tCallouts established: %llu\n",
1198 (long long) callwheel_established.ev_count);
1199 printf("\tCallouts disestablished: %llu\n",
1200 (long long) callwheel_disestablished.ev_count);
1201 if (callwheel_changed.ev_count != 0)
1202 printf("\t\tOf those, %llu were changes\n",
1203 (long long) callwheel_changed.ev_count);
1204 printf("\tCallouts that fired: %llu\n",
1205 (long long) callwheel_fired.ev_count);
1206 printf("\tNumber of buckets: %d\n", callwheelsize);
1207 printf("\tNumber of hash collisions: %llu\n",
1208 (long long) callwheel_collisions.ev_count);
1209 printf("\tMaximum hash chain length: %llu\n",
1210 (long long) callwheel_maxlength.ev_count);
1211 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1212 (long long) callwheel_softclocks.ev_count,
1213 (long long) callwheel_softchecks.ev_count);
1214 printf("\t\tEmpty buckets seen: %llu\n",
1215 (long long) callwheel_softempty.ev_count);
1216 printf("\t\tTimes hint saved scan: %llu\n",
1217 (long long) callwheel_hintworked.ev_count);
1218 }
1219 #endif
1220
1221 /*
1222 * Compute number of hz until specified time. Used to compute second
1223 * argument to callout_reset() from an absolute time.
1224 */
1225 int
1226 hzto(struct timeval *tv)
1227 {
1228 unsigned long ticks;
1229 long sec, usec;
1230 int s;
1231
1232 /*
1233 * If the number of usecs in the whole seconds part of the time
1234 * difference fits in a long, then the total number of usecs will
1235 * fit in an unsigned long. Compute the total and convert it to
1236 * ticks, rounding up and adding 1 to allow for the current tick
1237 * to expire. Rounding also depends on unsigned long arithmetic
1238 * to avoid overflow.
1239 *
1240 * Otherwise, if the number of ticks in the whole seconds part of
1241 * the time difference fits in a long, then convert the parts to
1242 * ticks separately and add, using similar rounding methods and
1243 * overflow avoidance. This method would work in the previous
1244 * case, but it is slightly slower and assume that hz is integral.
1245 *
1246 * Otherwise, round the time difference down to the maximum
1247 * representable value.
1248 *
1249 * If ints are 32-bit, then the maximum value for any timeout in
1250 * 10ms ticks is 248 days.
1251 */
1252 s = splclock();
1253 sec = tv->tv_sec - time.tv_sec;
1254 usec = tv->tv_usec - time.tv_usec;
1255 splx(s);
1256
1257 if (usec < 0) {
1258 sec--;
1259 usec += 1000000;
1260 }
1261
1262 if (sec < 0 || (sec == 0 && usec <= 0)) {
1263 /*
1264 * Would expire now or in the past. Return 0 ticks.
1265 * This is different from the legacy hzto() interface,
1266 * and callers need to check for it.
1267 */
1268 ticks = 0;
1269 } else if (sec <= (LONG_MAX / 1000000))
1270 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1271 / tick) + 1;
1272 else if (sec <= (LONG_MAX / hz))
1273 ticks = (sec * hz) +
1274 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1275 else
1276 ticks = LONG_MAX;
1277
1278 if (ticks > INT_MAX)
1279 ticks = INT_MAX;
1280
1281 return ((int)ticks);
1282 }
1283
1284 /*
1285 * Start profiling on a process.
1286 *
1287 * Kernel profiling passes proc0 which never exits and hence
1288 * keeps the profile clock running constantly.
1289 */
1290 void
1291 startprofclock(struct proc *p)
1292 {
1293
1294 if ((p->p_flag & P_PROFIL) == 0) {
1295 p->p_flag |= P_PROFIL;
1296 if (++profprocs == 1 && stathz != 0)
1297 psdiv = psratio;
1298 }
1299 }
1300
1301 /*
1302 * Stop profiling on a process.
1303 */
1304 void
1305 stopprofclock(struct proc *p)
1306 {
1307
1308 if (p->p_flag & P_PROFIL) {
1309 p->p_flag &= ~P_PROFIL;
1310 if (--profprocs == 0 && stathz != 0)
1311 psdiv = 1;
1312 }
1313 }
1314
1315 /*
1316 * Statistics clock. Grab profile sample, and if divider reaches 0,
1317 * do process and kernel statistics.
1318 */
1319 void
1320 statclock(struct clockframe *frame)
1321 {
1322 #ifdef GPROF
1323 struct gmonparam *g;
1324 intptr_t i;
1325 #endif
1326 struct cpu_info *ci = curcpu();
1327 struct schedstate_percpu *spc = &ci->ci_schedstate;
1328 struct proc *p;
1329
1330 /*
1331 * Notice changes in divisor frequency, and adjust clock
1332 * frequency accordingly.
1333 */
1334 if (spc->spc_psdiv != psdiv) {
1335 spc->spc_psdiv = psdiv;
1336 spc->spc_pscnt = psdiv;
1337 if (psdiv == 1) {
1338 setstatclockrate(stathz);
1339 } else {
1340 setstatclockrate(profhz);
1341 }
1342 }
1343 p = curproc;
1344 if (CLKF_USERMODE(frame)) {
1345 if (p->p_flag & P_PROFIL)
1346 addupc_intr(p, CLKF_PC(frame));
1347 if (--spc->spc_pscnt > 0)
1348 return;
1349 /*
1350 * Came from user mode; CPU was in user state.
1351 * If this process is being profiled record the tick.
1352 */
1353 p->p_uticks++;
1354 if (p->p_nice > NZERO)
1355 spc->spc_cp_time[CP_NICE]++;
1356 else
1357 spc->spc_cp_time[CP_USER]++;
1358 } else {
1359 #ifdef GPROF
1360 /*
1361 * Kernel statistics are just like addupc_intr, only easier.
1362 */
1363 g = &_gmonparam;
1364 if (g->state == GMON_PROF_ON) {
1365 i = CLKF_PC(frame) - g->lowpc;
1366 if (i < g->textsize) {
1367 i /= HISTFRACTION * sizeof(*g->kcount);
1368 g->kcount[i]++;
1369 }
1370 }
1371 #endif
1372 #ifdef PROC_PC
1373 if (p && p->p_flag & P_PROFIL)
1374 addupc_intr(p, PROC_PC(p));
1375 #endif
1376 if (--spc->spc_pscnt > 0)
1377 return;
1378 /*
1379 * Came from kernel mode, so we were:
1380 * - handling an interrupt,
1381 * - doing syscall or trap work on behalf of the current
1382 * user process, or
1383 * - spinning in the idle loop.
1384 * Whichever it is, charge the time as appropriate.
1385 * Note that we charge interrupts to the current process,
1386 * regardless of whether they are ``for'' that process,
1387 * so that we know how much of its real time was spent
1388 * in ``non-process'' (i.e., interrupt) work.
1389 */
1390 if (CLKF_INTR(frame)) {
1391 if (p != NULL)
1392 p->p_iticks++;
1393 spc->spc_cp_time[CP_INTR]++;
1394 } else if (p != NULL) {
1395 p->p_sticks++;
1396 spc->spc_cp_time[CP_SYS]++;
1397 } else
1398 spc->spc_cp_time[CP_IDLE]++;
1399 }
1400 spc->spc_pscnt = psdiv;
1401
1402 if (p != NULL) {
1403 ++p->p_cpticks;
1404 /*
1405 * If no separate schedclock is provided, call it here
1406 * at ~~12-25 Hz, ~~16 Hz is best
1407 */
1408 if (schedhz == 0)
1409 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1410 schedclock(p);
1411 }
1412 }
1413
1414
1415 #ifdef NTP /* NTP phase-locked loop in kernel */
1416
1417 /*
1418 * hardupdate() - local clock update
1419 *
1420 * This routine is called by ntp_adjtime() to update the local clock
1421 * phase and frequency. The implementation is of an adaptive-parameter,
1422 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1423 * time and frequency offset estimates for each call. If the kernel PPS
1424 * discipline code is configured (PPS_SYNC), the PPS signal itself
1425 * determines the new time offset, instead of the calling argument.
1426 * Presumably, calls to ntp_adjtime() occur only when the caller
1427 * believes the local clock is valid within some bound (+-128 ms with
1428 * NTP). If the caller's time is far different than the PPS time, an
1429 * argument will ensue, and it's not clear who will lose.
1430 *
1431 * For uncompensated quartz crystal oscillatores and nominal update
1432 * intervals less than 1024 s, operation should be in phase-lock mode
1433 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1434 * intervals greater than thiss, operation should be in frequency-lock
1435 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1436 *
1437 * Note: splclock() is in effect.
1438 */
1439 void
1440 hardupdate(long offset)
1441 {
1442 long ltemp, mtemp;
1443
1444 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1445 return;
1446 ltemp = offset;
1447 #ifdef PPS_SYNC
1448 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1449 ltemp = pps_offset;
1450 #endif /* PPS_SYNC */
1451
1452 /*
1453 * Scale the phase adjustment and clamp to the operating range.
1454 */
1455 if (ltemp > MAXPHASE)
1456 time_offset = MAXPHASE << SHIFT_UPDATE;
1457 else if (ltemp < -MAXPHASE)
1458 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1459 else
1460 time_offset = ltemp << SHIFT_UPDATE;
1461
1462 /*
1463 * Select whether the frequency is to be controlled and in which
1464 * mode (PLL or FLL). Clamp to the operating range. Ugly
1465 * multiply/divide should be replaced someday.
1466 */
1467 if (time_status & STA_FREQHOLD || time_reftime == 0)
1468 time_reftime = time.tv_sec;
1469 mtemp = time.tv_sec - time_reftime;
1470 time_reftime = time.tv_sec;
1471 if (time_status & STA_FLL) {
1472 if (mtemp >= MINSEC) {
1473 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1474 SHIFT_UPDATE));
1475 if (ltemp < 0)
1476 time_freq -= -ltemp >> SHIFT_KH;
1477 else
1478 time_freq += ltemp >> SHIFT_KH;
1479 }
1480 } else {
1481 if (mtemp < MAXSEC) {
1482 ltemp *= mtemp;
1483 if (ltemp < 0)
1484 time_freq -= -ltemp >> (time_constant +
1485 time_constant + SHIFT_KF -
1486 SHIFT_USEC);
1487 else
1488 time_freq += ltemp >> (time_constant +
1489 time_constant + SHIFT_KF -
1490 SHIFT_USEC);
1491 }
1492 }
1493 if (time_freq > time_tolerance)
1494 time_freq = time_tolerance;
1495 else if (time_freq < -time_tolerance)
1496 time_freq = -time_tolerance;
1497 }
1498
1499 #ifdef PPS_SYNC
1500 /*
1501 * hardpps() - discipline CPU clock oscillator to external PPS signal
1502 *
1503 * This routine is called at each PPS interrupt in order to discipline
1504 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1505 * and leaves it in a handy spot for the hardclock() routine. It
1506 * integrates successive PPS phase differences and calculates the
1507 * frequency offset. This is used in hardclock() to discipline the CPU
1508 * clock oscillator so that intrinsic frequency error is cancelled out.
1509 * The code requires the caller to capture the time and hardware counter
1510 * value at the on-time PPS signal transition.
1511 *
1512 * Note that, on some Unix systems, this routine runs at an interrupt
1513 * priority level higher than the timer interrupt routine hardclock().
1514 * Therefore, the variables used are distinct from the hardclock()
1515 * variables, except for certain exceptions: The PPS frequency pps_freq
1516 * and phase pps_offset variables are determined by this routine and
1517 * updated atomically. The time_tolerance variable can be considered a
1518 * constant, since it is infrequently changed, and then only when the
1519 * PPS signal is disabled. The watchdog counter pps_valid is updated
1520 * once per second by hardclock() and is atomically cleared in this
1521 * routine.
1522 */
1523 void
1524 hardpps(struct timeval *tvp, /* time at PPS */
1525 long usec /* hardware counter at PPS */)
1526 {
1527 long u_usec, v_usec, bigtick;
1528 long cal_sec, cal_usec;
1529
1530 /*
1531 * An occasional glitch can be produced when the PPS interrupt
1532 * occurs in the hardclock() routine before the time variable is
1533 * updated. Here the offset is discarded when the difference
1534 * between it and the last one is greater than tick/2, but not
1535 * if the interval since the first discard exceeds 30 s.
1536 */
1537 time_status |= STA_PPSSIGNAL;
1538 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1539 pps_valid = 0;
1540 u_usec = -tvp->tv_usec;
1541 if (u_usec < -500000)
1542 u_usec += 1000000;
1543 v_usec = pps_offset - u_usec;
1544 if (v_usec < 0)
1545 v_usec = -v_usec;
1546 if (v_usec > (tick >> 1)) {
1547 if (pps_glitch > MAXGLITCH) {
1548 pps_glitch = 0;
1549 pps_tf[2] = u_usec;
1550 pps_tf[1] = u_usec;
1551 } else {
1552 pps_glitch++;
1553 u_usec = pps_offset;
1554 }
1555 } else
1556 pps_glitch = 0;
1557
1558 /*
1559 * A three-stage median filter is used to help deglitch the pps
1560 * time. The median sample becomes the time offset estimate; the
1561 * difference between the other two samples becomes the time
1562 * dispersion (jitter) estimate.
1563 */
1564 pps_tf[2] = pps_tf[1];
1565 pps_tf[1] = pps_tf[0];
1566 pps_tf[0] = u_usec;
1567 if (pps_tf[0] > pps_tf[1]) {
1568 if (pps_tf[1] > pps_tf[2]) {
1569 pps_offset = pps_tf[1]; /* 0 1 2 */
1570 v_usec = pps_tf[0] - pps_tf[2];
1571 } else if (pps_tf[2] > pps_tf[0]) {
1572 pps_offset = pps_tf[0]; /* 2 0 1 */
1573 v_usec = pps_tf[2] - pps_tf[1];
1574 } else {
1575 pps_offset = pps_tf[2]; /* 0 2 1 */
1576 v_usec = pps_tf[0] - pps_tf[1];
1577 }
1578 } else {
1579 if (pps_tf[1] < pps_tf[2]) {
1580 pps_offset = pps_tf[1]; /* 2 1 0 */
1581 v_usec = pps_tf[2] - pps_tf[0];
1582 } else if (pps_tf[2] < pps_tf[0]) {
1583 pps_offset = pps_tf[0]; /* 1 0 2 */
1584 v_usec = pps_tf[1] - pps_tf[2];
1585 } else {
1586 pps_offset = pps_tf[2]; /* 1 2 0 */
1587 v_usec = pps_tf[1] - pps_tf[0];
1588 }
1589 }
1590 if (v_usec > MAXTIME)
1591 pps_jitcnt++;
1592 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1593 if (v_usec < 0)
1594 pps_jitter -= -v_usec >> PPS_AVG;
1595 else
1596 pps_jitter += v_usec >> PPS_AVG;
1597 if (pps_jitter > (MAXTIME >> 1))
1598 time_status |= STA_PPSJITTER;
1599
1600 /*
1601 * During the calibration interval adjust the starting time when
1602 * the tick overflows. At the end of the interval compute the
1603 * duration of the interval and the difference of the hardware
1604 * counters at the beginning and end of the interval. This code
1605 * is deliciously complicated by the fact valid differences may
1606 * exceed the value of tick when using long calibration
1607 * intervals and small ticks. Note that the counter can be
1608 * greater than tick if caught at just the wrong instant, but
1609 * the values returned and used here are correct.
1610 */
1611 bigtick = (long)tick << SHIFT_USEC;
1612 pps_usec -= pps_freq;
1613 if (pps_usec >= bigtick)
1614 pps_usec -= bigtick;
1615 if (pps_usec < 0)
1616 pps_usec += bigtick;
1617 pps_time.tv_sec++;
1618 pps_count++;
1619 if (pps_count < (1 << pps_shift))
1620 return;
1621 pps_count = 0;
1622 pps_calcnt++;
1623 u_usec = usec << SHIFT_USEC;
1624 v_usec = pps_usec - u_usec;
1625 if (v_usec >= bigtick >> 1)
1626 v_usec -= bigtick;
1627 if (v_usec < -(bigtick >> 1))
1628 v_usec += bigtick;
1629 if (v_usec < 0)
1630 v_usec = -(-v_usec >> pps_shift);
1631 else
1632 v_usec = v_usec >> pps_shift;
1633 pps_usec = u_usec;
1634 cal_sec = tvp->tv_sec;
1635 cal_usec = tvp->tv_usec;
1636 cal_sec -= pps_time.tv_sec;
1637 cal_usec -= pps_time.tv_usec;
1638 if (cal_usec < 0) {
1639 cal_usec += 1000000;
1640 cal_sec--;
1641 }
1642 pps_time = *tvp;
1643
1644 /*
1645 * Check for lost interrupts, noise, excessive jitter and
1646 * excessive frequency error. The number of timer ticks during
1647 * the interval may vary +-1 tick. Add to this a margin of one
1648 * tick for the PPS signal jitter and maximum frequency
1649 * deviation. If the limits are exceeded, the calibration
1650 * interval is reset to the minimum and we start over.
1651 */
1652 u_usec = (long)tick << 1;
1653 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1654 || (cal_sec == 0 && cal_usec < u_usec))
1655 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1656 pps_errcnt++;
1657 pps_shift = PPS_SHIFT;
1658 pps_intcnt = 0;
1659 time_status |= STA_PPSERROR;
1660 return;
1661 }
1662
1663 /*
1664 * A three-stage median filter is used to help deglitch the pps
1665 * frequency. The median sample becomes the frequency offset
1666 * estimate; the difference between the other two samples
1667 * becomes the frequency dispersion (stability) estimate.
1668 */
1669 pps_ff[2] = pps_ff[1];
1670 pps_ff[1] = pps_ff[0];
1671 pps_ff[0] = v_usec;
1672 if (pps_ff[0] > pps_ff[1]) {
1673 if (pps_ff[1] > pps_ff[2]) {
1674 u_usec = pps_ff[1]; /* 0 1 2 */
1675 v_usec = pps_ff[0] - pps_ff[2];
1676 } else if (pps_ff[2] > pps_ff[0]) {
1677 u_usec = pps_ff[0]; /* 2 0 1 */
1678 v_usec = pps_ff[2] - pps_ff[1];
1679 } else {
1680 u_usec = pps_ff[2]; /* 0 2 1 */
1681 v_usec = pps_ff[0] - pps_ff[1];
1682 }
1683 } else {
1684 if (pps_ff[1] < pps_ff[2]) {
1685 u_usec = pps_ff[1]; /* 2 1 0 */
1686 v_usec = pps_ff[2] - pps_ff[0];
1687 } else if (pps_ff[2] < pps_ff[0]) {
1688 u_usec = pps_ff[0]; /* 1 0 2 */
1689 v_usec = pps_ff[1] - pps_ff[2];
1690 } else {
1691 u_usec = pps_ff[2]; /* 1 2 0 */
1692 v_usec = pps_ff[1] - pps_ff[0];
1693 }
1694 }
1695
1696 /*
1697 * Here the frequency dispersion (stability) is updated. If it
1698 * is less than one-fourth the maximum (MAXFREQ), the frequency
1699 * offset is updated as well, but clamped to the tolerance. It
1700 * will be processed later by the hardclock() routine.
1701 */
1702 v_usec = (v_usec >> 1) - pps_stabil;
1703 if (v_usec < 0)
1704 pps_stabil -= -v_usec >> PPS_AVG;
1705 else
1706 pps_stabil += v_usec >> PPS_AVG;
1707 if (pps_stabil > MAXFREQ >> 2) {
1708 pps_stbcnt++;
1709 time_status |= STA_PPSWANDER;
1710 return;
1711 }
1712 if (time_status & STA_PPSFREQ) {
1713 if (u_usec < 0) {
1714 pps_freq -= -u_usec >> PPS_AVG;
1715 if (pps_freq < -time_tolerance)
1716 pps_freq = -time_tolerance;
1717 u_usec = -u_usec;
1718 } else {
1719 pps_freq += u_usec >> PPS_AVG;
1720 if (pps_freq > time_tolerance)
1721 pps_freq = time_tolerance;
1722 }
1723 }
1724
1725 /*
1726 * Here the calibration interval is adjusted. If the maximum
1727 * time difference is greater than tick / 4, reduce the interval
1728 * by half. If this is not the case for four consecutive
1729 * intervals, double the interval.
1730 */
1731 if (u_usec << pps_shift > bigtick >> 2) {
1732 pps_intcnt = 0;
1733 if (pps_shift > PPS_SHIFT)
1734 pps_shift--;
1735 } else if (pps_intcnt >= 4) {
1736 pps_intcnt = 0;
1737 if (pps_shift < PPS_SHIFTMAX)
1738 pps_shift++;
1739 } else
1740 pps_intcnt++;
1741 }
1742 #endif /* PPS_SYNC */
1743 #endif /* NTP */
1744
1745 /*
1746 * Return information about system clocks.
1747 */
1748 int
1749 sysctl_clockrate(void *where, size_t *sizep)
1750 {
1751 struct clockinfo clkinfo;
1752
1753 /*
1754 * Construct clockinfo structure.
1755 */
1756 clkinfo.tick = tick;
1757 clkinfo.tickadj = tickadj;
1758 clkinfo.hz = hz;
1759 clkinfo.profhz = profhz;
1760 clkinfo.stathz = stathz ? stathz : hz;
1761 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1762 }
1763