Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.77
      1 /*	$NetBSD: kern_clock.c,v 1.77 2001/09/13 05:22:17 enami Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include "opt_callout.h"
     81 #include "opt_ntp.h"
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/dkstat.h>
     86 #include <sys/callout.h>
     87 #include <sys/kernel.h>
     88 #include <sys/proc.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/signalvar.h>
     91 #include <uvm/uvm_extern.h>
     92 #include <sys/sysctl.h>
     93 #include <sys/timex.h>
     94 #include <sys/sched.h>
     95 #ifdef CALLWHEEL_STATS
     96 #include <sys/device.h>
     97 #endif
     98 
     99 #include <machine/cpu.h>
    100 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    101 #include <machine/intr.h>
    102 #endif
    103 
    104 #ifdef GPROF
    105 #include <sys/gmon.h>
    106 #endif
    107 
    108 /*
    109  * Clock handling routines.
    110  *
    111  * This code is written to operate with two timers that run independently of
    112  * each other.  The main clock, running hz times per second, is used to keep
    113  * track of real time.  The second timer handles kernel and user profiling,
    114  * and does resource use estimation.  If the second timer is programmable,
    115  * it is randomized to avoid aliasing between the two clocks.  For example,
    116  * the randomization prevents an adversary from always giving up the cpu
    117  * just before its quantum expires.  Otherwise, it would never accumulate
    118  * cpu ticks.  The mean frequency of the second timer is stathz.
    119  *
    120  * If no second timer exists, stathz will be zero; in this case we drive
    121  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    122  * do not do it unless absolutely necessary.
    123  *
    124  * The statistics clock may (or may not) be run at a higher rate while
    125  * profiling.  This profile clock runs at profhz.  We require that profhz
    126  * be an integral multiple of stathz.
    127  *
    128  * If the statistics clock is running fast, it must be divided by the ratio
    129  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    130  */
    131 
    132 #ifdef NTP	/* NTP phase-locked loop in kernel */
    133 /*
    134  * Phase/frequency-lock loop (PLL/FLL) definitions
    135  *
    136  * The following variables are read and set by the ntp_adjtime() system
    137  * call.
    138  *
    139  * time_state shows the state of the system clock, with values defined
    140  * in the timex.h header file.
    141  *
    142  * time_status shows the status of the system clock, with bits defined
    143  * in the timex.h header file.
    144  *
    145  * time_offset is used by the PLL/FLL to adjust the system time in small
    146  * increments.
    147  *
    148  * time_constant determines the bandwidth or "stiffness" of the PLL.
    149  *
    150  * time_tolerance determines maximum frequency error or tolerance of the
    151  * CPU clock oscillator and is a property of the architecture; however,
    152  * in principle it could change as result of the presence of external
    153  * discipline signals, for instance.
    154  *
    155  * time_precision is usually equal to the kernel tick variable; however,
    156  * in cases where a precision clock counter or external clock is
    157  * available, the resolution can be much less than this and depend on
    158  * whether the external clock is working or not.
    159  *
    160  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    161  * the kernel once each second to reflect the maximum error bound
    162  * growth.
    163  *
    164  * time_esterror is set and read by the ntp_adjtime() call, but
    165  * otherwise not used by the kernel.
    166  */
    167 int time_state = TIME_OK;	/* clock state */
    168 int time_status = STA_UNSYNC;	/* clock status bits */
    169 long time_offset = 0;		/* time offset (us) */
    170 long time_constant = 0;		/* pll time constant */
    171 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    172 long time_precision = 1;	/* clock precision (us) */
    173 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    174 long time_esterror = MAXPHASE;	/* estimated error (us) */
    175 
    176 /*
    177  * The following variables establish the state of the PLL/FLL and the
    178  * residual time and frequency offset of the local clock. The scale
    179  * factors are defined in the timex.h header file.
    180  *
    181  * time_phase and time_freq are the phase increment and the frequency
    182  * increment, respectively, of the kernel time variable.
    183  *
    184  * time_freq is set via ntp_adjtime() from a value stored in a file when
    185  * the synchronization daemon is first started. Its value is retrieved
    186  * via ntp_adjtime() and written to the file about once per hour by the
    187  * daemon.
    188  *
    189  * time_adj is the adjustment added to the value of tick at each timer
    190  * interrupt and is recomputed from time_phase and time_freq at each
    191  * seconds rollover.
    192  *
    193  * time_reftime is the second's portion of the system time at the last
    194  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    195  * and to increase the time_maxerror as the time since last update
    196  * increases.
    197  */
    198 long time_phase = 0;		/* phase offset (scaled us) */
    199 long time_freq = 0;		/* frequency offset (scaled ppm) */
    200 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    201 long time_reftime = 0;		/* time at last adjustment (s) */
    202 
    203 #ifdef PPS_SYNC
    204 /*
    205  * The following variables are used only if the kernel PPS discipline
    206  * code is configured (PPS_SYNC). The scale factors are defined in the
    207  * timex.h header file.
    208  *
    209  * pps_time contains the time at each calibration interval, as read by
    210  * microtime(). pps_count counts the seconds of the calibration
    211  * interval, the duration of which is nominally pps_shift in powers of
    212  * two.
    213  *
    214  * pps_offset is the time offset produced by the time median filter
    215  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    216  * this filter.
    217  *
    218  * pps_freq is the frequency offset produced by the frequency median
    219  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    220  * by this filter.
    221  *
    222  * pps_usec is latched from a high resolution counter or external clock
    223  * at pps_time. Here we want the hardware counter contents only, not the
    224  * contents plus the time_tv.usec as usual.
    225  *
    226  * pps_valid counts the number of seconds since the last PPS update. It
    227  * is used as a watchdog timer to disable the PPS discipline should the
    228  * PPS signal be lost.
    229  *
    230  * pps_glitch counts the number of seconds since the beginning of an
    231  * offset burst more than tick/2 from current nominal offset. It is used
    232  * mainly to suppress error bursts due to priority conflicts between the
    233  * PPS interrupt and timer interrupt.
    234  *
    235  * pps_intcnt counts the calibration intervals for use in the interval-
    236  * adaptation algorithm. It's just too complicated for words.
    237  */
    238 struct timeval pps_time;	/* kernel time at last interval */
    239 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    240 long pps_offset = 0;		/* pps time offset (us) */
    241 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    242 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    243 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    244 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    245 long pps_usec = 0;		/* microsec counter at last interval */
    246 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    247 int pps_glitch = 0;		/* pps signal glitch counter */
    248 int pps_count = 0;		/* calibration interval counter (s) */
    249 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    250 int pps_intcnt = 0;		/* intervals at current duration */
    251 
    252 /*
    253  * PPS signal quality monitors
    254  *
    255  * pps_jitcnt counts the seconds that have been discarded because the
    256  * jitter measured by the time median filter exceeds the limit MAXTIME
    257  * (100 us).
    258  *
    259  * pps_calcnt counts the frequency calibration intervals, which are
    260  * variable from 4 s to 256 s.
    261  *
    262  * pps_errcnt counts the calibration intervals which have been discarded
    263  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    264  * calibration interval jitter exceeds two ticks.
    265  *
    266  * pps_stbcnt counts the calibration intervals that have been discarded
    267  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    268  */
    269 long pps_jitcnt = 0;		/* jitter limit exceeded */
    270 long pps_calcnt = 0;		/* calibration intervals */
    271 long pps_errcnt = 0;		/* calibration errors */
    272 long pps_stbcnt = 0;		/* stability limit exceeded */
    273 #endif /* PPS_SYNC */
    274 
    275 #ifdef EXT_CLOCK
    276 /*
    277  * External clock definitions
    278  *
    279  * The following definitions and declarations are used only if an
    280  * external clock is configured on the system.
    281  */
    282 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    283 
    284 /*
    285  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    286  * interrupt and decremented once each second.
    287  */
    288 int clock_count = 0;		/* CPU clock counter */
    289 
    290 #ifdef HIGHBALL
    291 /*
    292  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    293  * interface. The clock_offset variable defines the offset between
    294  * system time and the HIGBALL counters. The clock_cpu variable contains
    295  * the offset between the system clock and the HIGHBALL clock for use in
    296  * disciplining the kernel time variable.
    297  */
    298 extern struct timeval clock_offset; /* Highball clock offset */
    299 long clock_cpu = 0;		/* CPU clock adjust */
    300 #endif /* HIGHBALL */
    301 #endif /* EXT_CLOCK */
    302 #endif /* NTP */
    303 
    304 
    305 /*
    306  * Bump a timeval by a small number of usec's.
    307  */
    308 #define BUMPTIME(t, usec) { \
    309 	volatile struct timeval *tp = (t); \
    310 	long us; \
    311  \
    312 	tp->tv_usec = us = tp->tv_usec + (usec); \
    313 	if (us >= 1000000) { \
    314 		tp->tv_usec = us - 1000000; \
    315 		tp->tv_sec++; \
    316 	} \
    317 }
    318 
    319 int	stathz;
    320 int	profhz;
    321 int	schedhz;
    322 int	profprocs;
    323 int	softclock_running;		/* 1 => softclock() is running */
    324 static int psdiv;			/* prof => stat divider */
    325 int	psratio;			/* ratio: prof / stat */
    326 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    327 #ifndef NTP
    328 static int tickfixcnt;			/* accumulated fractional error */
    329 #else
    330 int	fixtick;			/* used by NTP for same */
    331 int	shifthz;
    332 #endif
    333 
    334 /*
    335  * We might want ldd to load the both words from time at once.
    336  * To succeed we need to be quadword aligned.
    337  * The sparc already does that, and that it has worked so far is a fluke.
    338  */
    339 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    340 volatile struct	timeval mono_time;
    341 
    342 /*
    343  * The callout mechanism is based on the work of Adam M. Costello and
    344  * George Varghese, published in a technical report entitled "Redesigning
    345  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
    346  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
    347  *
    348  * The original work on the data structures used in this implementation
    349  * was published by G. Varghese and A. Lauck in the paper "Hashed and
    350  * Hierarchical Timing Wheels: Data Structures for the Efficient
    351  * Implementation of a Timer Facility" in the Proceedings of the 11th
    352  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
    353  * November 1987.
    354  */
    355 struct callout_queue *callwheel;
    356 int	callwheelsize, callwheelbits, callwheelmask;
    357 
    358 static struct callout *nextsoftcheck;	/* next callout to be checked */
    359 
    360 #ifdef CALLWHEEL_STATS
    361 int	     *callwheel_sizes;		/* per-bucket length count */
    362 struct evcnt callwheel_collisions;	/* number of hash collisions */
    363 struct evcnt callwheel_maxlength;	/* length of the longest hash chain */
    364 struct evcnt callwheel_count;		/* # callouts currently */
    365 struct evcnt callwheel_established;	/* # callouts established */
    366 struct evcnt callwheel_fired;		/* # callouts that fired */
    367 struct evcnt callwheel_disestablished;	/* # callouts disestablished */
    368 struct evcnt callwheel_changed;		/* # callouts changed */
    369 struct evcnt callwheel_softclocks;	/* # times softclock() called */
    370 struct evcnt callwheel_softchecks;	/* # checks per softclock() */
    371 struct evcnt callwheel_softempty;	/* # empty buckets seen */
    372 struct evcnt callwheel_hintworked;	/* # times hint saved scan */
    373 #endif /* CALLWHEEL_STATS */
    374 
    375 /*
    376  * This value indicates the number of consecutive callouts that
    377  * will be checked before we allow interrupts to have a chance
    378  * again.
    379  */
    380 #ifndef MAX_SOFTCLOCK_STEPS
    381 #define	MAX_SOFTCLOCK_STEPS	100
    382 #endif
    383 
    384 struct simplelock callwheel_slock;
    385 
    386 #define	CALLWHEEL_LOCK(s)						\
    387 do {									\
    388 	s = splclock();							\
    389 	simple_lock(&callwheel_slock);					\
    390 } while (0)
    391 
    392 #define	CALLWHEEL_UNLOCK(s)						\
    393 do {									\
    394 	simple_unlock(&callwheel_slock);				\
    395 	splx(s);							\
    396 } while (0)
    397 
    398 static void callout_stop_locked(struct callout *);
    399 
    400 /*
    401  * These are both protected by callwheel_lock.
    402  * XXX SHOULD BE STATIC!!
    403  */
    404 u_int64_t hardclock_ticks, softclock_ticks;
    405 
    406 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    407 void	softclock(void *);
    408 void	*softclock_si;
    409 #endif
    410 
    411 /*
    412  * Initialize clock frequencies and start both clocks running.
    413  */
    414 void
    415 initclocks(void)
    416 {
    417 	int i;
    418 
    419 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    420 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    421 	if (softclock_si == NULL)
    422 		panic("initclocks: unable to register softclock intr");
    423 #endif
    424 
    425 	/*
    426 	 * Set divisors to 1 (normal case) and let the machine-specific
    427 	 * code do its bit.
    428 	 */
    429 	psdiv = 1;
    430 	cpu_initclocks();
    431 
    432 	/*
    433 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    434 	 */
    435 	i = stathz ? stathz : hz;
    436 	if (profhz == 0)
    437 		profhz = i;
    438 	psratio = profhz / i;
    439 	rrticks = hz / 10;
    440 
    441 #ifdef NTP
    442 	switch (hz) {
    443 	case 1:
    444 		shifthz = SHIFT_SCALE - 0;
    445 		break;
    446 	case 2:
    447 		shifthz = SHIFT_SCALE - 1;
    448 		break;
    449 	case 4:
    450 		shifthz = SHIFT_SCALE - 2;
    451 		break;
    452 	case 8:
    453 		shifthz = SHIFT_SCALE - 3;
    454 		break;
    455 	case 16:
    456 		shifthz = SHIFT_SCALE - 4;
    457 		break;
    458 	case 32:
    459 		shifthz = SHIFT_SCALE - 5;
    460 		break;
    461 	case 60:
    462 	case 64:
    463 		shifthz = SHIFT_SCALE - 6;
    464 		break;
    465 	case 96:
    466 	case 100:
    467 	case 128:
    468 		shifthz = SHIFT_SCALE - 7;
    469 		break;
    470 	case 256:
    471 		shifthz = SHIFT_SCALE - 8;
    472 		break;
    473 	case 512:
    474 		shifthz = SHIFT_SCALE - 9;
    475 		break;
    476 	case 1000:
    477 	case 1024:
    478 		shifthz = SHIFT_SCALE - 10;
    479 		break;
    480 	case 1200:
    481 	case 2048:
    482 		shifthz = SHIFT_SCALE - 11;
    483 		break;
    484 	case 4096:
    485 		shifthz = SHIFT_SCALE - 12;
    486 		break;
    487 	case 8192:
    488 		shifthz = SHIFT_SCALE - 13;
    489 		break;
    490 	case 16384:
    491 		shifthz = SHIFT_SCALE - 14;
    492 		break;
    493 	case 32768:
    494 		shifthz = SHIFT_SCALE - 15;
    495 		break;
    496 	case 65536:
    497 		shifthz = SHIFT_SCALE - 16;
    498 		break;
    499 	default:
    500 		panic("weird hz");
    501 	}
    502 	if (fixtick == 0) {
    503 		/*
    504 		 * Give MD code a chance to set this to a better
    505 		 * value; but, if it doesn't, we should.
    506 		 */
    507 		fixtick = (1000000 - (hz*tick));
    508 	}
    509 #endif
    510 }
    511 
    512 /*
    513  * The real-time timer, interrupting hz times per second.
    514  */
    515 void
    516 hardclock(struct clockframe *frame)
    517 {
    518 	struct proc *p;
    519 	int delta;
    520 	extern int tickdelta;
    521 	extern long timedelta;
    522 	struct cpu_info *ci = curcpu();
    523 #ifdef NTP
    524 	int time_update;
    525 	int ltemp;
    526 #endif
    527 
    528 	p = curproc;
    529 	if (p) {
    530 		struct pstats *pstats;
    531 
    532 		/*
    533 		 * Run current process's virtual and profile time, as needed.
    534 		 */
    535 		pstats = p->p_stats;
    536 		if (CLKF_USERMODE(frame) &&
    537 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    538 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    539 			psignal(p, SIGVTALRM);
    540 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    541 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    542 			psignal(p, SIGPROF);
    543 	}
    544 
    545 	/*
    546 	 * If no separate statistics clock is available, run it from here.
    547 	 */
    548 	if (stathz == 0)
    549 		statclock(frame);
    550 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    551 		roundrobin(ci);
    552 
    553 #if defined(MULTIPROCESSOR)
    554 	/*
    555 	 * If we are not the primary CPU, we're not allowed to do
    556 	 * any more work.
    557 	 */
    558 	if (CPU_IS_PRIMARY(ci) == 0)
    559 		return;
    560 #endif
    561 
    562 	/*
    563 	 * Increment the time-of-day.  The increment is normally just
    564 	 * ``tick''.  If the machine is one which has a clock frequency
    565 	 * such that ``hz'' would not divide the second evenly into
    566 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    567 	 * if we are still adjusting the time (see adjtime()),
    568 	 * ``tickdelta'' may also be added in.
    569 	 */
    570 	delta = tick;
    571 
    572 #ifndef NTP
    573 	if (tickfix) {
    574 		tickfixcnt += tickfix;
    575 		if (tickfixcnt >= tickfixinterval) {
    576 			delta++;
    577 			tickfixcnt -= tickfixinterval;
    578 		}
    579 	}
    580 #endif /* !NTP */
    581 	/* Imprecise 4bsd adjtime() handling */
    582 	if (timedelta != 0) {
    583 		delta += tickdelta;
    584 		timedelta -= tickdelta;
    585 	}
    586 
    587 #ifdef notyet
    588 	microset();
    589 #endif
    590 
    591 #ifndef NTP
    592 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    593 #endif
    594 	BUMPTIME(&mono_time, delta);
    595 
    596 #ifdef NTP
    597 	time_update = delta;
    598 
    599 	/*
    600 	 * Compute the phase adjustment. If the low-order bits
    601 	 * (time_phase) of the update overflow, bump the high-order bits
    602 	 * (time_update).
    603 	 */
    604 	time_phase += time_adj;
    605 	if (time_phase <= -FINEUSEC) {
    606 		ltemp = -time_phase >> SHIFT_SCALE;
    607 		time_phase += ltemp << SHIFT_SCALE;
    608 		time_update -= ltemp;
    609 	} else if (time_phase >= FINEUSEC) {
    610 		ltemp = time_phase >> SHIFT_SCALE;
    611 		time_phase -= ltemp << SHIFT_SCALE;
    612 		time_update += ltemp;
    613 	}
    614 
    615 #ifdef HIGHBALL
    616 	/*
    617 	 * If the HIGHBALL board is installed, we need to adjust the
    618 	 * external clock offset in order to close the hardware feedback
    619 	 * loop. This will adjust the external clock phase and frequency
    620 	 * in small amounts. The additional phase noise and frequency
    621 	 * wander this causes should be minimal. We also need to
    622 	 * discipline the kernel time variable, since the PLL is used to
    623 	 * discipline the external clock. If the Highball board is not
    624 	 * present, we discipline kernel time with the PLL as usual. We
    625 	 * assume that the external clock phase adjustment (time_update)
    626 	 * and kernel phase adjustment (clock_cpu) are less than the
    627 	 * value of tick.
    628 	 */
    629 	clock_offset.tv_usec += time_update;
    630 	if (clock_offset.tv_usec >= 1000000) {
    631 		clock_offset.tv_sec++;
    632 		clock_offset.tv_usec -= 1000000;
    633 	}
    634 	if (clock_offset.tv_usec < 0) {
    635 		clock_offset.tv_sec--;
    636 		clock_offset.tv_usec += 1000000;
    637 	}
    638 	time.tv_usec += clock_cpu;
    639 	clock_cpu = 0;
    640 #else
    641 	time.tv_usec += time_update;
    642 #endif /* HIGHBALL */
    643 
    644 	/*
    645 	 * On rollover of the second the phase adjustment to be used for
    646 	 * the next second is calculated. Also, the maximum error is
    647 	 * increased by the tolerance. If the PPS frequency discipline
    648 	 * code is present, the phase is increased to compensate for the
    649 	 * CPU clock oscillator frequency error.
    650 	 *
    651  	 * On a 32-bit machine and given parameters in the timex.h
    652 	 * header file, the maximum phase adjustment is +-512 ms and
    653 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    654 	 * 64-bit machine, you shouldn't need to ask.
    655 	 */
    656 	if (time.tv_usec >= 1000000) {
    657 		time.tv_usec -= 1000000;
    658 		time.tv_sec++;
    659 		time_maxerror += time_tolerance >> SHIFT_USEC;
    660 
    661 		/*
    662 		 * Leap second processing. If in leap-insert state at
    663 		 * the end of the day, the system clock is set back one
    664 		 * second; if in leap-delete state, the system clock is
    665 		 * set ahead one second. The microtime() routine or
    666 		 * external clock driver will insure that reported time
    667 		 * is always monotonic. The ugly divides should be
    668 		 * replaced.
    669 		 */
    670 		switch (time_state) {
    671 		case TIME_OK:
    672 			if (time_status & STA_INS)
    673 				time_state = TIME_INS;
    674 			else if (time_status & STA_DEL)
    675 				time_state = TIME_DEL;
    676 			break;
    677 
    678 		case TIME_INS:
    679 			if (time.tv_sec % 86400 == 0) {
    680 				time.tv_sec--;
    681 				time_state = TIME_OOP;
    682 			}
    683 			break;
    684 
    685 		case TIME_DEL:
    686 			if ((time.tv_sec + 1) % 86400 == 0) {
    687 				time.tv_sec++;
    688 				time_state = TIME_WAIT;
    689 			}
    690 			break;
    691 
    692 		case TIME_OOP:
    693 			time_state = TIME_WAIT;
    694 			break;
    695 
    696 		case TIME_WAIT:
    697 			if (!(time_status & (STA_INS | STA_DEL)))
    698 				time_state = TIME_OK;
    699 			break;
    700 		}
    701 
    702 		/*
    703 		 * Compute the phase adjustment for the next second. In
    704 		 * PLL mode, the offset is reduced by a fixed factor
    705 		 * times the time constant. In FLL mode the offset is
    706 		 * used directly. In either mode, the maximum phase
    707 		 * adjustment for each second is clamped so as to spread
    708 		 * the adjustment over not more than the number of
    709 		 * seconds between updates.
    710 		 */
    711 		if (time_offset < 0) {
    712 			ltemp = -time_offset;
    713 			if (!(time_status & STA_FLL))
    714 				ltemp >>= SHIFT_KG + time_constant;
    715 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    716 				ltemp = (MAXPHASE / MINSEC) <<
    717 				    SHIFT_UPDATE;
    718 			time_offset += ltemp;
    719 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    720 		} else if (time_offset > 0) {
    721 			ltemp = time_offset;
    722 			if (!(time_status & STA_FLL))
    723 				ltemp >>= SHIFT_KG + time_constant;
    724 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    725 				ltemp = (MAXPHASE / MINSEC) <<
    726 				    SHIFT_UPDATE;
    727 			time_offset -= ltemp;
    728 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    729 		} else
    730 			time_adj = 0;
    731 
    732 		/*
    733 		 * Compute the frequency estimate and additional phase
    734 		 * adjustment due to frequency error for the next
    735 		 * second. When the PPS signal is engaged, gnaw on the
    736 		 * watchdog counter and update the frequency computed by
    737 		 * the pll and the PPS signal.
    738 		 */
    739 #ifdef PPS_SYNC
    740 		pps_valid++;
    741 		if (pps_valid == PPS_VALID) {
    742 			pps_jitter = MAXTIME;
    743 			pps_stabil = MAXFREQ;
    744 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    745 			    STA_PPSWANDER | STA_PPSERROR);
    746 		}
    747 		ltemp = time_freq + pps_freq;
    748 #else
    749 		ltemp = time_freq;
    750 #endif /* PPS_SYNC */
    751 
    752 		if (ltemp < 0)
    753 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    754 		else
    755 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    756 		time_adj += (long)fixtick << shifthz;
    757 
    758 		/*
    759 		 * When the CPU clock oscillator frequency is not a
    760 		 * power of 2 in Hz, shifthz is only an approximate
    761 		 * scale factor.
    762 		 *
    763 		 * To determine the adjustment, you can do the following:
    764 		 *   bc -q
    765 		 *   scale=24
    766 		 *   obase=2
    767 		 *   idealhz/realhz
    768 		 * where `idealhz' is the next higher power of 2, and `realhz'
    769 		 * is the actual value.  You may need to factor this result
    770 		 * into a sequence of 2 multipliers to get better precision.
    771 		 *
    772 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    773 		 *   bc -q
    774 		 *   scale=24
    775 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    776 		 * (and then multiply by 1000000 to get ppm).
    777 		 */
    778 		switch (hz) {
    779 		case 60:
    780 			/* A factor of 1.000100010001 gives about 15ppm
    781 			   error. */
    782 			if (time_adj < 0) {
    783 				time_adj -= (-time_adj >> 4);
    784 				time_adj -= (-time_adj >> 8);
    785 			} else {
    786 				time_adj += (time_adj >> 4);
    787 				time_adj += (time_adj >> 8);
    788 			}
    789 			break;
    790 
    791 		case 96:
    792 			/* A factor of 1.0101010101 gives about 244ppm error. */
    793 			if (time_adj < 0) {
    794 				time_adj -= (-time_adj >> 2);
    795 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    796 			} else {
    797 				time_adj += (time_adj >> 2);
    798 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    799 			}
    800 			break;
    801 
    802 		case 100:
    803 			/* A factor of 1.010001111010111 gives about 1ppm
    804 			   error. */
    805 			if (time_adj < 0) {
    806 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    807 				time_adj += (-time_adj >> 10);
    808 			} else {
    809 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    810 				time_adj -= (time_adj >> 10);
    811 			}
    812 			break;
    813 
    814 		case 1000:
    815 			/* A factor of 1.000001100010100001 gives about 50ppm
    816 			   error. */
    817 			if (time_adj < 0) {
    818 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    819 				time_adj -= (-time_adj >> 7);
    820 			} else {
    821 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    822 				time_adj += (time_adj >> 7);
    823 			}
    824 			break;
    825 
    826 		case 1200:
    827 			/* A factor of 1.1011010011100001 gives about 64ppm
    828 			   error. */
    829 			if (time_adj < 0) {
    830 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    831 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    832 			} else {
    833 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    834 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    835 			}
    836 			break;
    837 		}
    838 
    839 #ifdef EXT_CLOCK
    840 		/*
    841 		 * If an external clock is present, it is necessary to
    842 		 * discipline the kernel time variable anyway, since not
    843 		 * all system components use the microtime() interface.
    844 		 * Here, the time offset between the external clock and
    845 		 * kernel time variable is computed every so often.
    846 		 */
    847 		clock_count++;
    848 		if (clock_count > CLOCK_INTERVAL) {
    849 			clock_count = 0;
    850 			microtime(&clock_ext);
    851 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    852 			delta.tv_usec = clock_ext.tv_usec -
    853 			    time.tv_usec;
    854 			if (delta.tv_usec < 0)
    855 				delta.tv_sec--;
    856 			if (delta.tv_usec >= 500000) {
    857 				delta.tv_usec -= 1000000;
    858 				delta.tv_sec++;
    859 			}
    860 			if (delta.tv_usec < -500000) {
    861 				delta.tv_usec += 1000000;
    862 				delta.tv_sec--;
    863 			}
    864 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    865 			    delta.tv_usec > MAXPHASE) ||
    866 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    867 			    delta.tv_usec < -MAXPHASE)) {
    868 				time = clock_ext;
    869 				delta.tv_sec = 0;
    870 				delta.tv_usec = 0;
    871 			}
    872 #ifdef HIGHBALL
    873 			clock_cpu = delta.tv_usec;
    874 #else /* HIGHBALL */
    875 			hardupdate(delta.tv_usec);
    876 #endif /* HIGHBALL */
    877 		}
    878 #endif /* EXT_CLOCK */
    879 	}
    880 
    881 #endif /* NTP */
    882 
    883 	/*
    884 	 * Process callouts at a very low cpu priority, so we don't keep the
    885 	 * relatively high clock interrupt priority any longer than necessary.
    886 	 */
    887 	simple_lock(&callwheel_slock);	/* already at splclock() */
    888 	hardclock_ticks++;
    889 	if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
    890 		simple_unlock(&callwheel_slock);
    891 		if (CLKF_BASEPRI(frame)) {
    892 			/*
    893 			 * Save the overhead of a software interrupt;
    894 			 * it will happen as soon as we return, so do
    895 			 * it now.
    896 			 *
    897 			 * NOTE: If we're at ``base priority'', softclock()
    898 			 * was not already running.
    899 			 */
    900 			spllowersoftclock();
    901 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    902 			softclock(NULL);
    903 			KERNEL_UNLOCK();
    904 		} else {
    905 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    906 			softintr_schedule(softclock_si);
    907 #else
    908 			setsoftclock();
    909 #endif
    910 		}
    911 		return;
    912 	} else if (softclock_running == 0 &&
    913 		   (softclock_ticks + 1) == hardclock_ticks) {
    914 		softclock_ticks++;
    915 	}
    916 	simple_unlock(&callwheel_slock);
    917 }
    918 
    919 /*
    920  * Software (low priority) clock interrupt.
    921  * Run periodic events from timeout queue.
    922  */
    923 /*ARGSUSED*/
    924 void
    925 softclock(void *v)
    926 {
    927 	struct callout_queue *bucket;
    928 	struct callout *c;
    929 	void (*func)(void *);
    930 	void *arg;
    931 	int s, idx;
    932 	int steps = 0;
    933 
    934 	CALLWHEEL_LOCK(s);
    935 
    936 	softclock_running = 1;
    937 
    938 #ifdef CALLWHEEL_STATS
    939 	callwheel_softclocks.ev_count++;
    940 #endif
    941 
    942 	while (softclock_ticks != hardclock_ticks) {
    943 		softclock_ticks++;
    944 		idx = (int)(softclock_ticks & callwheelmask);
    945 		bucket = &callwheel[idx];
    946 		c = TAILQ_FIRST(&bucket->cq_q);
    947 		if (c == NULL) {
    948 #ifdef CALLWHEEL_STATS
    949 			callwheel_softempty.ev_count++;
    950 #endif
    951 			continue;
    952 		}
    953 		if (softclock_ticks < bucket->cq_hint) {
    954 #ifdef CALLWHEEL_STATS
    955 			callwheel_hintworked.ev_count++;
    956 #endif
    957 			continue;
    958 		}
    959 		bucket->cq_hint = UQUAD_MAX;
    960 		while (c != NULL) {
    961 #ifdef CALLWHEEL_STATS
    962 			callwheel_softchecks.ev_count++;
    963 #endif
    964 			if (c->c_time != softclock_ticks) {
    965 				if (c->c_time < bucket->cq_hint)
    966 					bucket->cq_hint = c->c_time;
    967 				c = TAILQ_NEXT(c, c_link);
    968 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
    969 					nextsoftcheck = c;
    970 					/* Give interrupts a chance. */
    971 					CALLWHEEL_UNLOCK(s);
    972 					CALLWHEEL_LOCK(s);
    973 					c = nextsoftcheck;
    974 					steps = 0;
    975 				}
    976 			} else {
    977 				nextsoftcheck = TAILQ_NEXT(c, c_link);
    978 				TAILQ_REMOVE(&bucket->cq_q, c, c_link);
    979 #ifdef CALLWHEEL_STATS
    980 				callwheel_sizes[idx]--;
    981 				callwheel_fired.ev_count++;
    982 				callwheel_count.ev_count--;
    983 #endif
    984 				func = c->c_func;
    985 				arg = c->c_arg;
    986 				c->c_func = NULL;
    987 				c->c_flags &= ~CALLOUT_PENDING;
    988 				CALLWHEEL_UNLOCK(s);
    989 				(*func)(arg);
    990 				CALLWHEEL_LOCK(s);
    991 				steps = 0;
    992 				c = nextsoftcheck;
    993 			}
    994 		}
    995 		if (TAILQ_EMPTY(&bucket->cq_q))
    996 			bucket->cq_hint = UQUAD_MAX;
    997 	}
    998 	nextsoftcheck = NULL;
    999 	softclock_running = 0;
   1000 	CALLWHEEL_UNLOCK(s);
   1001 }
   1002 
   1003 /*
   1004  * callout_setsize:
   1005  *
   1006  *	Determine how many callwheels are necessary and
   1007  *	set hash mask.  Called from allocsys().
   1008  */
   1009 void
   1010 callout_setsize(void)
   1011 {
   1012 
   1013 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
   1014 		/* loop */ ;
   1015 	callwheelmask = callwheelsize - 1;
   1016 }
   1017 
   1018 /*
   1019  * callout_startup:
   1020  *
   1021  *	Initialize the callwheel buckets.
   1022  */
   1023 void
   1024 callout_startup(void)
   1025 {
   1026 	int i;
   1027 
   1028 	for (i = 0; i < callwheelsize; i++) {
   1029 		callwheel[i].cq_hint = UQUAD_MAX;
   1030 		TAILQ_INIT(&callwheel[i].cq_q);
   1031 	}
   1032 
   1033 	simple_lock_init(&callwheel_slock);
   1034 
   1035 #ifdef CALLWHEEL_STATS
   1036 	evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
   1037 	    NULL, "callwheel", "collisions");
   1038 	evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
   1039 	    NULL, "callwheel", "maxlength");
   1040 	evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
   1041 	    NULL, "callwheel", "count");
   1042 	evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
   1043 	    NULL, "callwheel", "established");
   1044 	evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
   1045 	    NULL, "callwheel", "fired");
   1046 	evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
   1047 	    NULL, "callwheel", "disestablished");
   1048 	evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
   1049 	    NULL, "callwheel", "changed");
   1050 	evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
   1051 	    NULL, "callwheel", "softclocks");
   1052 	evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
   1053 	    NULL, "callwheel", "softempty");
   1054 	evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
   1055 	    NULL, "callwheel", "hintworked");
   1056 #endif /* CALLWHEEL_STATS */
   1057 }
   1058 
   1059 /*
   1060  * callout_init:
   1061  *
   1062  *	Initialize a callout structure so that it can be used
   1063  *	by callout_reset() and callout_stop().
   1064  */
   1065 void
   1066 callout_init(struct callout *c)
   1067 {
   1068 
   1069 	memset(c, 0, sizeof(*c));
   1070 }
   1071 
   1072 /*
   1073  * callout_reset:
   1074  *
   1075  *	Establish or change a timeout.
   1076  */
   1077 void
   1078 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
   1079 {
   1080 	struct callout_queue *bucket;
   1081 	int s;
   1082 
   1083 	if (ticks <= 0)
   1084 		ticks = 1;
   1085 
   1086 	CALLWHEEL_LOCK(s);
   1087 
   1088 	/*
   1089 	 * If this callout's timer is already running, cancel it
   1090 	 * before we modify it.
   1091 	 */
   1092 	if (c->c_flags & CALLOUT_PENDING) {
   1093 		callout_stop_locked(c);	/* Already locked */
   1094 #ifdef CALLWHEEL_STATS
   1095 		callwheel_changed.ev_count++;
   1096 #endif
   1097 	}
   1098 
   1099 	c->c_arg = arg;
   1100 	c->c_func = func;
   1101 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
   1102 	c->c_time = hardclock_ticks + ticks;
   1103 
   1104 	bucket = &callwheel[c->c_time & callwheelmask];
   1105 
   1106 #ifdef CALLWHEEL_STATS
   1107 	if (! TAILQ_EMPTY(&bucket->cq_q))
   1108 		callwheel_collisions.ev_count++;
   1109 #endif
   1110 
   1111 	TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
   1112 	if (c->c_time < bucket->cq_hint)
   1113 		bucket->cq_hint = c->c_time;
   1114 
   1115 #ifdef CALLWHEEL_STATS
   1116 	callwheel_count.ev_count++;
   1117 	callwheel_established.ev_count++;
   1118 	if (++callwheel_sizes[c->c_time & callwheelmask] >
   1119 	    callwheel_maxlength.ev_count)
   1120 		callwheel_maxlength.ev_count =
   1121 		    callwheel_sizes[c->c_time & callwheelmask];
   1122 #endif
   1123 
   1124 	CALLWHEEL_UNLOCK(s);
   1125 }
   1126 
   1127 /*
   1128  * callout_stop_locked:
   1129  *
   1130  *	Disestablish a timeout.  Callwheel is locked.
   1131  */
   1132 static void
   1133 callout_stop_locked(struct callout *c)
   1134 {
   1135 	struct callout_queue *bucket;
   1136 
   1137 	/*
   1138 	 * Don't attempt to delete a callout that's not on the queue.
   1139 	 */
   1140 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
   1141 		c->c_flags &= ~CALLOUT_ACTIVE;
   1142 		return;
   1143 	}
   1144 
   1145 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
   1146 
   1147 	if (nextsoftcheck == c)
   1148 		nextsoftcheck = TAILQ_NEXT(c, c_link);
   1149 
   1150 	bucket = &callwheel[c->c_time & callwheelmask];
   1151 	TAILQ_REMOVE(&bucket->cq_q, c, c_link);
   1152 	if (TAILQ_EMPTY(&bucket->cq_q))
   1153 		bucket->cq_hint = UQUAD_MAX;
   1154 #ifdef CALLWHEEL_STATS
   1155 	callwheel_count.ev_count--;
   1156 	callwheel_disestablished.ev_count++;
   1157 	callwheel_sizes[c->c_time & callwheelmask]--;
   1158 #endif
   1159 
   1160 	c->c_func = NULL;
   1161 }
   1162 
   1163 /*
   1164  * callout_stop:
   1165  *
   1166  *	Disestablish a timeout.  Callwheel is unlocked.  This is
   1167  *	the standard entry point.
   1168  */
   1169 void
   1170 callout_stop(struct callout *c)
   1171 {
   1172 	int s;
   1173 
   1174 	CALLWHEEL_LOCK(s);
   1175 	callout_stop_locked(c);
   1176 	CALLWHEEL_UNLOCK(s);
   1177 }
   1178 
   1179 #ifdef CALLWHEEL_STATS
   1180 /*
   1181  * callout_showstats:
   1182  *
   1183  *	Display callout statistics.  Call it from DDB.
   1184  */
   1185 void
   1186 callout_showstats(void)
   1187 {
   1188 	u_int64_t curticks;
   1189 	int s;
   1190 
   1191 	s = splclock();
   1192 	curticks = softclock_ticks;
   1193 	splx(s);
   1194 
   1195 	printf("Callwheel statistics:\n");
   1196 	printf("\tCallouts currently queued: %llu\n",
   1197 	    (long long) callwheel_count.ev_count);
   1198 	printf("\tCallouts established: %llu\n",
   1199 	    (long long) callwheel_established.ev_count);
   1200 	printf("\tCallouts disestablished: %llu\n",
   1201 	    (long long) callwheel_disestablished.ev_count);
   1202 	if (callwheel_changed.ev_count != 0)
   1203 		printf("\t\tOf those, %llu were changes\n",
   1204 		    (long long) callwheel_changed.ev_count);
   1205 	printf("\tCallouts that fired: %llu\n",
   1206 	    (long long) callwheel_fired.ev_count);
   1207 	printf("\tNumber of buckets: %d\n", callwheelsize);
   1208 	printf("\tNumber of hash collisions: %llu\n",
   1209 	    (long long) callwheel_collisions.ev_count);
   1210 	printf("\tMaximum hash chain length: %llu\n",
   1211 	    (long long) callwheel_maxlength.ev_count);
   1212 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
   1213 	    (long long) callwheel_softclocks.ev_count,
   1214 	    (long long) callwheel_softchecks.ev_count);
   1215 	printf("\t\tEmpty buckets seen: %llu\n",
   1216 	    (long long) callwheel_softempty.ev_count);
   1217 	printf("\t\tTimes hint saved scan: %llu\n",
   1218 	    (long long) callwheel_hintworked.ev_count);
   1219 }
   1220 #endif
   1221 
   1222 /*
   1223  * Compute number of hz until specified time.  Used to compute second
   1224  * argument to callout_reset() from an absolute time.
   1225  */
   1226 int
   1227 hzto(struct timeval *tv)
   1228 {
   1229 	unsigned long ticks;
   1230 	long sec, usec;
   1231 	int s;
   1232 
   1233 	/*
   1234 	 * If the number of usecs in the whole seconds part of the time
   1235 	 * difference fits in a long, then the total number of usecs will
   1236 	 * fit in an unsigned long.  Compute the total and convert it to
   1237 	 * ticks, rounding up and adding 1 to allow for the current tick
   1238 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1239 	 * to avoid overflow.
   1240 	 *
   1241 	 * Otherwise, if the number of ticks in the whole seconds part of
   1242 	 * the time difference fits in a long, then convert the parts to
   1243 	 * ticks separately and add, using similar rounding methods and
   1244 	 * overflow avoidance.  This method would work in the previous
   1245 	 * case, but it is slightly slower and assume that hz is integral.
   1246 	 *
   1247 	 * Otherwise, round the time difference down to the maximum
   1248 	 * representable value.
   1249 	 *
   1250 	 * If ints are 32-bit, then the maximum value for any timeout in
   1251 	 * 10ms ticks is 248 days.
   1252 	 */
   1253 	s = splclock();
   1254 	sec = tv->tv_sec - time.tv_sec;
   1255 	usec = tv->tv_usec - time.tv_usec;
   1256 	splx(s);
   1257 
   1258 	if (usec < 0) {
   1259 		sec--;
   1260 		usec += 1000000;
   1261 	}
   1262 
   1263 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1264 		/*
   1265 		 * Would expire now or in the past.  Return 0 ticks.
   1266 		 * This is different from the legacy hzto() interface,
   1267 		 * and callers need to check for it.
   1268 		 */
   1269 		ticks = 0;
   1270 	} else if (sec <= (LONG_MAX / 1000000))
   1271 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1272 		    / tick) + 1;
   1273 	else if (sec <= (LONG_MAX / hz))
   1274 		ticks = (sec * hz) +
   1275 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1276 	else
   1277 		ticks = LONG_MAX;
   1278 
   1279 	if (ticks > INT_MAX)
   1280 		ticks = INT_MAX;
   1281 
   1282 	return ((int)ticks);
   1283 }
   1284 
   1285 /*
   1286  * Start profiling on a process.
   1287  *
   1288  * Kernel profiling passes proc0 which never exits and hence
   1289  * keeps the profile clock running constantly.
   1290  */
   1291 void
   1292 startprofclock(struct proc *p)
   1293 {
   1294 
   1295 	if ((p->p_flag & P_PROFIL) == 0) {
   1296 		p->p_flag |= P_PROFIL;
   1297 		if (++profprocs == 1 && stathz != 0)
   1298 			psdiv = psratio;
   1299 	}
   1300 }
   1301 
   1302 /*
   1303  * Stop profiling on a process.
   1304  */
   1305 void
   1306 stopprofclock(struct proc *p)
   1307 {
   1308 
   1309 	if (p->p_flag & P_PROFIL) {
   1310 		p->p_flag &= ~P_PROFIL;
   1311 		if (--profprocs == 0 && stathz != 0)
   1312 			psdiv = 1;
   1313 	}
   1314 }
   1315 
   1316 /*
   1317  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1318  * do process and kernel statistics.
   1319  */
   1320 void
   1321 statclock(struct clockframe *frame)
   1322 {
   1323 #ifdef GPROF
   1324 	struct gmonparam *g;
   1325 	intptr_t i;
   1326 #endif
   1327 	struct cpu_info *ci = curcpu();
   1328 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1329 	struct proc *p;
   1330 
   1331 	/*
   1332 	 * Notice changes in divisor frequency, and adjust clock
   1333 	 * frequency accordingly.
   1334 	 */
   1335 	if (spc->spc_psdiv != psdiv) {
   1336 		spc->spc_psdiv = psdiv;
   1337 		spc->spc_pscnt = psdiv;
   1338 		if (psdiv == 1) {
   1339 			setstatclockrate(stathz);
   1340 		} else {
   1341 			setstatclockrate(profhz);
   1342 		}
   1343 	}
   1344 	p = curproc;
   1345 	if (CLKF_USERMODE(frame)) {
   1346 		if (p->p_flag & P_PROFIL)
   1347 			addupc_intr(p, CLKF_PC(frame));
   1348 		if (--spc->spc_pscnt > 0)
   1349 			return;
   1350 		/*
   1351 		 * Came from user mode; CPU was in user state.
   1352 		 * If this process is being profiled record the tick.
   1353 		 */
   1354 		p->p_uticks++;
   1355 		if (p->p_nice > NZERO)
   1356 			spc->spc_cp_time[CP_NICE]++;
   1357 		else
   1358 			spc->spc_cp_time[CP_USER]++;
   1359 	} else {
   1360 #ifdef GPROF
   1361 		/*
   1362 		 * Kernel statistics are just like addupc_intr, only easier.
   1363 		 */
   1364 		g = &_gmonparam;
   1365 		if (g->state == GMON_PROF_ON) {
   1366 			i = CLKF_PC(frame) - g->lowpc;
   1367 			if (i < g->textsize) {
   1368 				i /= HISTFRACTION * sizeof(*g->kcount);
   1369 				g->kcount[i]++;
   1370 			}
   1371 		}
   1372 #endif
   1373 #ifdef PROC_PC
   1374 		if (p && p->p_flag & P_PROFIL)
   1375 			addupc_intr(p, PROC_PC(p));
   1376 #endif
   1377 		if (--spc->spc_pscnt > 0)
   1378 			return;
   1379 		/*
   1380 		 * Came from kernel mode, so we were:
   1381 		 * - handling an interrupt,
   1382 		 * - doing syscall or trap work on behalf of the current
   1383 		 *   user process, or
   1384 		 * - spinning in the idle loop.
   1385 		 * Whichever it is, charge the time as appropriate.
   1386 		 * Note that we charge interrupts to the current process,
   1387 		 * regardless of whether they are ``for'' that process,
   1388 		 * so that we know how much of its real time was spent
   1389 		 * in ``non-process'' (i.e., interrupt) work.
   1390 		 */
   1391 		if (CLKF_INTR(frame)) {
   1392 			if (p != NULL)
   1393 				p->p_iticks++;
   1394 			spc->spc_cp_time[CP_INTR]++;
   1395 		} else if (p != NULL) {
   1396 			p->p_sticks++;
   1397 			spc->spc_cp_time[CP_SYS]++;
   1398 		} else
   1399 			spc->spc_cp_time[CP_IDLE]++;
   1400 	}
   1401 	spc->spc_pscnt = psdiv;
   1402 
   1403 	if (p != NULL) {
   1404 		++p->p_cpticks;
   1405 		/*
   1406 		 * If no separate schedclock is provided, call it here
   1407 		 * at ~~12-25 Hz, ~~16 Hz is best
   1408 		 */
   1409 		if (schedhz == 0)
   1410 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1411 				schedclock(p);
   1412 	}
   1413 }
   1414 
   1415 
   1416 #ifdef NTP	/* NTP phase-locked loop in kernel */
   1417 
   1418 /*
   1419  * hardupdate() - local clock update
   1420  *
   1421  * This routine is called by ntp_adjtime() to update the local clock
   1422  * phase and frequency. The implementation is of an adaptive-parameter,
   1423  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1424  * time and frequency offset estimates for each call. If the kernel PPS
   1425  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1426  * determines the new time offset, instead of the calling argument.
   1427  * Presumably, calls to ntp_adjtime() occur only when the caller
   1428  * believes the local clock is valid within some bound (+-128 ms with
   1429  * NTP). If the caller's time is far different than the PPS time, an
   1430  * argument will ensue, and it's not clear who will lose.
   1431  *
   1432  * For uncompensated quartz crystal oscillatores and nominal update
   1433  * intervals less than 1024 s, operation should be in phase-lock mode
   1434  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1435  * intervals greater than thiss, operation should be in frequency-lock
   1436  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1437  *
   1438  * Note: splclock() is in effect.
   1439  */
   1440 void
   1441 hardupdate(long offset)
   1442 {
   1443 	long ltemp, mtemp;
   1444 
   1445 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1446 		return;
   1447 	ltemp = offset;
   1448 #ifdef PPS_SYNC
   1449 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1450 		ltemp = pps_offset;
   1451 #endif /* PPS_SYNC */
   1452 
   1453 	/*
   1454 	 * Scale the phase adjustment and clamp to the operating range.
   1455 	 */
   1456 	if (ltemp > MAXPHASE)
   1457 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1458 	else if (ltemp < -MAXPHASE)
   1459 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1460 	else
   1461 		time_offset = ltemp << SHIFT_UPDATE;
   1462 
   1463 	/*
   1464 	 * Select whether the frequency is to be controlled and in which
   1465 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1466 	 * multiply/divide should be replaced someday.
   1467 	 */
   1468 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1469 		time_reftime = time.tv_sec;
   1470 	mtemp = time.tv_sec - time_reftime;
   1471 	time_reftime = time.tv_sec;
   1472 	if (time_status & STA_FLL) {
   1473 		if (mtemp >= MINSEC) {
   1474 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1475 			    SHIFT_UPDATE));
   1476 			if (ltemp < 0)
   1477 				time_freq -= -ltemp >> SHIFT_KH;
   1478 			else
   1479 				time_freq += ltemp >> SHIFT_KH;
   1480 		}
   1481 	} else {
   1482 		if (mtemp < MAXSEC) {
   1483 			ltemp *= mtemp;
   1484 			if (ltemp < 0)
   1485 				time_freq -= -ltemp >> (time_constant +
   1486 				    time_constant + SHIFT_KF -
   1487 				    SHIFT_USEC);
   1488 			else
   1489 				time_freq += ltemp >> (time_constant +
   1490 				    time_constant + SHIFT_KF -
   1491 				    SHIFT_USEC);
   1492 		}
   1493 	}
   1494 	if (time_freq > time_tolerance)
   1495 		time_freq = time_tolerance;
   1496 	else if (time_freq < -time_tolerance)
   1497 		time_freq = -time_tolerance;
   1498 }
   1499 
   1500 #ifdef PPS_SYNC
   1501 /*
   1502  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1503  *
   1504  * This routine is called at each PPS interrupt in order to discipline
   1505  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1506  * and leaves it in a handy spot for the hardclock() routine. It
   1507  * integrates successive PPS phase differences and calculates the
   1508  * frequency offset. This is used in hardclock() to discipline the CPU
   1509  * clock oscillator so that intrinsic frequency error is cancelled out.
   1510  * The code requires the caller to capture the time and hardware counter
   1511  * value at the on-time PPS signal transition.
   1512  *
   1513  * Note that, on some Unix systems, this routine runs at an interrupt
   1514  * priority level higher than the timer interrupt routine hardclock().
   1515  * Therefore, the variables used are distinct from the hardclock()
   1516  * variables, except for certain exceptions: The PPS frequency pps_freq
   1517  * and phase pps_offset variables are determined by this routine and
   1518  * updated atomically. The time_tolerance variable can be considered a
   1519  * constant, since it is infrequently changed, and then only when the
   1520  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1521  * once per second by hardclock() and is atomically cleared in this
   1522  * routine.
   1523  */
   1524 void
   1525 hardpps(struct timeval *tvp,		/* time at PPS */
   1526 	long usec			/* hardware counter at PPS */)
   1527 {
   1528 	long u_usec, v_usec, bigtick;
   1529 	long cal_sec, cal_usec;
   1530 
   1531 	/*
   1532 	 * An occasional glitch can be produced when the PPS interrupt
   1533 	 * occurs in the hardclock() routine before the time variable is
   1534 	 * updated. Here the offset is discarded when the difference
   1535 	 * between it and the last one is greater than tick/2, but not
   1536 	 * if the interval since the first discard exceeds 30 s.
   1537 	 */
   1538 	time_status |= STA_PPSSIGNAL;
   1539 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1540 	pps_valid = 0;
   1541 	u_usec = -tvp->tv_usec;
   1542 	if (u_usec < -500000)
   1543 		u_usec += 1000000;
   1544 	v_usec = pps_offset - u_usec;
   1545 	if (v_usec < 0)
   1546 		v_usec = -v_usec;
   1547 	if (v_usec > (tick >> 1)) {
   1548 		if (pps_glitch > MAXGLITCH) {
   1549 			pps_glitch = 0;
   1550 			pps_tf[2] = u_usec;
   1551 			pps_tf[1] = u_usec;
   1552 		} else {
   1553 			pps_glitch++;
   1554 			u_usec = pps_offset;
   1555 		}
   1556 	} else
   1557 		pps_glitch = 0;
   1558 
   1559 	/*
   1560 	 * A three-stage median filter is used to help deglitch the pps
   1561 	 * time. The median sample becomes the time offset estimate; the
   1562 	 * difference between the other two samples becomes the time
   1563 	 * dispersion (jitter) estimate.
   1564 	 */
   1565 	pps_tf[2] = pps_tf[1];
   1566 	pps_tf[1] = pps_tf[0];
   1567 	pps_tf[0] = u_usec;
   1568 	if (pps_tf[0] > pps_tf[1]) {
   1569 		if (pps_tf[1] > pps_tf[2]) {
   1570 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1571 			v_usec = pps_tf[0] - pps_tf[2];
   1572 		} else if (pps_tf[2] > pps_tf[0]) {
   1573 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1574 			v_usec = pps_tf[2] - pps_tf[1];
   1575 		} else {
   1576 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1577 			v_usec = pps_tf[0] - pps_tf[1];
   1578 		}
   1579 	} else {
   1580 		if (pps_tf[1] < pps_tf[2]) {
   1581 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1582 			v_usec = pps_tf[2] - pps_tf[0];
   1583 		} else  if (pps_tf[2] < pps_tf[0]) {
   1584 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1585 			v_usec = pps_tf[1] - pps_tf[2];
   1586 		} else {
   1587 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1588 			v_usec = pps_tf[1] - pps_tf[0];
   1589 		}
   1590 	}
   1591 	if (v_usec > MAXTIME)
   1592 		pps_jitcnt++;
   1593 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1594 	if (v_usec < 0)
   1595 		pps_jitter -= -v_usec >> PPS_AVG;
   1596 	else
   1597 		pps_jitter += v_usec >> PPS_AVG;
   1598 	if (pps_jitter > (MAXTIME >> 1))
   1599 		time_status |= STA_PPSJITTER;
   1600 
   1601 	/*
   1602 	 * During the calibration interval adjust the starting time when
   1603 	 * the tick overflows. At the end of the interval compute the
   1604 	 * duration of the interval and the difference of the hardware
   1605 	 * counters at the beginning and end of the interval. This code
   1606 	 * is deliciously complicated by the fact valid differences may
   1607 	 * exceed the value of tick when using long calibration
   1608 	 * intervals and small ticks. Note that the counter can be
   1609 	 * greater than tick if caught at just the wrong instant, but
   1610 	 * the values returned and used here are correct.
   1611 	 */
   1612 	bigtick = (long)tick << SHIFT_USEC;
   1613 	pps_usec -= pps_freq;
   1614 	if (pps_usec >= bigtick)
   1615 		pps_usec -= bigtick;
   1616 	if (pps_usec < 0)
   1617 		pps_usec += bigtick;
   1618 	pps_time.tv_sec++;
   1619 	pps_count++;
   1620 	if (pps_count < (1 << pps_shift))
   1621 		return;
   1622 	pps_count = 0;
   1623 	pps_calcnt++;
   1624 	u_usec = usec << SHIFT_USEC;
   1625 	v_usec = pps_usec - u_usec;
   1626 	if (v_usec >= bigtick >> 1)
   1627 		v_usec -= bigtick;
   1628 	if (v_usec < -(bigtick >> 1))
   1629 		v_usec += bigtick;
   1630 	if (v_usec < 0)
   1631 		v_usec = -(-v_usec >> pps_shift);
   1632 	else
   1633 		v_usec = v_usec >> pps_shift;
   1634 	pps_usec = u_usec;
   1635 	cal_sec = tvp->tv_sec;
   1636 	cal_usec = tvp->tv_usec;
   1637 	cal_sec -= pps_time.tv_sec;
   1638 	cal_usec -= pps_time.tv_usec;
   1639 	if (cal_usec < 0) {
   1640 		cal_usec += 1000000;
   1641 		cal_sec--;
   1642 	}
   1643 	pps_time = *tvp;
   1644 
   1645 	/*
   1646 	 * Check for lost interrupts, noise, excessive jitter and
   1647 	 * excessive frequency error. The number of timer ticks during
   1648 	 * the interval may vary +-1 tick. Add to this a margin of one
   1649 	 * tick for the PPS signal jitter and maximum frequency
   1650 	 * deviation. If the limits are exceeded, the calibration
   1651 	 * interval is reset to the minimum and we start over.
   1652 	 */
   1653 	u_usec = (long)tick << 1;
   1654 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1655 	    || (cal_sec == 0 && cal_usec < u_usec))
   1656 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1657 		pps_errcnt++;
   1658 		pps_shift = PPS_SHIFT;
   1659 		pps_intcnt = 0;
   1660 		time_status |= STA_PPSERROR;
   1661 		return;
   1662 	}
   1663 
   1664 	/*
   1665 	 * A three-stage median filter is used to help deglitch the pps
   1666 	 * frequency. The median sample becomes the frequency offset
   1667 	 * estimate; the difference between the other two samples
   1668 	 * becomes the frequency dispersion (stability) estimate.
   1669 	 */
   1670 	pps_ff[2] = pps_ff[1];
   1671 	pps_ff[1] = pps_ff[0];
   1672 	pps_ff[0] = v_usec;
   1673 	if (pps_ff[0] > pps_ff[1]) {
   1674 		if (pps_ff[1] > pps_ff[2]) {
   1675 			u_usec = pps_ff[1];		/* 0 1 2 */
   1676 			v_usec = pps_ff[0] - pps_ff[2];
   1677 		} else if (pps_ff[2] > pps_ff[0]) {
   1678 			u_usec = pps_ff[0];		/* 2 0 1 */
   1679 			v_usec = pps_ff[2] - pps_ff[1];
   1680 		} else {
   1681 			u_usec = pps_ff[2];		/* 0 2 1 */
   1682 			v_usec = pps_ff[0] - pps_ff[1];
   1683 		}
   1684 	} else {
   1685 		if (pps_ff[1] < pps_ff[2]) {
   1686 			u_usec = pps_ff[1];		/* 2 1 0 */
   1687 			v_usec = pps_ff[2] - pps_ff[0];
   1688 		} else  if (pps_ff[2] < pps_ff[0]) {
   1689 			u_usec = pps_ff[0];		/* 1 0 2 */
   1690 			v_usec = pps_ff[1] - pps_ff[2];
   1691 		} else {
   1692 			u_usec = pps_ff[2];		/* 1 2 0 */
   1693 			v_usec = pps_ff[1] - pps_ff[0];
   1694 		}
   1695 	}
   1696 
   1697 	/*
   1698 	 * Here the frequency dispersion (stability) is updated. If it
   1699 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1700 	 * offset is updated as well, but clamped to the tolerance. It
   1701 	 * will be processed later by the hardclock() routine.
   1702 	 */
   1703 	v_usec = (v_usec >> 1) - pps_stabil;
   1704 	if (v_usec < 0)
   1705 		pps_stabil -= -v_usec >> PPS_AVG;
   1706 	else
   1707 		pps_stabil += v_usec >> PPS_AVG;
   1708 	if (pps_stabil > MAXFREQ >> 2) {
   1709 		pps_stbcnt++;
   1710 		time_status |= STA_PPSWANDER;
   1711 		return;
   1712 	}
   1713 	if (time_status & STA_PPSFREQ) {
   1714 		if (u_usec < 0) {
   1715 			pps_freq -= -u_usec >> PPS_AVG;
   1716 			if (pps_freq < -time_tolerance)
   1717 				pps_freq = -time_tolerance;
   1718 			u_usec = -u_usec;
   1719 		} else {
   1720 			pps_freq += u_usec >> PPS_AVG;
   1721 			if (pps_freq > time_tolerance)
   1722 				pps_freq = time_tolerance;
   1723 		}
   1724 	}
   1725 
   1726 	/*
   1727 	 * Here the calibration interval is adjusted. If the maximum
   1728 	 * time difference is greater than tick / 4, reduce the interval
   1729 	 * by half. If this is not the case for four consecutive
   1730 	 * intervals, double the interval.
   1731 	 */
   1732 	if (u_usec << pps_shift > bigtick >> 2) {
   1733 		pps_intcnt = 0;
   1734 		if (pps_shift > PPS_SHIFT)
   1735 			pps_shift--;
   1736 	} else if (pps_intcnt >= 4) {
   1737 		pps_intcnt = 0;
   1738 		if (pps_shift < PPS_SHIFTMAX)
   1739 			pps_shift++;
   1740 	} else
   1741 		pps_intcnt++;
   1742 }
   1743 #endif /* PPS_SYNC */
   1744 #endif /* NTP  */
   1745 
   1746 /*
   1747  * Return information about system clocks.
   1748  */
   1749 int
   1750 sysctl_clockrate(void *where, size_t *sizep)
   1751 {
   1752 	struct clockinfo clkinfo;
   1753 
   1754 	/*
   1755 	 * Construct clockinfo structure.
   1756 	 */
   1757 	clkinfo.tick = tick;
   1758 	clkinfo.tickadj = tickadj;
   1759 	clkinfo.hz = hz;
   1760 	clkinfo.profhz = profhz;
   1761 	clkinfo.stathz = stathz ? stathz : hz;
   1762 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1763 }
   1764