kern_clock.c revision 1.77 1 /* $NetBSD: kern_clock.c,v 1.77 2001/09/13 05:22:17 enami Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_callout.h"
81 #include "opt_ntp.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/dkstat.h>
86 #include <sys/callout.h>
87 #include <sys/kernel.h>
88 #include <sys/proc.h>
89 #include <sys/resourcevar.h>
90 #include <sys/signalvar.h>
91 #include <uvm/uvm_extern.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #ifdef CALLWHEEL_STATS
96 #include <sys/device.h>
97 #endif
98
99 #include <machine/cpu.h>
100 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
101 #include <machine/intr.h>
102 #endif
103
104 #ifdef GPROF
105 #include <sys/gmon.h>
106 #endif
107
108 /*
109 * Clock handling routines.
110 *
111 * This code is written to operate with two timers that run independently of
112 * each other. The main clock, running hz times per second, is used to keep
113 * track of real time. The second timer handles kernel and user profiling,
114 * and does resource use estimation. If the second timer is programmable,
115 * it is randomized to avoid aliasing between the two clocks. For example,
116 * the randomization prevents an adversary from always giving up the cpu
117 * just before its quantum expires. Otherwise, it would never accumulate
118 * cpu ticks. The mean frequency of the second timer is stathz.
119 *
120 * If no second timer exists, stathz will be zero; in this case we drive
121 * profiling and statistics off the main clock. This WILL NOT be accurate;
122 * do not do it unless absolutely necessary.
123 *
124 * The statistics clock may (or may not) be run at a higher rate while
125 * profiling. This profile clock runs at profhz. We require that profhz
126 * be an integral multiple of stathz.
127 *
128 * If the statistics clock is running fast, it must be divided by the ratio
129 * profhz/stathz for statistics. (For profiling, every tick counts.)
130 */
131
132 #ifdef NTP /* NTP phase-locked loop in kernel */
133 /*
134 * Phase/frequency-lock loop (PLL/FLL) definitions
135 *
136 * The following variables are read and set by the ntp_adjtime() system
137 * call.
138 *
139 * time_state shows the state of the system clock, with values defined
140 * in the timex.h header file.
141 *
142 * time_status shows the status of the system clock, with bits defined
143 * in the timex.h header file.
144 *
145 * time_offset is used by the PLL/FLL to adjust the system time in small
146 * increments.
147 *
148 * time_constant determines the bandwidth or "stiffness" of the PLL.
149 *
150 * time_tolerance determines maximum frequency error or tolerance of the
151 * CPU clock oscillator and is a property of the architecture; however,
152 * in principle it could change as result of the presence of external
153 * discipline signals, for instance.
154 *
155 * time_precision is usually equal to the kernel tick variable; however,
156 * in cases where a precision clock counter or external clock is
157 * available, the resolution can be much less than this and depend on
158 * whether the external clock is working or not.
159 *
160 * time_maxerror is initialized by a ntp_adjtime() call and increased by
161 * the kernel once each second to reflect the maximum error bound
162 * growth.
163 *
164 * time_esterror is set and read by the ntp_adjtime() call, but
165 * otherwise not used by the kernel.
166 */
167 int time_state = TIME_OK; /* clock state */
168 int time_status = STA_UNSYNC; /* clock status bits */
169 long time_offset = 0; /* time offset (us) */
170 long time_constant = 0; /* pll time constant */
171 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
172 long time_precision = 1; /* clock precision (us) */
173 long time_maxerror = MAXPHASE; /* maximum error (us) */
174 long time_esterror = MAXPHASE; /* estimated error (us) */
175
176 /*
177 * The following variables establish the state of the PLL/FLL and the
178 * residual time and frequency offset of the local clock. The scale
179 * factors are defined in the timex.h header file.
180 *
181 * time_phase and time_freq are the phase increment and the frequency
182 * increment, respectively, of the kernel time variable.
183 *
184 * time_freq is set via ntp_adjtime() from a value stored in a file when
185 * the synchronization daemon is first started. Its value is retrieved
186 * via ntp_adjtime() and written to the file about once per hour by the
187 * daemon.
188 *
189 * time_adj is the adjustment added to the value of tick at each timer
190 * interrupt and is recomputed from time_phase and time_freq at each
191 * seconds rollover.
192 *
193 * time_reftime is the second's portion of the system time at the last
194 * call to ntp_adjtime(). It is used to adjust the time_freq variable
195 * and to increase the time_maxerror as the time since last update
196 * increases.
197 */
198 long time_phase = 0; /* phase offset (scaled us) */
199 long time_freq = 0; /* frequency offset (scaled ppm) */
200 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
201 long time_reftime = 0; /* time at last adjustment (s) */
202
203 #ifdef PPS_SYNC
204 /*
205 * The following variables are used only if the kernel PPS discipline
206 * code is configured (PPS_SYNC). The scale factors are defined in the
207 * timex.h header file.
208 *
209 * pps_time contains the time at each calibration interval, as read by
210 * microtime(). pps_count counts the seconds of the calibration
211 * interval, the duration of which is nominally pps_shift in powers of
212 * two.
213 *
214 * pps_offset is the time offset produced by the time median filter
215 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
216 * this filter.
217 *
218 * pps_freq is the frequency offset produced by the frequency median
219 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
220 * by this filter.
221 *
222 * pps_usec is latched from a high resolution counter or external clock
223 * at pps_time. Here we want the hardware counter contents only, not the
224 * contents plus the time_tv.usec as usual.
225 *
226 * pps_valid counts the number of seconds since the last PPS update. It
227 * is used as a watchdog timer to disable the PPS discipline should the
228 * PPS signal be lost.
229 *
230 * pps_glitch counts the number of seconds since the beginning of an
231 * offset burst more than tick/2 from current nominal offset. It is used
232 * mainly to suppress error bursts due to priority conflicts between the
233 * PPS interrupt and timer interrupt.
234 *
235 * pps_intcnt counts the calibration intervals for use in the interval-
236 * adaptation algorithm. It's just too complicated for words.
237 */
238 struct timeval pps_time; /* kernel time at last interval */
239 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
240 long pps_offset = 0; /* pps time offset (us) */
241 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
242 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
243 long pps_freq = 0; /* frequency offset (scaled ppm) */
244 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
245 long pps_usec = 0; /* microsec counter at last interval */
246 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
247 int pps_glitch = 0; /* pps signal glitch counter */
248 int pps_count = 0; /* calibration interval counter (s) */
249 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
250 int pps_intcnt = 0; /* intervals at current duration */
251
252 /*
253 * PPS signal quality monitors
254 *
255 * pps_jitcnt counts the seconds that have been discarded because the
256 * jitter measured by the time median filter exceeds the limit MAXTIME
257 * (100 us).
258 *
259 * pps_calcnt counts the frequency calibration intervals, which are
260 * variable from 4 s to 256 s.
261 *
262 * pps_errcnt counts the calibration intervals which have been discarded
263 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
264 * calibration interval jitter exceeds two ticks.
265 *
266 * pps_stbcnt counts the calibration intervals that have been discarded
267 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
268 */
269 long pps_jitcnt = 0; /* jitter limit exceeded */
270 long pps_calcnt = 0; /* calibration intervals */
271 long pps_errcnt = 0; /* calibration errors */
272 long pps_stbcnt = 0; /* stability limit exceeded */
273 #endif /* PPS_SYNC */
274
275 #ifdef EXT_CLOCK
276 /*
277 * External clock definitions
278 *
279 * The following definitions and declarations are used only if an
280 * external clock is configured on the system.
281 */
282 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
283
284 /*
285 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
286 * interrupt and decremented once each second.
287 */
288 int clock_count = 0; /* CPU clock counter */
289
290 #ifdef HIGHBALL
291 /*
292 * The clock_offset and clock_cpu variables are used by the HIGHBALL
293 * interface. The clock_offset variable defines the offset between
294 * system time and the HIGBALL counters. The clock_cpu variable contains
295 * the offset between the system clock and the HIGHBALL clock for use in
296 * disciplining the kernel time variable.
297 */
298 extern struct timeval clock_offset; /* Highball clock offset */
299 long clock_cpu = 0; /* CPU clock adjust */
300 #endif /* HIGHBALL */
301 #endif /* EXT_CLOCK */
302 #endif /* NTP */
303
304
305 /*
306 * Bump a timeval by a small number of usec's.
307 */
308 #define BUMPTIME(t, usec) { \
309 volatile struct timeval *tp = (t); \
310 long us; \
311 \
312 tp->tv_usec = us = tp->tv_usec + (usec); \
313 if (us >= 1000000) { \
314 tp->tv_usec = us - 1000000; \
315 tp->tv_sec++; \
316 } \
317 }
318
319 int stathz;
320 int profhz;
321 int schedhz;
322 int profprocs;
323 int softclock_running; /* 1 => softclock() is running */
324 static int psdiv; /* prof => stat divider */
325 int psratio; /* ratio: prof / stat */
326 int tickfix, tickfixinterval; /* used if tick not really integral */
327 #ifndef NTP
328 static int tickfixcnt; /* accumulated fractional error */
329 #else
330 int fixtick; /* used by NTP for same */
331 int shifthz;
332 #endif
333
334 /*
335 * We might want ldd to load the both words from time at once.
336 * To succeed we need to be quadword aligned.
337 * The sparc already does that, and that it has worked so far is a fluke.
338 */
339 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
340 volatile struct timeval mono_time;
341
342 /*
343 * The callout mechanism is based on the work of Adam M. Costello and
344 * George Varghese, published in a technical report entitled "Redesigning
345 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
346 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
347 *
348 * The original work on the data structures used in this implementation
349 * was published by G. Varghese and A. Lauck in the paper "Hashed and
350 * Hierarchical Timing Wheels: Data Structures for the Efficient
351 * Implementation of a Timer Facility" in the Proceedings of the 11th
352 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
353 * November 1987.
354 */
355 struct callout_queue *callwheel;
356 int callwheelsize, callwheelbits, callwheelmask;
357
358 static struct callout *nextsoftcheck; /* next callout to be checked */
359
360 #ifdef CALLWHEEL_STATS
361 int *callwheel_sizes; /* per-bucket length count */
362 struct evcnt callwheel_collisions; /* number of hash collisions */
363 struct evcnt callwheel_maxlength; /* length of the longest hash chain */
364 struct evcnt callwheel_count; /* # callouts currently */
365 struct evcnt callwheel_established; /* # callouts established */
366 struct evcnt callwheel_fired; /* # callouts that fired */
367 struct evcnt callwheel_disestablished; /* # callouts disestablished */
368 struct evcnt callwheel_changed; /* # callouts changed */
369 struct evcnt callwheel_softclocks; /* # times softclock() called */
370 struct evcnt callwheel_softchecks; /* # checks per softclock() */
371 struct evcnt callwheel_softempty; /* # empty buckets seen */
372 struct evcnt callwheel_hintworked; /* # times hint saved scan */
373 #endif /* CALLWHEEL_STATS */
374
375 /*
376 * This value indicates the number of consecutive callouts that
377 * will be checked before we allow interrupts to have a chance
378 * again.
379 */
380 #ifndef MAX_SOFTCLOCK_STEPS
381 #define MAX_SOFTCLOCK_STEPS 100
382 #endif
383
384 struct simplelock callwheel_slock;
385
386 #define CALLWHEEL_LOCK(s) \
387 do { \
388 s = splclock(); \
389 simple_lock(&callwheel_slock); \
390 } while (0)
391
392 #define CALLWHEEL_UNLOCK(s) \
393 do { \
394 simple_unlock(&callwheel_slock); \
395 splx(s); \
396 } while (0)
397
398 static void callout_stop_locked(struct callout *);
399
400 /*
401 * These are both protected by callwheel_lock.
402 * XXX SHOULD BE STATIC!!
403 */
404 u_int64_t hardclock_ticks, softclock_ticks;
405
406 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
407 void softclock(void *);
408 void *softclock_si;
409 #endif
410
411 /*
412 * Initialize clock frequencies and start both clocks running.
413 */
414 void
415 initclocks(void)
416 {
417 int i;
418
419 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
420 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
421 if (softclock_si == NULL)
422 panic("initclocks: unable to register softclock intr");
423 #endif
424
425 /*
426 * Set divisors to 1 (normal case) and let the machine-specific
427 * code do its bit.
428 */
429 psdiv = 1;
430 cpu_initclocks();
431
432 /*
433 * Compute profhz/stathz/rrticks, and fix profhz if needed.
434 */
435 i = stathz ? stathz : hz;
436 if (profhz == 0)
437 profhz = i;
438 psratio = profhz / i;
439 rrticks = hz / 10;
440
441 #ifdef NTP
442 switch (hz) {
443 case 1:
444 shifthz = SHIFT_SCALE - 0;
445 break;
446 case 2:
447 shifthz = SHIFT_SCALE - 1;
448 break;
449 case 4:
450 shifthz = SHIFT_SCALE - 2;
451 break;
452 case 8:
453 shifthz = SHIFT_SCALE - 3;
454 break;
455 case 16:
456 shifthz = SHIFT_SCALE - 4;
457 break;
458 case 32:
459 shifthz = SHIFT_SCALE - 5;
460 break;
461 case 60:
462 case 64:
463 shifthz = SHIFT_SCALE - 6;
464 break;
465 case 96:
466 case 100:
467 case 128:
468 shifthz = SHIFT_SCALE - 7;
469 break;
470 case 256:
471 shifthz = SHIFT_SCALE - 8;
472 break;
473 case 512:
474 shifthz = SHIFT_SCALE - 9;
475 break;
476 case 1000:
477 case 1024:
478 shifthz = SHIFT_SCALE - 10;
479 break;
480 case 1200:
481 case 2048:
482 shifthz = SHIFT_SCALE - 11;
483 break;
484 case 4096:
485 shifthz = SHIFT_SCALE - 12;
486 break;
487 case 8192:
488 shifthz = SHIFT_SCALE - 13;
489 break;
490 case 16384:
491 shifthz = SHIFT_SCALE - 14;
492 break;
493 case 32768:
494 shifthz = SHIFT_SCALE - 15;
495 break;
496 case 65536:
497 shifthz = SHIFT_SCALE - 16;
498 break;
499 default:
500 panic("weird hz");
501 }
502 if (fixtick == 0) {
503 /*
504 * Give MD code a chance to set this to a better
505 * value; but, if it doesn't, we should.
506 */
507 fixtick = (1000000 - (hz*tick));
508 }
509 #endif
510 }
511
512 /*
513 * The real-time timer, interrupting hz times per second.
514 */
515 void
516 hardclock(struct clockframe *frame)
517 {
518 struct proc *p;
519 int delta;
520 extern int tickdelta;
521 extern long timedelta;
522 struct cpu_info *ci = curcpu();
523 #ifdef NTP
524 int time_update;
525 int ltemp;
526 #endif
527
528 p = curproc;
529 if (p) {
530 struct pstats *pstats;
531
532 /*
533 * Run current process's virtual and profile time, as needed.
534 */
535 pstats = p->p_stats;
536 if (CLKF_USERMODE(frame) &&
537 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
538 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
539 psignal(p, SIGVTALRM);
540 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
541 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
542 psignal(p, SIGPROF);
543 }
544
545 /*
546 * If no separate statistics clock is available, run it from here.
547 */
548 if (stathz == 0)
549 statclock(frame);
550 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
551 roundrobin(ci);
552
553 #if defined(MULTIPROCESSOR)
554 /*
555 * If we are not the primary CPU, we're not allowed to do
556 * any more work.
557 */
558 if (CPU_IS_PRIMARY(ci) == 0)
559 return;
560 #endif
561
562 /*
563 * Increment the time-of-day. The increment is normally just
564 * ``tick''. If the machine is one which has a clock frequency
565 * such that ``hz'' would not divide the second evenly into
566 * milliseconds, a periodic adjustment must be applied. Finally,
567 * if we are still adjusting the time (see adjtime()),
568 * ``tickdelta'' may also be added in.
569 */
570 delta = tick;
571
572 #ifndef NTP
573 if (tickfix) {
574 tickfixcnt += tickfix;
575 if (tickfixcnt >= tickfixinterval) {
576 delta++;
577 tickfixcnt -= tickfixinterval;
578 }
579 }
580 #endif /* !NTP */
581 /* Imprecise 4bsd adjtime() handling */
582 if (timedelta != 0) {
583 delta += tickdelta;
584 timedelta -= tickdelta;
585 }
586
587 #ifdef notyet
588 microset();
589 #endif
590
591 #ifndef NTP
592 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
593 #endif
594 BUMPTIME(&mono_time, delta);
595
596 #ifdef NTP
597 time_update = delta;
598
599 /*
600 * Compute the phase adjustment. If the low-order bits
601 * (time_phase) of the update overflow, bump the high-order bits
602 * (time_update).
603 */
604 time_phase += time_adj;
605 if (time_phase <= -FINEUSEC) {
606 ltemp = -time_phase >> SHIFT_SCALE;
607 time_phase += ltemp << SHIFT_SCALE;
608 time_update -= ltemp;
609 } else if (time_phase >= FINEUSEC) {
610 ltemp = time_phase >> SHIFT_SCALE;
611 time_phase -= ltemp << SHIFT_SCALE;
612 time_update += ltemp;
613 }
614
615 #ifdef HIGHBALL
616 /*
617 * If the HIGHBALL board is installed, we need to adjust the
618 * external clock offset in order to close the hardware feedback
619 * loop. This will adjust the external clock phase and frequency
620 * in small amounts. The additional phase noise and frequency
621 * wander this causes should be minimal. We also need to
622 * discipline the kernel time variable, since the PLL is used to
623 * discipline the external clock. If the Highball board is not
624 * present, we discipline kernel time with the PLL as usual. We
625 * assume that the external clock phase adjustment (time_update)
626 * and kernel phase adjustment (clock_cpu) are less than the
627 * value of tick.
628 */
629 clock_offset.tv_usec += time_update;
630 if (clock_offset.tv_usec >= 1000000) {
631 clock_offset.tv_sec++;
632 clock_offset.tv_usec -= 1000000;
633 }
634 if (clock_offset.tv_usec < 0) {
635 clock_offset.tv_sec--;
636 clock_offset.tv_usec += 1000000;
637 }
638 time.tv_usec += clock_cpu;
639 clock_cpu = 0;
640 #else
641 time.tv_usec += time_update;
642 #endif /* HIGHBALL */
643
644 /*
645 * On rollover of the second the phase adjustment to be used for
646 * the next second is calculated. Also, the maximum error is
647 * increased by the tolerance. If the PPS frequency discipline
648 * code is present, the phase is increased to compensate for the
649 * CPU clock oscillator frequency error.
650 *
651 * On a 32-bit machine and given parameters in the timex.h
652 * header file, the maximum phase adjustment is +-512 ms and
653 * maximum frequency offset is a tad less than) +-512 ppm. On a
654 * 64-bit machine, you shouldn't need to ask.
655 */
656 if (time.tv_usec >= 1000000) {
657 time.tv_usec -= 1000000;
658 time.tv_sec++;
659 time_maxerror += time_tolerance >> SHIFT_USEC;
660
661 /*
662 * Leap second processing. If in leap-insert state at
663 * the end of the day, the system clock is set back one
664 * second; if in leap-delete state, the system clock is
665 * set ahead one second. The microtime() routine or
666 * external clock driver will insure that reported time
667 * is always monotonic. The ugly divides should be
668 * replaced.
669 */
670 switch (time_state) {
671 case TIME_OK:
672 if (time_status & STA_INS)
673 time_state = TIME_INS;
674 else if (time_status & STA_DEL)
675 time_state = TIME_DEL;
676 break;
677
678 case TIME_INS:
679 if (time.tv_sec % 86400 == 0) {
680 time.tv_sec--;
681 time_state = TIME_OOP;
682 }
683 break;
684
685 case TIME_DEL:
686 if ((time.tv_sec + 1) % 86400 == 0) {
687 time.tv_sec++;
688 time_state = TIME_WAIT;
689 }
690 break;
691
692 case TIME_OOP:
693 time_state = TIME_WAIT;
694 break;
695
696 case TIME_WAIT:
697 if (!(time_status & (STA_INS | STA_DEL)))
698 time_state = TIME_OK;
699 break;
700 }
701
702 /*
703 * Compute the phase adjustment for the next second. In
704 * PLL mode, the offset is reduced by a fixed factor
705 * times the time constant. In FLL mode the offset is
706 * used directly. In either mode, the maximum phase
707 * adjustment for each second is clamped so as to spread
708 * the adjustment over not more than the number of
709 * seconds between updates.
710 */
711 if (time_offset < 0) {
712 ltemp = -time_offset;
713 if (!(time_status & STA_FLL))
714 ltemp >>= SHIFT_KG + time_constant;
715 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
716 ltemp = (MAXPHASE / MINSEC) <<
717 SHIFT_UPDATE;
718 time_offset += ltemp;
719 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
720 } else if (time_offset > 0) {
721 ltemp = time_offset;
722 if (!(time_status & STA_FLL))
723 ltemp >>= SHIFT_KG + time_constant;
724 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
725 ltemp = (MAXPHASE / MINSEC) <<
726 SHIFT_UPDATE;
727 time_offset -= ltemp;
728 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
729 } else
730 time_adj = 0;
731
732 /*
733 * Compute the frequency estimate and additional phase
734 * adjustment due to frequency error for the next
735 * second. When the PPS signal is engaged, gnaw on the
736 * watchdog counter and update the frequency computed by
737 * the pll and the PPS signal.
738 */
739 #ifdef PPS_SYNC
740 pps_valid++;
741 if (pps_valid == PPS_VALID) {
742 pps_jitter = MAXTIME;
743 pps_stabil = MAXFREQ;
744 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
745 STA_PPSWANDER | STA_PPSERROR);
746 }
747 ltemp = time_freq + pps_freq;
748 #else
749 ltemp = time_freq;
750 #endif /* PPS_SYNC */
751
752 if (ltemp < 0)
753 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
754 else
755 time_adj += ltemp >> (SHIFT_USEC - shifthz);
756 time_adj += (long)fixtick << shifthz;
757
758 /*
759 * When the CPU clock oscillator frequency is not a
760 * power of 2 in Hz, shifthz is only an approximate
761 * scale factor.
762 *
763 * To determine the adjustment, you can do the following:
764 * bc -q
765 * scale=24
766 * obase=2
767 * idealhz/realhz
768 * where `idealhz' is the next higher power of 2, and `realhz'
769 * is the actual value. You may need to factor this result
770 * into a sequence of 2 multipliers to get better precision.
771 *
772 * Likewise, the error can be calculated with (e.g. for 100Hz):
773 * bc -q
774 * scale=24
775 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
776 * (and then multiply by 1000000 to get ppm).
777 */
778 switch (hz) {
779 case 60:
780 /* A factor of 1.000100010001 gives about 15ppm
781 error. */
782 if (time_adj < 0) {
783 time_adj -= (-time_adj >> 4);
784 time_adj -= (-time_adj >> 8);
785 } else {
786 time_adj += (time_adj >> 4);
787 time_adj += (time_adj >> 8);
788 }
789 break;
790
791 case 96:
792 /* A factor of 1.0101010101 gives about 244ppm error. */
793 if (time_adj < 0) {
794 time_adj -= (-time_adj >> 2);
795 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
796 } else {
797 time_adj += (time_adj >> 2);
798 time_adj += (time_adj >> 4) + (time_adj >> 8);
799 }
800 break;
801
802 case 100:
803 /* A factor of 1.010001111010111 gives about 1ppm
804 error. */
805 if (time_adj < 0) {
806 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
807 time_adj += (-time_adj >> 10);
808 } else {
809 time_adj += (time_adj >> 2) + (time_adj >> 5);
810 time_adj -= (time_adj >> 10);
811 }
812 break;
813
814 case 1000:
815 /* A factor of 1.000001100010100001 gives about 50ppm
816 error. */
817 if (time_adj < 0) {
818 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
819 time_adj -= (-time_adj >> 7);
820 } else {
821 time_adj += (time_adj >> 6) + (time_adj >> 11);
822 time_adj += (time_adj >> 7);
823 }
824 break;
825
826 case 1200:
827 /* A factor of 1.1011010011100001 gives about 64ppm
828 error. */
829 if (time_adj < 0) {
830 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
831 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
832 } else {
833 time_adj += (time_adj >> 1) + (time_adj >> 6);
834 time_adj += (time_adj >> 3) + (time_adj >> 10);
835 }
836 break;
837 }
838
839 #ifdef EXT_CLOCK
840 /*
841 * If an external clock is present, it is necessary to
842 * discipline the kernel time variable anyway, since not
843 * all system components use the microtime() interface.
844 * Here, the time offset between the external clock and
845 * kernel time variable is computed every so often.
846 */
847 clock_count++;
848 if (clock_count > CLOCK_INTERVAL) {
849 clock_count = 0;
850 microtime(&clock_ext);
851 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
852 delta.tv_usec = clock_ext.tv_usec -
853 time.tv_usec;
854 if (delta.tv_usec < 0)
855 delta.tv_sec--;
856 if (delta.tv_usec >= 500000) {
857 delta.tv_usec -= 1000000;
858 delta.tv_sec++;
859 }
860 if (delta.tv_usec < -500000) {
861 delta.tv_usec += 1000000;
862 delta.tv_sec--;
863 }
864 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
865 delta.tv_usec > MAXPHASE) ||
866 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
867 delta.tv_usec < -MAXPHASE)) {
868 time = clock_ext;
869 delta.tv_sec = 0;
870 delta.tv_usec = 0;
871 }
872 #ifdef HIGHBALL
873 clock_cpu = delta.tv_usec;
874 #else /* HIGHBALL */
875 hardupdate(delta.tv_usec);
876 #endif /* HIGHBALL */
877 }
878 #endif /* EXT_CLOCK */
879 }
880
881 #endif /* NTP */
882
883 /*
884 * Process callouts at a very low cpu priority, so we don't keep the
885 * relatively high clock interrupt priority any longer than necessary.
886 */
887 simple_lock(&callwheel_slock); /* already at splclock() */
888 hardclock_ticks++;
889 if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
890 simple_unlock(&callwheel_slock);
891 if (CLKF_BASEPRI(frame)) {
892 /*
893 * Save the overhead of a software interrupt;
894 * it will happen as soon as we return, so do
895 * it now.
896 *
897 * NOTE: If we're at ``base priority'', softclock()
898 * was not already running.
899 */
900 spllowersoftclock();
901 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
902 softclock(NULL);
903 KERNEL_UNLOCK();
904 } else {
905 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
906 softintr_schedule(softclock_si);
907 #else
908 setsoftclock();
909 #endif
910 }
911 return;
912 } else if (softclock_running == 0 &&
913 (softclock_ticks + 1) == hardclock_ticks) {
914 softclock_ticks++;
915 }
916 simple_unlock(&callwheel_slock);
917 }
918
919 /*
920 * Software (low priority) clock interrupt.
921 * Run periodic events from timeout queue.
922 */
923 /*ARGSUSED*/
924 void
925 softclock(void *v)
926 {
927 struct callout_queue *bucket;
928 struct callout *c;
929 void (*func)(void *);
930 void *arg;
931 int s, idx;
932 int steps = 0;
933
934 CALLWHEEL_LOCK(s);
935
936 softclock_running = 1;
937
938 #ifdef CALLWHEEL_STATS
939 callwheel_softclocks.ev_count++;
940 #endif
941
942 while (softclock_ticks != hardclock_ticks) {
943 softclock_ticks++;
944 idx = (int)(softclock_ticks & callwheelmask);
945 bucket = &callwheel[idx];
946 c = TAILQ_FIRST(&bucket->cq_q);
947 if (c == NULL) {
948 #ifdef CALLWHEEL_STATS
949 callwheel_softempty.ev_count++;
950 #endif
951 continue;
952 }
953 if (softclock_ticks < bucket->cq_hint) {
954 #ifdef CALLWHEEL_STATS
955 callwheel_hintworked.ev_count++;
956 #endif
957 continue;
958 }
959 bucket->cq_hint = UQUAD_MAX;
960 while (c != NULL) {
961 #ifdef CALLWHEEL_STATS
962 callwheel_softchecks.ev_count++;
963 #endif
964 if (c->c_time != softclock_ticks) {
965 if (c->c_time < bucket->cq_hint)
966 bucket->cq_hint = c->c_time;
967 c = TAILQ_NEXT(c, c_link);
968 if (++steps >= MAX_SOFTCLOCK_STEPS) {
969 nextsoftcheck = c;
970 /* Give interrupts a chance. */
971 CALLWHEEL_UNLOCK(s);
972 CALLWHEEL_LOCK(s);
973 c = nextsoftcheck;
974 steps = 0;
975 }
976 } else {
977 nextsoftcheck = TAILQ_NEXT(c, c_link);
978 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
979 #ifdef CALLWHEEL_STATS
980 callwheel_sizes[idx]--;
981 callwheel_fired.ev_count++;
982 callwheel_count.ev_count--;
983 #endif
984 func = c->c_func;
985 arg = c->c_arg;
986 c->c_func = NULL;
987 c->c_flags &= ~CALLOUT_PENDING;
988 CALLWHEEL_UNLOCK(s);
989 (*func)(arg);
990 CALLWHEEL_LOCK(s);
991 steps = 0;
992 c = nextsoftcheck;
993 }
994 }
995 if (TAILQ_EMPTY(&bucket->cq_q))
996 bucket->cq_hint = UQUAD_MAX;
997 }
998 nextsoftcheck = NULL;
999 softclock_running = 0;
1000 CALLWHEEL_UNLOCK(s);
1001 }
1002
1003 /*
1004 * callout_setsize:
1005 *
1006 * Determine how many callwheels are necessary and
1007 * set hash mask. Called from allocsys().
1008 */
1009 void
1010 callout_setsize(void)
1011 {
1012
1013 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
1014 /* loop */ ;
1015 callwheelmask = callwheelsize - 1;
1016 }
1017
1018 /*
1019 * callout_startup:
1020 *
1021 * Initialize the callwheel buckets.
1022 */
1023 void
1024 callout_startup(void)
1025 {
1026 int i;
1027
1028 for (i = 0; i < callwheelsize; i++) {
1029 callwheel[i].cq_hint = UQUAD_MAX;
1030 TAILQ_INIT(&callwheel[i].cq_q);
1031 }
1032
1033 simple_lock_init(&callwheel_slock);
1034
1035 #ifdef CALLWHEEL_STATS
1036 evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
1037 NULL, "callwheel", "collisions");
1038 evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
1039 NULL, "callwheel", "maxlength");
1040 evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
1041 NULL, "callwheel", "count");
1042 evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
1043 NULL, "callwheel", "established");
1044 evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
1045 NULL, "callwheel", "fired");
1046 evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
1047 NULL, "callwheel", "disestablished");
1048 evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
1049 NULL, "callwheel", "changed");
1050 evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
1051 NULL, "callwheel", "softclocks");
1052 evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
1053 NULL, "callwheel", "softempty");
1054 evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
1055 NULL, "callwheel", "hintworked");
1056 #endif /* CALLWHEEL_STATS */
1057 }
1058
1059 /*
1060 * callout_init:
1061 *
1062 * Initialize a callout structure so that it can be used
1063 * by callout_reset() and callout_stop().
1064 */
1065 void
1066 callout_init(struct callout *c)
1067 {
1068
1069 memset(c, 0, sizeof(*c));
1070 }
1071
1072 /*
1073 * callout_reset:
1074 *
1075 * Establish or change a timeout.
1076 */
1077 void
1078 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1079 {
1080 struct callout_queue *bucket;
1081 int s;
1082
1083 if (ticks <= 0)
1084 ticks = 1;
1085
1086 CALLWHEEL_LOCK(s);
1087
1088 /*
1089 * If this callout's timer is already running, cancel it
1090 * before we modify it.
1091 */
1092 if (c->c_flags & CALLOUT_PENDING) {
1093 callout_stop_locked(c); /* Already locked */
1094 #ifdef CALLWHEEL_STATS
1095 callwheel_changed.ev_count++;
1096 #endif
1097 }
1098
1099 c->c_arg = arg;
1100 c->c_func = func;
1101 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1102 c->c_time = hardclock_ticks + ticks;
1103
1104 bucket = &callwheel[c->c_time & callwheelmask];
1105
1106 #ifdef CALLWHEEL_STATS
1107 if (! TAILQ_EMPTY(&bucket->cq_q))
1108 callwheel_collisions.ev_count++;
1109 #endif
1110
1111 TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
1112 if (c->c_time < bucket->cq_hint)
1113 bucket->cq_hint = c->c_time;
1114
1115 #ifdef CALLWHEEL_STATS
1116 callwheel_count.ev_count++;
1117 callwheel_established.ev_count++;
1118 if (++callwheel_sizes[c->c_time & callwheelmask] >
1119 callwheel_maxlength.ev_count)
1120 callwheel_maxlength.ev_count =
1121 callwheel_sizes[c->c_time & callwheelmask];
1122 #endif
1123
1124 CALLWHEEL_UNLOCK(s);
1125 }
1126
1127 /*
1128 * callout_stop_locked:
1129 *
1130 * Disestablish a timeout. Callwheel is locked.
1131 */
1132 static void
1133 callout_stop_locked(struct callout *c)
1134 {
1135 struct callout_queue *bucket;
1136
1137 /*
1138 * Don't attempt to delete a callout that's not on the queue.
1139 */
1140 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1141 c->c_flags &= ~CALLOUT_ACTIVE;
1142 return;
1143 }
1144
1145 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1146
1147 if (nextsoftcheck == c)
1148 nextsoftcheck = TAILQ_NEXT(c, c_link);
1149
1150 bucket = &callwheel[c->c_time & callwheelmask];
1151 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
1152 if (TAILQ_EMPTY(&bucket->cq_q))
1153 bucket->cq_hint = UQUAD_MAX;
1154 #ifdef CALLWHEEL_STATS
1155 callwheel_count.ev_count--;
1156 callwheel_disestablished.ev_count++;
1157 callwheel_sizes[c->c_time & callwheelmask]--;
1158 #endif
1159
1160 c->c_func = NULL;
1161 }
1162
1163 /*
1164 * callout_stop:
1165 *
1166 * Disestablish a timeout. Callwheel is unlocked. This is
1167 * the standard entry point.
1168 */
1169 void
1170 callout_stop(struct callout *c)
1171 {
1172 int s;
1173
1174 CALLWHEEL_LOCK(s);
1175 callout_stop_locked(c);
1176 CALLWHEEL_UNLOCK(s);
1177 }
1178
1179 #ifdef CALLWHEEL_STATS
1180 /*
1181 * callout_showstats:
1182 *
1183 * Display callout statistics. Call it from DDB.
1184 */
1185 void
1186 callout_showstats(void)
1187 {
1188 u_int64_t curticks;
1189 int s;
1190
1191 s = splclock();
1192 curticks = softclock_ticks;
1193 splx(s);
1194
1195 printf("Callwheel statistics:\n");
1196 printf("\tCallouts currently queued: %llu\n",
1197 (long long) callwheel_count.ev_count);
1198 printf("\tCallouts established: %llu\n",
1199 (long long) callwheel_established.ev_count);
1200 printf("\tCallouts disestablished: %llu\n",
1201 (long long) callwheel_disestablished.ev_count);
1202 if (callwheel_changed.ev_count != 0)
1203 printf("\t\tOf those, %llu were changes\n",
1204 (long long) callwheel_changed.ev_count);
1205 printf("\tCallouts that fired: %llu\n",
1206 (long long) callwheel_fired.ev_count);
1207 printf("\tNumber of buckets: %d\n", callwheelsize);
1208 printf("\tNumber of hash collisions: %llu\n",
1209 (long long) callwheel_collisions.ev_count);
1210 printf("\tMaximum hash chain length: %llu\n",
1211 (long long) callwheel_maxlength.ev_count);
1212 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1213 (long long) callwheel_softclocks.ev_count,
1214 (long long) callwheel_softchecks.ev_count);
1215 printf("\t\tEmpty buckets seen: %llu\n",
1216 (long long) callwheel_softempty.ev_count);
1217 printf("\t\tTimes hint saved scan: %llu\n",
1218 (long long) callwheel_hintworked.ev_count);
1219 }
1220 #endif
1221
1222 /*
1223 * Compute number of hz until specified time. Used to compute second
1224 * argument to callout_reset() from an absolute time.
1225 */
1226 int
1227 hzto(struct timeval *tv)
1228 {
1229 unsigned long ticks;
1230 long sec, usec;
1231 int s;
1232
1233 /*
1234 * If the number of usecs in the whole seconds part of the time
1235 * difference fits in a long, then the total number of usecs will
1236 * fit in an unsigned long. Compute the total and convert it to
1237 * ticks, rounding up and adding 1 to allow for the current tick
1238 * to expire. Rounding also depends on unsigned long arithmetic
1239 * to avoid overflow.
1240 *
1241 * Otherwise, if the number of ticks in the whole seconds part of
1242 * the time difference fits in a long, then convert the parts to
1243 * ticks separately and add, using similar rounding methods and
1244 * overflow avoidance. This method would work in the previous
1245 * case, but it is slightly slower and assume that hz is integral.
1246 *
1247 * Otherwise, round the time difference down to the maximum
1248 * representable value.
1249 *
1250 * If ints are 32-bit, then the maximum value for any timeout in
1251 * 10ms ticks is 248 days.
1252 */
1253 s = splclock();
1254 sec = tv->tv_sec - time.tv_sec;
1255 usec = tv->tv_usec - time.tv_usec;
1256 splx(s);
1257
1258 if (usec < 0) {
1259 sec--;
1260 usec += 1000000;
1261 }
1262
1263 if (sec < 0 || (sec == 0 && usec <= 0)) {
1264 /*
1265 * Would expire now or in the past. Return 0 ticks.
1266 * This is different from the legacy hzto() interface,
1267 * and callers need to check for it.
1268 */
1269 ticks = 0;
1270 } else if (sec <= (LONG_MAX / 1000000))
1271 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1272 / tick) + 1;
1273 else if (sec <= (LONG_MAX / hz))
1274 ticks = (sec * hz) +
1275 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1276 else
1277 ticks = LONG_MAX;
1278
1279 if (ticks > INT_MAX)
1280 ticks = INT_MAX;
1281
1282 return ((int)ticks);
1283 }
1284
1285 /*
1286 * Start profiling on a process.
1287 *
1288 * Kernel profiling passes proc0 which never exits and hence
1289 * keeps the profile clock running constantly.
1290 */
1291 void
1292 startprofclock(struct proc *p)
1293 {
1294
1295 if ((p->p_flag & P_PROFIL) == 0) {
1296 p->p_flag |= P_PROFIL;
1297 if (++profprocs == 1 && stathz != 0)
1298 psdiv = psratio;
1299 }
1300 }
1301
1302 /*
1303 * Stop profiling on a process.
1304 */
1305 void
1306 stopprofclock(struct proc *p)
1307 {
1308
1309 if (p->p_flag & P_PROFIL) {
1310 p->p_flag &= ~P_PROFIL;
1311 if (--profprocs == 0 && stathz != 0)
1312 psdiv = 1;
1313 }
1314 }
1315
1316 /*
1317 * Statistics clock. Grab profile sample, and if divider reaches 0,
1318 * do process and kernel statistics.
1319 */
1320 void
1321 statclock(struct clockframe *frame)
1322 {
1323 #ifdef GPROF
1324 struct gmonparam *g;
1325 intptr_t i;
1326 #endif
1327 struct cpu_info *ci = curcpu();
1328 struct schedstate_percpu *spc = &ci->ci_schedstate;
1329 struct proc *p;
1330
1331 /*
1332 * Notice changes in divisor frequency, and adjust clock
1333 * frequency accordingly.
1334 */
1335 if (spc->spc_psdiv != psdiv) {
1336 spc->spc_psdiv = psdiv;
1337 spc->spc_pscnt = psdiv;
1338 if (psdiv == 1) {
1339 setstatclockrate(stathz);
1340 } else {
1341 setstatclockrate(profhz);
1342 }
1343 }
1344 p = curproc;
1345 if (CLKF_USERMODE(frame)) {
1346 if (p->p_flag & P_PROFIL)
1347 addupc_intr(p, CLKF_PC(frame));
1348 if (--spc->spc_pscnt > 0)
1349 return;
1350 /*
1351 * Came from user mode; CPU was in user state.
1352 * If this process is being profiled record the tick.
1353 */
1354 p->p_uticks++;
1355 if (p->p_nice > NZERO)
1356 spc->spc_cp_time[CP_NICE]++;
1357 else
1358 spc->spc_cp_time[CP_USER]++;
1359 } else {
1360 #ifdef GPROF
1361 /*
1362 * Kernel statistics are just like addupc_intr, only easier.
1363 */
1364 g = &_gmonparam;
1365 if (g->state == GMON_PROF_ON) {
1366 i = CLKF_PC(frame) - g->lowpc;
1367 if (i < g->textsize) {
1368 i /= HISTFRACTION * sizeof(*g->kcount);
1369 g->kcount[i]++;
1370 }
1371 }
1372 #endif
1373 #ifdef PROC_PC
1374 if (p && p->p_flag & P_PROFIL)
1375 addupc_intr(p, PROC_PC(p));
1376 #endif
1377 if (--spc->spc_pscnt > 0)
1378 return;
1379 /*
1380 * Came from kernel mode, so we were:
1381 * - handling an interrupt,
1382 * - doing syscall or trap work on behalf of the current
1383 * user process, or
1384 * - spinning in the idle loop.
1385 * Whichever it is, charge the time as appropriate.
1386 * Note that we charge interrupts to the current process,
1387 * regardless of whether they are ``for'' that process,
1388 * so that we know how much of its real time was spent
1389 * in ``non-process'' (i.e., interrupt) work.
1390 */
1391 if (CLKF_INTR(frame)) {
1392 if (p != NULL)
1393 p->p_iticks++;
1394 spc->spc_cp_time[CP_INTR]++;
1395 } else if (p != NULL) {
1396 p->p_sticks++;
1397 spc->spc_cp_time[CP_SYS]++;
1398 } else
1399 spc->spc_cp_time[CP_IDLE]++;
1400 }
1401 spc->spc_pscnt = psdiv;
1402
1403 if (p != NULL) {
1404 ++p->p_cpticks;
1405 /*
1406 * If no separate schedclock is provided, call it here
1407 * at ~~12-25 Hz, ~~16 Hz is best
1408 */
1409 if (schedhz == 0)
1410 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1411 schedclock(p);
1412 }
1413 }
1414
1415
1416 #ifdef NTP /* NTP phase-locked loop in kernel */
1417
1418 /*
1419 * hardupdate() - local clock update
1420 *
1421 * This routine is called by ntp_adjtime() to update the local clock
1422 * phase and frequency. The implementation is of an adaptive-parameter,
1423 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1424 * time and frequency offset estimates for each call. If the kernel PPS
1425 * discipline code is configured (PPS_SYNC), the PPS signal itself
1426 * determines the new time offset, instead of the calling argument.
1427 * Presumably, calls to ntp_adjtime() occur only when the caller
1428 * believes the local clock is valid within some bound (+-128 ms with
1429 * NTP). If the caller's time is far different than the PPS time, an
1430 * argument will ensue, and it's not clear who will lose.
1431 *
1432 * For uncompensated quartz crystal oscillatores and nominal update
1433 * intervals less than 1024 s, operation should be in phase-lock mode
1434 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1435 * intervals greater than thiss, operation should be in frequency-lock
1436 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1437 *
1438 * Note: splclock() is in effect.
1439 */
1440 void
1441 hardupdate(long offset)
1442 {
1443 long ltemp, mtemp;
1444
1445 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1446 return;
1447 ltemp = offset;
1448 #ifdef PPS_SYNC
1449 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1450 ltemp = pps_offset;
1451 #endif /* PPS_SYNC */
1452
1453 /*
1454 * Scale the phase adjustment and clamp to the operating range.
1455 */
1456 if (ltemp > MAXPHASE)
1457 time_offset = MAXPHASE << SHIFT_UPDATE;
1458 else if (ltemp < -MAXPHASE)
1459 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1460 else
1461 time_offset = ltemp << SHIFT_UPDATE;
1462
1463 /*
1464 * Select whether the frequency is to be controlled and in which
1465 * mode (PLL or FLL). Clamp to the operating range. Ugly
1466 * multiply/divide should be replaced someday.
1467 */
1468 if (time_status & STA_FREQHOLD || time_reftime == 0)
1469 time_reftime = time.tv_sec;
1470 mtemp = time.tv_sec - time_reftime;
1471 time_reftime = time.tv_sec;
1472 if (time_status & STA_FLL) {
1473 if (mtemp >= MINSEC) {
1474 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1475 SHIFT_UPDATE));
1476 if (ltemp < 0)
1477 time_freq -= -ltemp >> SHIFT_KH;
1478 else
1479 time_freq += ltemp >> SHIFT_KH;
1480 }
1481 } else {
1482 if (mtemp < MAXSEC) {
1483 ltemp *= mtemp;
1484 if (ltemp < 0)
1485 time_freq -= -ltemp >> (time_constant +
1486 time_constant + SHIFT_KF -
1487 SHIFT_USEC);
1488 else
1489 time_freq += ltemp >> (time_constant +
1490 time_constant + SHIFT_KF -
1491 SHIFT_USEC);
1492 }
1493 }
1494 if (time_freq > time_tolerance)
1495 time_freq = time_tolerance;
1496 else if (time_freq < -time_tolerance)
1497 time_freq = -time_tolerance;
1498 }
1499
1500 #ifdef PPS_SYNC
1501 /*
1502 * hardpps() - discipline CPU clock oscillator to external PPS signal
1503 *
1504 * This routine is called at each PPS interrupt in order to discipline
1505 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1506 * and leaves it in a handy spot for the hardclock() routine. It
1507 * integrates successive PPS phase differences and calculates the
1508 * frequency offset. This is used in hardclock() to discipline the CPU
1509 * clock oscillator so that intrinsic frequency error is cancelled out.
1510 * The code requires the caller to capture the time and hardware counter
1511 * value at the on-time PPS signal transition.
1512 *
1513 * Note that, on some Unix systems, this routine runs at an interrupt
1514 * priority level higher than the timer interrupt routine hardclock().
1515 * Therefore, the variables used are distinct from the hardclock()
1516 * variables, except for certain exceptions: The PPS frequency pps_freq
1517 * and phase pps_offset variables are determined by this routine and
1518 * updated atomically. The time_tolerance variable can be considered a
1519 * constant, since it is infrequently changed, and then only when the
1520 * PPS signal is disabled. The watchdog counter pps_valid is updated
1521 * once per second by hardclock() and is atomically cleared in this
1522 * routine.
1523 */
1524 void
1525 hardpps(struct timeval *tvp, /* time at PPS */
1526 long usec /* hardware counter at PPS */)
1527 {
1528 long u_usec, v_usec, bigtick;
1529 long cal_sec, cal_usec;
1530
1531 /*
1532 * An occasional glitch can be produced when the PPS interrupt
1533 * occurs in the hardclock() routine before the time variable is
1534 * updated. Here the offset is discarded when the difference
1535 * between it and the last one is greater than tick/2, but not
1536 * if the interval since the first discard exceeds 30 s.
1537 */
1538 time_status |= STA_PPSSIGNAL;
1539 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1540 pps_valid = 0;
1541 u_usec = -tvp->tv_usec;
1542 if (u_usec < -500000)
1543 u_usec += 1000000;
1544 v_usec = pps_offset - u_usec;
1545 if (v_usec < 0)
1546 v_usec = -v_usec;
1547 if (v_usec > (tick >> 1)) {
1548 if (pps_glitch > MAXGLITCH) {
1549 pps_glitch = 0;
1550 pps_tf[2] = u_usec;
1551 pps_tf[1] = u_usec;
1552 } else {
1553 pps_glitch++;
1554 u_usec = pps_offset;
1555 }
1556 } else
1557 pps_glitch = 0;
1558
1559 /*
1560 * A three-stage median filter is used to help deglitch the pps
1561 * time. The median sample becomes the time offset estimate; the
1562 * difference between the other two samples becomes the time
1563 * dispersion (jitter) estimate.
1564 */
1565 pps_tf[2] = pps_tf[1];
1566 pps_tf[1] = pps_tf[0];
1567 pps_tf[0] = u_usec;
1568 if (pps_tf[0] > pps_tf[1]) {
1569 if (pps_tf[1] > pps_tf[2]) {
1570 pps_offset = pps_tf[1]; /* 0 1 2 */
1571 v_usec = pps_tf[0] - pps_tf[2];
1572 } else if (pps_tf[2] > pps_tf[0]) {
1573 pps_offset = pps_tf[0]; /* 2 0 1 */
1574 v_usec = pps_tf[2] - pps_tf[1];
1575 } else {
1576 pps_offset = pps_tf[2]; /* 0 2 1 */
1577 v_usec = pps_tf[0] - pps_tf[1];
1578 }
1579 } else {
1580 if (pps_tf[1] < pps_tf[2]) {
1581 pps_offset = pps_tf[1]; /* 2 1 0 */
1582 v_usec = pps_tf[2] - pps_tf[0];
1583 } else if (pps_tf[2] < pps_tf[0]) {
1584 pps_offset = pps_tf[0]; /* 1 0 2 */
1585 v_usec = pps_tf[1] - pps_tf[2];
1586 } else {
1587 pps_offset = pps_tf[2]; /* 1 2 0 */
1588 v_usec = pps_tf[1] - pps_tf[0];
1589 }
1590 }
1591 if (v_usec > MAXTIME)
1592 pps_jitcnt++;
1593 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1594 if (v_usec < 0)
1595 pps_jitter -= -v_usec >> PPS_AVG;
1596 else
1597 pps_jitter += v_usec >> PPS_AVG;
1598 if (pps_jitter > (MAXTIME >> 1))
1599 time_status |= STA_PPSJITTER;
1600
1601 /*
1602 * During the calibration interval adjust the starting time when
1603 * the tick overflows. At the end of the interval compute the
1604 * duration of the interval and the difference of the hardware
1605 * counters at the beginning and end of the interval. This code
1606 * is deliciously complicated by the fact valid differences may
1607 * exceed the value of tick when using long calibration
1608 * intervals and small ticks. Note that the counter can be
1609 * greater than tick if caught at just the wrong instant, but
1610 * the values returned and used here are correct.
1611 */
1612 bigtick = (long)tick << SHIFT_USEC;
1613 pps_usec -= pps_freq;
1614 if (pps_usec >= bigtick)
1615 pps_usec -= bigtick;
1616 if (pps_usec < 0)
1617 pps_usec += bigtick;
1618 pps_time.tv_sec++;
1619 pps_count++;
1620 if (pps_count < (1 << pps_shift))
1621 return;
1622 pps_count = 0;
1623 pps_calcnt++;
1624 u_usec = usec << SHIFT_USEC;
1625 v_usec = pps_usec - u_usec;
1626 if (v_usec >= bigtick >> 1)
1627 v_usec -= bigtick;
1628 if (v_usec < -(bigtick >> 1))
1629 v_usec += bigtick;
1630 if (v_usec < 0)
1631 v_usec = -(-v_usec >> pps_shift);
1632 else
1633 v_usec = v_usec >> pps_shift;
1634 pps_usec = u_usec;
1635 cal_sec = tvp->tv_sec;
1636 cal_usec = tvp->tv_usec;
1637 cal_sec -= pps_time.tv_sec;
1638 cal_usec -= pps_time.tv_usec;
1639 if (cal_usec < 0) {
1640 cal_usec += 1000000;
1641 cal_sec--;
1642 }
1643 pps_time = *tvp;
1644
1645 /*
1646 * Check for lost interrupts, noise, excessive jitter and
1647 * excessive frequency error. The number of timer ticks during
1648 * the interval may vary +-1 tick. Add to this a margin of one
1649 * tick for the PPS signal jitter and maximum frequency
1650 * deviation. If the limits are exceeded, the calibration
1651 * interval is reset to the minimum and we start over.
1652 */
1653 u_usec = (long)tick << 1;
1654 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1655 || (cal_sec == 0 && cal_usec < u_usec))
1656 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1657 pps_errcnt++;
1658 pps_shift = PPS_SHIFT;
1659 pps_intcnt = 0;
1660 time_status |= STA_PPSERROR;
1661 return;
1662 }
1663
1664 /*
1665 * A three-stage median filter is used to help deglitch the pps
1666 * frequency. The median sample becomes the frequency offset
1667 * estimate; the difference between the other two samples
1668 * becomes the frequency dispersion (stability) estimate.
1669 */
1670 pps_ff[2] = pps_ff[1];
1671 pps_ff[1] = pps_ff[0];
1672 pps_ff[0] = v_usec;
1673 if (pps_ff[0] > pps_ff[1]) {
1674 if (pps_ff[1] > pps_ff[2]) {
1675 u_usec = pps_ff[1]; /* 0 1 2 */
1676 v_usec = pps_ff[0] - pps_ff[2];
1677 } else if (pps_ff[2] > pps_ff[0]) {
1678 u_usec = pps_ff[0]; /* 2 0 1 */
1679 v_usec = pps_ff[2] - pps_ff[1];
1680 } else {
1681 u_usec = pps_ff[2]; /* 0 2 1 */
1682 v_usec = pps_ff[0] - pps_ff[1];
1683 }
1684 } else {
1685 if (pps_ff[1] < pps_ff[2]) {
1686 u_usec = pps_ff[1]; /* 2 1 0 */
1687 v_usec = pps_ff[2] - pps_ff[0];
1688 } else if (pps_ff[2] < pps_ff[0]) {
1689 u_usec = pps_ff[0]; /* 1 0 2 */
1690 v_usec = pps_ff[1] - pps_ff[2];
1691 } else {
1692 u_usec = pps_ff[2]; /* 1 2 0 */
1693 v_usec = pps_ff[1] - pps_ff[0];
1694 }
1695 }
1696
1697 /*
1698 * Here the frequency dispersion (stability) is updated. If it
1699 * is less than one-fourth the maximum (MAXFREQ), the frequency
1700 * offset is updated as well, but clamped to the tolerance. It
1701 * will be processed later by the hardclock() routine.
1702 */
1703 v_usec = (v_usec >> 1) - pps_stabil;
1704 if (v_usec < 0)
1705 pps_stabil -= -v_usec >> PPS_AVG;
1706 else
1707 pps_stabil += v_usec >> PPS_AVG;
1708 if (pps_stabil > MAXFREQ >> 2) {
1709 pps_stbcnt++;
1710 time_status |= STA_PPSWANDER;
1711 return;
1712 }
1713 if (time_status & STA_PPSFREQ) {
1714 if (u_usec < 0) {
1715 pps_freq -= -u_usec >> PPS_AVG;
1716 if (pps_freq < -time_tolerance)
1717 pps_freq = -time_tolerance;
1718 u_usec = -u_usec;
1719 } else {
1720 pps_freq += u_usec >> PPS_AVG;
1721 if (pps_freq > time_tolerance)
1722 pps_freq = time_tolerance;
1723 }
1724 }
1725
1726 /*
1727 * Here the calibration interval is adjusted. If the maximum
1728 * time difference is greater than tick / 4, reduce the interval
1729 * by half. If this is not the case for four consecutive
1730 * intervals, double the interval.
1731 */
1732 if (u_usec << pps_shift > bigtick >> 2) {
1733 pps_intcnt = 0;
1734 if (pps_shift > PPS_SHIFT)
1735 pps_shift--;
1736 } else if (pps_intcnt >= 4) {
1737 pps_intcnt = 0;
1738 if (pps_shift < PPS_SHIFTMAX)
1739 pps_shift++;
1740 } else
1741 pps_intcnt++;
1742 }
1743 #endif /* PPS_SYNC */
1744 #endif /* NTP */
1745
1746 /*
1747 * Return information about system clocks.
1748 */
1749 int
1750 sysctl_clockrate(void *where, size_t *sizep)
1751 {
1752 struct clockinfo clkinfo;
1753
1754 /*
1755 * Construct clockinfo structure.
1756 */
1757 clkinfo.tick = tick;
1758 clkinfo.tickadj = tickadj;
1759 clkinfo.hz = hz;
1760 clkinfo.profhz = profhz;
1761 clkinfo.stathz = stathz ? stathz : hz;
1762 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1763 }
1764