Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.79.6.1
      1 /*	$NetBSD: kern_clock.c,v 1.79.6.1 2003/10/22 06:06:50 jmc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.79.6.1 2003/10/22 06:06:50 jmc Exp $");
     82 
     83 #include "opt_callout.h"
     84 #include "opt_ntp.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/dkstat.h>
     89 #include <sys/callout.h>
     90 #include <sys/kernel.h>
     91 #include <sys/proc.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/signalvar.h>
     94 #include <sys/sysctl.h>
     95 #include <sys/timex.h>
     96 #include <sys/sched.h>
     97 #ifdef CALLWHEEL_STATS
     98 #include <sys/device.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    103 #include <machine/intr.h>
    104 #endif
    105 
    106 #ifdef GPROF
    107 #include <sys/gmon.h>
    108 #endif
    109 
    110 /*
    111  * Clock handling routines.
    112  *
    113  * This code is written to operate with two timers that run independently of
    114  * each other.  The main clock, running hz times per second, is used to keep
    115  * track of real time.  The second timer handles kernel and user profiling,
    116  * and does resource use estimation.  If the second timer is programmable,
    117  * it is randomized to avoid aliasing between the two clocks.  For example,
    118  * the randomization prevents an adversary from always giving up the cpu
    119  * just before its quantum expires.  Otherwise, it would never accumulate
    120  * cpu ticks.  The mean frequency of the second timer is stathz.
    121  *
    122  * If no second timer exists, stathz will be zero; in this case we drive
    123  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    124  * do not do it unless absolutely necessary.
    125  *
    126  * The statistics clock may (or may not) be run at a higher rate while
    127  * profiling.  This profile clock runs at profhz.  We require that profhz
    128  * be an integral multiple of stathz.
    129  *
    130  * If the statistics clock is running fast, it must be divided by the ratio
    131  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    132  */
    133 
    134 #ifdef NTP	/* NTP phase-locked loop in kernel */
    135 /*
    136  * Phase/frequency-lock loop (PLL/FLL) definitions
    137  *
    138  * The following variables are read and set by the ntp_adjtime() system
    139  * call.
    140  *
    141  * time_state shows the state of the system clock, with values defined
    142  * in the timex.h header file.
    143  *
    144  * time_status shows the status of the system clock, with bits defined
    145  * in the timex.h header file.
    146  *
    147  * time_offset is used by the PLL/FLL to adjust the system time in small
    148  * increments.
    149  *
    150  * time_constant determines the bandwidth or "stiffness" of the PLL.
    151  *
    152  * time_tolerance determines maximum frequency error or tolerance of the
    153  * CPU clock oscillator and is a property of the architecture; however,
    154  * in principle it could change as result of the presence of external
    155  * discipline signals, for instance.
    156  *
    157  * time_precision is usually equal to the kernel tick variable; however,
    158  * in cases where a precision clock counter or external clock is
    159  * available, the resolution can be much less than this and depend on
    160  * whether the external clock is working or not.
    161  *
    162  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    163  * the kernel once each second to reflect the maximum error bound
    164  * growth.
    165  *
    166  * time_esterror is set and read by the ntp_adjtime() call, but
    167  * otherwise not used by the kernel.
    168  */
    169 int time_state = TIME_OK;	/* clock state */
    170 int time_status = STA_UNSYNC;	/* clock status bits */
    171 long time_offset = 0;		/* time offset (us) */
    172 long time_constant = 0;		/* pll time constant */
    173 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    174 long time_precision = 1;	/* clock precision (us) */
    175 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    176 long time_esterror = MAXPHASE;	/* estimated error (us) */
    177 
    178 /*
    179  * The following variables establish the state of the PLL/FLL and the
    180  * residual time and frequency offset of the local clock. The scale
    181  * factors are defined in the timex.h header file.
    182  *
    183  * time_phase and time_freq are the phase increment and the frequency
    184  * increment, respectively, of the kernel time variable.
    185  *
    186  * time_freq is set via ntp_adjtime() from a value stored in a file when
    187  * the synchronization daemon is first started. Its value is retrieved
    188  * via ntp_adjtime() and written to the file about once per hour by the
    189  * daemon.
    190  *
    191  * time_adj is the adjustment added to the value of tick at each timer
    192  * interrupt and is recomputed from time_phase and time_freq at each
    193  * seconds rollover.
    194  *
    195  * time_reftime is the second's portion of the system time at the last
    196  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    197  * and to increase the time_maxerror as the time since last update
    198  * increases.
    199  */
    200 long time_phase = 0;		/* phase offset (scaled us) */
    201 long time_freq = 0;		/* frequency offset (scaled ppm) */
    202 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    203 long time_reftime = 0;		/* time at last adjustment (s) */
    204 
    205 #ifdef PPS_SYNC
    206 /*
    207  * The following variables are used only if the kernel PPS discipline
    208  * code is configured (PPS_SYNC). The scale factors are defined in the
    209  * timex.h header file.
    210  *
    211  * pps_time contains the time at each calibration interval, as read by
    212  * microtime(). pps_count counts the seconds of the calibration
    213  * interval, the duration of which is nominally pps_shift in powers of
    214  * two.
    215  *
    216  * pps_offset is the time offset produced by the time median filter
    217  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    218  * this filter.
    219  *
    220  * pps_freq is the frequency offset produced by the frequency median
    221  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    222  * by this filter.
    223  *
    224  * pps_usec is latched from a high resolution counter or external clock
    225  * at pps_time. Here we want the hardware counter contents only, not the
    226  * contents plus the time_tv.usec as usual.
    227  *
    228  * pps_valid counts the number of seconds since the last PPS update. It
    229  * is used as a watchdog timer to disable the PPS discipline should the
    230  * PPS signal be lost.
    231  *
    232  * pps_glitch counts the number of seconds since the beginning of an
    233  * offset burst more than tick/2 from current nominal offset. It is used
    234  * mainly to suppress error bursts due to priority conflicts between the
    235  * PPS interrupt and timer interrupt.
    236  *
    237  * pps_intcnt counts the calibration intervals for use in the interval-
    238  * adaptation algorithm. It's just too complicated for words.
    239  */
    240 struct timeval pps_time;	/* kernel time at last interval */
    241 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    242 long pps_offset = 0;		/* pps time offset (us) */
    243 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    244 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    245 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    246 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    247 long pps_usec = 0;		/* microsec counter at last interval */
    248 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    249 int pps_glitch = 0;		/* pps signal glitch counter */
    250 int pps_count = 0;		/* calibration interval counter (s) */
    251 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    252 int pps_intcnt = 0;		/* intervals at current duration */
    253 
    254 /*
    255  * PPS signal quality monitors
    256  *
    257  * pps_jitcnt counts the seconds that have been discarded because the
    258  * jitter measured by the time median filter exceeds the limit MAXTIME
    259  * (100 us).
    260  *
    261  * pps_calcnt counts the frequency calibration intervals, which are
    262  * variable from 4 s to 256 s.
    263  *
    264  * pps_errcnt counts the calibration intervals which have been discarded
    265  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    266  * calibration interval jitter exceeds two ticks.
    267  *
    268  * pps_stbcnt counts the calibration intervals that have been discarded
    269  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    270  */
    271 long pps_jitcnt = 0;		/* jitter limit exceeded */
    272 long pps_calcnt = 0;		/* calibration intervals */
    273 long pps_errcnt = 0;		/* calibration errors */
    274 long pps_stbcnt = 0;		/* stability limit exceeded */
    275 #endif /* PPS_SYNC */
    276 
    277 #ifdef EXT_CLOCK
    278 /*
    279  * External clock definitions
    280  *
    281  * The following definitions and declarations are used only if an
    282  * external clock is configured on the system.
    283  */
    284 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    285 
    286 /*
    287  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    288  * interrupt and decremented once each second.
    289  */
    290 int clock_count = 0;		/* CPU clock counter */
    291 
    292 #ifdef HIGHBALL
    293 /*
    294  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    295  * interface. The clock_offset variable defines the offset between
    296  * system time and the HIGBALL counters. The clock_cpu variable contains
    297  * the offset between the system clock and the HIGHBALL clock for use in
    298  * disciplining the kernel time variable.
    299  */
    300 extern struct timeval clock_offset; /* Highball clock offset */
    301 long clock_cpu = 0;		/* CPU clock adjust */
    302 #endif /* HIGHBALL */
    303 #endif /* EXT_CLOCK */
    304 #endif /* NTP */
    305 
    306 
    307 /*
    308  * Bump a timeval by a small number of usec's.
    309  */
    310 #define BUMPTIME(t, usec) { \
    311 	volatile struct timeval *tp = (t); \
    312 	long us; \
    313  \
    314 	tp->tv_usec = us = tp->tv_usec + (usec); \
    315 	if (us >= 1000000) { \
    316 		tp->tv_usec = us - 1000000; \
    317 		tp->tv_sec++; \
    318 	} \
    319 }
    320 
    321 int	stathz;
    322 int	profhz;
    323 int	schedhz;
    324 int	profprocs;
    325 int	softclock_running;		/* 1 => softclock() is running */
    326 static int psdiv;			/* prof => stat divider */
    327 int	psratio;			/* ratio: prof / stat */
    328 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    329 #ifndef NTP
    330 static int tickfixcnt;			/* accumulated fractional error */
    331 #else
    332 int	fixtick;			/* used by NTP for same */
    333 int	shifthz;
    334 #endif
    335 
    336 /*
    337  * We might want ldd to load the both words from time at once.
    338  * To succeed we need to be quadword aligned.
    339  * The sparc already does that, and that it has worked so far is a fluke.
    340  */
    341 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    342 volatile struct	timeval mono_time;
    343 
    344 /*
    345  * The callout mechanism is based on the work of Adam M. Costello and
    346  * George Varghese, published in a technical report entitled "Redesigning
    347  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
    348  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
    349  *
    350  * The original work on the data structures used in this implementation
    351  * was published by G. Varghese and A. Lauck in the paper "Hashed and
    352  * Hierarchical Timing Wheels: Data Structures for the Efficient
    353  * Implementation of a Timer Facility" in the Proceedings of the 11th
    354  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
    355  * November 1987.
    356  */
    357 struct callout_queue *callwheel;
    358 int	callwheelsize, callwheelbits, callwheelmask;
    359 
    360 static struct callout *nextsoftcheck;	/* next callout to be checked */
    361 
    362 #ifdef CALLWHEEL_STATS
    363 int	     *callwheel_sizes;		/* per-bucket length count */
    364 struct evcnt callwheel_collisions;	/* number of hash collisions */
    365 struct evcnt callwheel_maxlength;	/* length of the longest hash chain */
    366 struct evcnt callwheel_count;		/* # callouts currently */
    367 struct evcnt callwheel_established;	/* # callouts established */
    368 struct evcnt callwheel_fired;		/* # callouts that fired */
    369 struct evcnt callwheel_disestablished;	/* # callouts disestablished */
    370 struct evcnt callwheel_changed;		/* # callouts changed */
    371 struct evcnt callwheel_softclocks;	/* # times softclock() called */
    372 struct evcnt callwheel_softchecks;	/* # checks per softclock() */
    373 struct evcnt callwheel_softempty;	/* # empty buckets seen */
    374 struct evcnt callwheel_hintworked;	/* # times hint saved scan */
    375 #endif /* CALLWHEEL_STATS */
    376 
    377 /*
    378  * This value indicates the number of consecutive callouts that
    379  * will be checked before we allow interrupts to have a chance
    380  * again.
    381  */
    382 #ifndef MAX_SOFTCLOCK_STEPS
    383 #define	MAX_SOFTCLOCK_STEPS	100
    384 #endif
    385 
    386 struct simplelock callwheel_slock;
    387 
    388 #define	CALLWHEEL_LOCK(s)						\
    389 do {									\
    390 	s = splclock();							\
    391 	simple_lock(&callwheel_slock);					\
    392 } while (0)
    393 
    394 #define	CALLWHEEL_UNLOCK(s)						\
    395 do {									\
    396 	simple_unlock(&callwheel_slock);				\
    397 	splx(s);							\
    398 } while (0)
    399 
    400 static void callout_stop_locked(struct callout *);
    401 
    402 /*
    403  * These are both protected by callwheel_lock.
    404  * XXX SHOULD BE STATIC!!
    405  */
    406 u_int64_t hardclock_ticks, softclock_ticks;
    407 
    408 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    409 void	softclock(void *);
    410 void	*softclock_si;
    411 #endif
    412 
    413 /*
    414  * Initialize clock frequencies and start both clocks running.
    415  */
    416 void
    417 initclocks(void)
    418 {
    419 	int i;
    420 
    421 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    422 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    423 	if (softclock_si == NULL)
    424 		panic("initclocks: unable to register softclock intr");
    425 #endif
    426 
    427 	/*
    428 	 * Set divisors to 1 (normal case) and let the machine-specific
    429 	 * code do its bit.
    430 	 */
    431 	psdiv = 1;
    432 	cpu_initclocks();
    433 
    434 	/*
    435 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    436 	 */
    437 	i = stathz ? stathz : hz;
    438 	if (profhz == 0)
    439 		profhz = i;
    440 	psratio = profhz / i;
    441 	rrticks = hz / 10;
    442 
    443 #ifdef NTP
    444 	switch (hz) {
    445 	case 1:
    446 		shifthz = SHIFT_SCALE - 0;
    447 		break;
    448 	case 2:
    449 		shifthz = SHIFT_SCALE - 1;
    450 		break;
    451 	case 4:
    452 		shifthz = SHIFT_SCALE - 2;
    453 		break;
    454 	case 8:
    455 		shifthz = SHIFT_SCALE - 3;
    456 		break;
    457 	case 16:
    458 		shifthz = SHIFT_SCALE - 4;
    459 		break;
    460 	case 32:
    461 		shifthz = SHIFT_SCALE - 5;
    462 		break;
    463 	case 60:
    464 	case 64:
    465 		shifthz = SHIFT_SCALE - 6;
    466 		break;
    467 	case 96:
    468 	case 100:
    469 	case 128:
    470 		shifthz = SHIFT_SCALE - 7;
    471 		break;
    472 	case 256:
    473 		shifthz = SHIFT_SCALE - 8;
    474 		break;
    475 	case 512:
    476 		shifthz = SHIFT_SCALE - 9;
    477 		break;
    478 	case 1000:
    479 	case 1024:
    480 		shifthz = SHIFT_SCALE - 10;
    481 		break;
    482 	case 1200:
    483 	case 2048:
    484 		shifthz = SHIFT_SCALE - 11;
    485 		break;
    486 	case 4096:
    487 		shifthz = SHIFT_SCALE - 12;
    488 		break;
    489 	case 8192:
    490 		shifthz = SHIFT_SCALE - 13;
    491 		break;
    492 	case 16384:
    493 		shifthz = SHIFT_SCALE - 14;
    494 		break;
    495 	case 32768:
    496 		shifthz = SHIFT_SCALE - 15;
    497 		break;
    498 	case 65536:
    499 		shifthz = SHIFT_SCALE - 16;
    500 		break;
    501 	default:
    502 		panic("weird hz");
    503 	}
    504 	if (fixtick == 0) {
    505 		/*
    506 		 * Give MD code a chance to set this to a better
    507 		 * value; but, if it doesn't, we should.
    508 		 */
    509 		fixtick = (1000000 - (hz*tick));
    510 	}
    511 #endif
    512 }
    513 
    514 /*
    515  * The real-time timer, interrupting hz times per second.
    516  */
    517 void
    518 hardclock(struct clockframe *frame)
    519 {
    520 	struct proc *p;
    521 	int delta;
    522 	extern int tickdelta;
    523 	extern long timedelta;
    524 	struct cpu_info *ci = curcpu();
    525 #ifdef NTP
    526 	int time_update;
    527 	int ltemp;
    528 #endif
    529 
    530 	p = curproc;
    531 	if (p) {
    532 		struct pstats *pstats;
    533 
    534 		/*
    535 		 * Run current process's virtual and profile time, as needed.
    536 		 */
    537 		pstats = p->p_stats;
    538 		if (CLKF_USERMODE(frame) &&
    539 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    540 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    541 			psignal(p, SIGVTALRM);
    542 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    543 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    544 			psignal(p, SIGPROF);
    545 	}
    546 
    547 	/*
    548 	 * If no separate statistics clock is available, run it from here.
    549 	 */
    550 	if (stathz == 0)
    551 		statclock(frame);
    552 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    553 		roundrobin(ci);
    554 
    555 #if defined(MULTIPROCESSOR)
    556 	/*
    557 	 * If we are not the primary CPU, we're not allowed to do
    558 	 * any more work.
    559 	 */
    560 	if (CPU_IS_PRIMARY(ci) == 0)
    561 		return;
    562 #endif
    563 
    564 	/*
    565 	 * Increment the time-of-day.  The increment is normally just
    566 	 * ``tick''.  If the machine is one which has a clock frequency
    567 	 * such that ``hz'' would not divide the second evenly into
    568 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    569 	 * if we are still adjusting the time (see adjtime()),
    570 	 * ``tickdelta'' may also be added in.
    571 	 */
    572 	delta = tick;
    573 
    574 #ifndef NTP
    575 	if (tickfix) {
    576 		tickfixcnt += tickfix;
    577 		if (tickfixcnt >= tickfixinterval) {
    578 			delta++;
    579 			tickfixcnt -= tickfixinterval;
    580 		}
    581 	}
    582 #endif /* !NTP */
    583 	/* Imprecise 4bsd adjtime() handling */
    584 	if (timedelta != 0) {
    585 		delta += tickdelta;
    586 		timedelta -= tickdelta;
    587 	}
    588 
    589 #ifdef notyet
    590 	microset();
    591 #endif
    592 
    593 #ifndef NTP
    594 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    595 #endif
    596 	BUMPTIME(&mono_time, delta);
    597 
    598 #ifdef NTP
    599 	time_update = delta;
    600 
    601 	/*
    602 	 * Compute the phase adjustment. If the low-order bits
    603 	 * (time_phase) of the update overflow, bump the high-order bits
    604 	 * (time_update).
    605 	 */
    606 	time_phase += time_adj;
    607 	if (time_phase <= -FINEUSEC) {
    608 		ltemp = -time_phase >> SHIFT_SCALE;
    609 		time_phase += ltemp << SHIFT_SCALE;
    610 		time_update -= ltemp;
    611 	} else if (time_phase >= FINEUSEC) {
    612 		ltemp = time_phase >> SHIFT_SCALE;
    613 		time_phase -= ltemp << SHIFT_SCALE;
    614 		time_update += ltemp;
    615 	}
    616 
    617 #ifdef HIGHBALL
    618 	/*
    619 	 * If the HIGHBALL board is installed, we need to adjust the
    620 	 * external clock offset in order to close the hardware feedback
    621 	 * loop. This will adjust the external clock phase and frequency
    622 	 * in small amounts. The additional phase noise and frequency
    623 	 * wander this causes should be minimal. We also need to
    624 	 * discipline the kernel time variable, since the PLL is used to
    625 	 * discipline the external clock. If the Highball board is not
    626 	 * present, we discipline kernel time with the PLL as usual. We
    627 	 * assume that the external clock phase adjustment (time_update)
    628 	 * and kernel phase adjustment (clock_cpu) are less than the
    629 	 * value of tick.
    630 	 */
    631 	clock_offset.tv_usec += time_update;
    632 	if (clock_offset.tv_usec >= 1000000) {
    633 		clock_offset.tv_sec++;
    634 		clock_offset.tv_usec -= 1000000;
    635 	}
    636 	if (clock_offset.tv_usec < 0) {
    637 		clock_offset.tv_sec--;
    638 		clock_offset.tv_usec += 1000000;
    639 	}
    640 	time.tv_usec += clock_cpu;
    641 	clock_cpu = 0;
    642 #else
    643 	time.tv_usec += time_update;
    644 #endif /* HIGHBALL */
    645 
    646 	/*
    647 	 * On rollover of the second the phase adjustment to be used for
    648 	 * the next second is calculated. Also, the maximum error is
    649 	 * increased by the tolerance. If the PPS frequency discipline
    650 	 * code is present, the phase is increased to compensate for the
    651 	 * CPU clock oscillator frequency error.
    652 	 *
    653  	 * On a 32-bit machine and given parameters in the timex.h
    654 	 * header file, the maximum phase adjustment is +-512 ms and
    655 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    656 	 * 64-bit machine, you shouldn't need to ask.
    657 	 */
    658 	if (time.tv_usec >= 1000000) {
    659 		time.tv_usec -= 1000000;
    660 		time.tv_sec++;
    661 		time_maxerror += time_tolerance >> SHIFT_USEC;
    662 
    663 		/*
    664 		 * Leap second processing. If in leap-insert state at
    665 		 * the end of the day, the system clock is set back one
    666 		 * second; if in leap-delete state, the system clock is
    667 		 * set ahead one second. The microtime() routine or
    668 		 * external clock driver will insure that reported time
    669 		 * is always monotonic. The ugly divides should be
    670 		 * replaced.
    671 		 */
    672 		switch (time_state) {
    673 		case TIME_OK:
    674 			if (time_status & STA_INS)
    675 				time_state = TIME_INS;
    676 			else if (time_status & STA_DEL)
    677 				time_state = TIME_DEL;
    678 			break;
    679 
    680 		case TIME_INS:
    681 			if (time.tv_sec % 86400 == 0) {
    682 				time.tv_sec--;
    683 				time_state = TIME_OOP;
    684 			}
    685 			break;
    686 
    687 		case TIME_DEL:
    688 			if ((time.tv_sec + 1) % 86400 == 0) {
    689 				time.tv_sec++;
    690 				time_state = TIME_WAIT;
    691 			}
    692 			break;
    693 
    694 		case TIME_OOP:
    695 			time_state = TIME_WAIT;
    696 			break;
    697 
    698 		case TIME_WAIT:
    699 			if (!(time_status & (STA_INS | STA_DEL)))
    700 				time_state = TIME_OK;
    701 			break;
    702 		}
    703 
    704 		/*
    705 		 * Compute the phase adjustment for the next second. In
    706 		 * PLL mode, the offset is reduced by a fixed factor
    707 		 * times the time constant. In FLL mode the offset is
    708 		 * used directly. In either mode, the maximum phase
    709 		 * adjustment for each second is clamped so as to spread
    710 		 * the adjustment over not more than the number of
    711 		 * seconds between updates.
    712 		 */
    713 		if (time_offset < 0) {
    714 			ltemp = -time_offset;
    715 			if (!(time_status & STA_FLL))
    716 				ltemp >>= SHIFT_KG + time_constant;
    717 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    718 				ltemp = (MAXPHASE / MINSEC) <<
    719 				    SHIFT_UPDATE;
    720 			time_offset += ltemp;
    721 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    722 		} else if (time_offset > 0) {
    723 			ltemp = time_offset;
    724 			if (!(time_status & STA_FLL))
    725 				ltemp >>= SHIFT_KG + time_constant;
    726 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    727 				ltemp = (MAXPHASE / MINSEC) <<
    728 				    SHIFT_UPDATE;
    729 			time_offset -= ltemp;
    730 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    731 		} else
    732 			time_adj = 0;
    733 
    734 		/*
    735 		 * Compute the frequency estimate and additional phase
    736 		 * adjustment due to frequency error for the next
    737 		 * second. When the PPS signal is engaged, gnaw on the
    738 		 * watchdog counter and update the frequency computed by
    739 		 * the pll and the PPS signal.
    740 		 */
    741 #ifdef PPS_SYNC
    742 		pps_valid++;
    743 		if (pps_valid == PPS_VALID) {
    744 			pps_jitter = MAXTIME;
    745 			pps_stabil = MAXFREQ;
    746 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    747 			    STA_PPSWANDER | STA_PPSERROR);
    748 		}
    749 		ltemp = time_freq + pps_freq;
    750 #else
    751 		ltemp = time_freq;
    752 #endif /* PPS_SYNC */
    753 
    754 		if (ltemp < 0)
    755 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    756 		else
    757 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    758 		time_adj += (long)fixtick << shifthz;
    759 
    760 		/*
    761 		 * When the CPU clock oscillator frequency is not a
    762 		 * power of 2 in Hz, shifthz is only an approximate
    763 		 * scale factor.
    764 		 *
    765 		 * To determine the adjustment, you can do the following:
    766 		 *   bc -q
    767 		 *   scale=24
    768 		 *   obase=2
    769 		 *   idealhz/realhz
    770 		 * where `idealhz' is the next higher power of 2, and `realhz'
    771 		 * is the actual value.  You may need to factor this result
    772 		 * into a sequence of 2 multipliers to get better precision.
    773 		 *
    774 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    775 		 *   bc -q
    776 		 *   scale=24
    777 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    778 		 * (and then multiply by 1000000 to get ppm).
    779 		 */
    780 		switch (hz) {
    781 		case 60:
    782 			/* A factor of 1.000100010001 gives about 15ppm
    783 			   error. */
    784 			if (time_adj < 0) {
    785 				time_adj -= (-time_adj >> 4);
    786 				time_adj -= (-time_adj >> 8);
    787 			} else {
    788 				time_adj += (time_adj >> 4);
    789 				time_adj += (time_adj >> 8);
    790 			}
    791 			break;
    792 
    793 		case 96:
    794 			/* A factor of 1.0101010101 gives about 244ppm error. */
    795 			if (time_adj < 0) {
    796 				time_adj -= (-time_adj >> 2);
    797 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    798 			} else {
    799 				time_adj += (time_adj >> 2);
    800 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    801 			}
    802 			break;
    803 
    804 		case 100:
    805 			/* A factor of 1.010001111010111 gives about 1ppm
    806 			   error. */
    807 			if (time_adj < 0) {
    808 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    809 				time_adj += (-time_adj >> 10);
    810 			} else {
    811 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    812 				time_adj -= (time_adj >> 10);
    813 			}
    814 			break;
    815 
    816 		case 1000:
    817 			/* A factor of 1.000001100010100001 gives about 50ppm
    818 			   error. */
    819 			if (time_adj < 0) {
    820 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    821 				time_adj -= (-time_adj >> 7);
    822 			} else {
    823 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    824 				time_adj += (time_adj >> 7);
    825 			}
    826 			break;
    827 
    828 		case 1200:
    829 			/* A factor of 1.1011010011100001 gives about 64ppm
    830 			   error. */
    831 			if (time_adj < 0) {
    832 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    833 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    834 			} else {
    835 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    836 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    837 			}
    838 			break;
    839 		}
    840 
    841 #ifdef EXT_CLOCK
    842 		/*
    843 		 * If an external clock is present, it is necessary to
    844 		 * discipline the kernel time variable anyway, since not
    845 		 * all system components use the microtime() interface.
    846 		 * Here, the time offset between the external clock and
    847 		 * kernel time variable is computed every so often.
    848 		 */
    849 		clock_count++;
    850 		if (clock_count > CLOCK_INTERVAL) {
    851 			clock_count = 0;
    852 			microtime(&clock_ext);
    853 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    854 			delta.tv_usec = clock_ext.tv_usec -
    855 			    time.tv_usec;
    856 			if (delta.tv_usec < 0)
    857 				delta.tv_sec--;
    858 			if (delta.tv_usec >= 500000) {
    859 				delta.tv_usec -= 1000000;
    860 				delta.tv_sec++;
    861 			}
    862 			if (delta.tv_usec < -500000) {
    863 				delta.tv_usec += 1000000;
    864 				delta.tv_sec--;
    865 			}
    866 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    867 			    delta.tv_usec > MAXPHASE) ||
    868 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    869 			    delta.tv_usec < -MAXPHASE)) {
    870 				time = clock_ext;
    871 				delta.tv_sec = 0;
    872 				delta.tv_usec = 0;
    873 			}
    874 #ifdef HIGHBALL
    875 			clock_cpu = delta.tv_usec;
    876 #else /* HIGHBALL */
    877 			hardupdate(delta.tv_usec);
    878 #endif /* HIGHBALL */
    879 		}
    880 #endif /* EXT_CLOCK */
    881 	}
    882 
    883 #endif /* NTP */
    884 
    885 	/*
    886 	 * Process callouts at a very low cpu priority, so we don't keep the
    887 	 * relatively high clock interrupt priority any longer than necessary.
    888 	 */
    889 	simple_lock(&callwheel_slock);	/* already at splclock() */
    890 	hardclock_ticks++;
    891 	if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
    892 		simple_unlock(&callwheel_slock);
    893 		if (CLKF_BASEPRI(frame)) {
    894 			/*
    895 			 * Save the overhead of a software interrupt;
    896 			 * it will happen as soon as we return, so do
    897 			 * it now.
    898 			 *
    899 			 * NOTE: If we're at ``base priority'', softclock()
    900 			 * was not already running.
    901 			 */
    902 			spllowersoftclock();
    903 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    904 			softclock(NULL);
    905 			KERNEL_UNLOCK();
    906 		} else {
    907 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    908 			softintr_schedule(softclock_si);
    909 #else
    910 			setsoftclock();
    911 #endif
    912 		}
    913 		return;
    914 	} else if (softclock_running == 0 &&
    915 		   (softclock_ticks + 1) == hardclock_ticks) {
    916 		softclock_ticks++;
    917 	}
    918 	simple_unlock(&callwheel_slock);
    919 }
    920 
    921 /*
    922  * Software (low priority) clock interrupt.
    923  * Run periodic events from timeout queue.
    924  */
    925 /*ARGSUSED*/
    926 void
    927 softclock(void *v)
    928 {
    929 	struct callout_queue *bucket;
    930 	struct callout *c;
    931 	void (*func)(void *);
    932 	void *arg;
    933 	int s, idx;
    934 	int steps = 0;
    935 
    936 	CALLWHEEL_LOCK(s);
    937 
    938 	softclock_running = 1;
    939 
    940 #ifdef CALLWHEEL_STATS
    941 	callwheel_softclocks.ev_count++;
    942 #endif
    943 
    944 	while (softclock_ticks != hardclock_ticks) {
    945 		softclock_ticks++;
    946 		idx = (int)(softclock_ticks & callwheelmask);
    947 		bucket = &callwheel[idx];
    948 		c = TAILQ_FIRST(&bucket->cq_q);
    949 		if (c == NULL) {
    950 #ifdef CALLWHEEL_STATS
    951 			callwheel_softempty.ev_count++;
    952 #endif
    953 			continue;
    954 		}
    955 		if (softclock_ticks < bucket->cq_hint) {
    956 #ifdef CALLWHEEL_STATS
    957 			callwheel_hintworked.ev_count++;
    958 #endif
    959 			continue;
    960 		}
    961 		bucket->cq_hint = UQUAD_MAX;
    962 		while (c != NULL) {
    963 #ifdef CALLWHEEL_STATS
    964 			callwheel_softchecks.ev_count++;
    965 #endif
    966 			if (c->c_time != softclock_ticks) {
    967 				if (c->c_time < bucket->cq_hint)
    968 					bucket->cq_hint = c->c_time;
    969 				c = TAILQ_NEXT(c, c_link);
    970 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
    971 					nextsoftcheck = c;
    972 					/* Give interrupts a chance. */
    973 					CALLWHEEL_UNLOCK(s);
    974 					CALLWHEEL_LOCK(s);
    975 					c = nextsoftcheck;
    976 					steps = 0;
    977 				}
    978 			} else {
    979 				nextsoftcheck = TAILQ_NEXT(c, c_link);
    980 				TAILQ_REMOVE(&bucket->cq_q, c, c_link);
    981 #ifdef CALLWHEEL_STATS
    982 				callwheel_sizes[idx]--;
    983 				callwheel_fired.ev_count++;
    984 				callwheel_count.ev_count--;
    985 #endif
    986 				func = c->c_func;
    987 				arg = c->c_arg;
    988 				c->c_func = NULL;
    989 				c->c_flags &= ~CALLOUT_PENDING;
    990 				c->c_flags |= CALLOUT_INVOKING;
    991 				CALLWHEEL_UNLOCK(s);
    992 				(*func)(arg);
    993 				CALLWHEEL_LOCK(s);
    994 				steps = 0;
    995 				c = nextsoftcheck;
    996 			}
    997 		}
    998 		if (TAILQ_EMPTY(&bucket->cq_q))
    999 			bucket->cq_hint = UQUAD_MAX;
   1000 	}
   1001 	nextsoftcheck = NULL;
   1002 	softclock_running = 0;
   1003 	CALLWHEEL_UNLOCK(s);
   1004 }
   1005 
   1006 /*
   1007  * callout_setsize:
   1008  *
   1009  *	Determine how many callwheels are necessary and
   1010  *	set hash mask.  Called from allocsys().
   1011  */
   1012 void
   1013 callout_setsize(void)
   1014 {
   1015 
   1016 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
   1017 		/* loop */ ;
   1018 	callwheelmask = callwheelsize - 1;
   1019 }
   1020 
   1021 /*
   1022  * callout_startup:
   1023  *
   1024  *	Initialize the callwheel buckets.
   1025  */
   1026 void
   1027 callout_startup(void)
   1028 {
   1029 	int i;
   1030 
   1031 	for (i = 0; i < callwheelsize; i++) {
   1032 		callwheel[i].cq_hint = UQUAD_MAX;
   1033 		TAILQ_INIT(&callwheel[i].cq_q);
   1034 	}
   1035 
   1036 	simple_lock_init(&callwheel_slock);
   1037 
   1038 #ifdef CALLWHEEL_STATS
   1039 	evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
   1040 	    NULL, "callwheel", "collisions");
   1041 	evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
   1042 	    NULL, "callwheel", "maxlength");
   1043 	evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
   1044 	    NULL, "callwheel", "count");
   1045 	evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
   1046 	    NULL, "callwheel", "established");
   1047 	evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
   1048 	    NULL, "callwheel", "fired");
   1049 	evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
   1050 	    NULL, "callwheel", "disestablished");
   1051 	evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
   1052 	    NULL, "callwheel", "changed");
   1053 	evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
   1054 	    NULL, "callwheel", "softclocks");
   1055 	evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
   1056 	    NULL, "callwheel", "softempty");
   1057 	evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
   1058 	    NULL, "callwheel", "hintworked");
   1059 #endif /* CALLWHEEL_STATS */
   1060 }
   1061 
   1062 /*
   1063  * callout_init:
   1064  *
   1065  *	Initialize a callout structure so that it can be used
   1066  *	by callout_reset() and callout_stop().
   1067  */
   1068 void
   1069 callout_init(struct callout *c)
   1070 {
   1071 
   1072 	memset(c, 0, sizeof(*c));
   1073 }
   1074 
   1075 /*
   1076  * callout_reset:
   1077  *
   1078  *	Establish or change a timeout.
   1079  */
   1080 void
   1081 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
   1082 {
   1083 	struct callout_queue *bucket;
   1084 	int s;
   1085 
   1086 	if (ticks <= 0)
   1087 		ticks = 1;
   1088 
   1089 	CALLWHEEL_LOCK(s);
   1090 
   1091 	/*
   1092 	 * If this callout's timer is already running, cancel it
   1093 	 * before we modify it.
   1094 	 */
   1095 	if (c->c_flags & CALLOUT_PENDING) {
   1096 		callout_stop_locked(c);	/* Already locked */
   1097 #ifdef CALLWHEEL_STATS
   1098 		callwheel_changed.ev_count++;
   1099 #endif
   1100 	}
   1101 
   1102 	c->c_arg = arg;
   1103 	c->c_func = func;
   1104 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
   1105 	c->c_time = hardclock_ticks + ticks;
   1106 
   1107 	bucket = &callwheel[c->c_time & callwheelmask];
   1108 
   1109 #ifdef CALLWHEEL_STATS
   1110 	if (! TAILQ_EMPTY(&bucket->cq_q))
   1111 		callwheel_collisions.ev_count++;
   1112 #endif
   1113 
   1114 	TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
   1115 	if (c->c_time < bucket->cq_hint)
   1116 		bucket->cq_hint = c->c_time;
   1117 
   1118 #ifdef CALLWHEEL_STATS
   1119 	callwheel_count.ev_count++;
   1120 	callwheel_established.ev_count++;
   1121 	if (++callwheel_sizes[c->c_time & callwheelmask] >
   1122 	    callwheel_maxlength.ev_count)
   1123 		callwheel_maxlength.ev_count =
   1124 		    callwheel_sizes[c->c_time & callwheelmask];
   1125 #endif
   1126 
   1127 	CALLWHEEL_UNLOCK(s);
   1128 }
   1129 
   1130 /*
   1131  * callout_stop_locked:
   1132  *
   1133  *	Disestablish a timeout.  Callwheel is locked.
   1134  */
   1135 static void
   1136 callout_stop_locked(struct callout *c)
   1137 {
   1138 	struct callout_queue *bucket;
   1139 
   1140 	/*
   1141 	 * Don't attempt to delete a callout that's not on the queue.
   1142 	 */
   1143 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
   1144 		c->c_flags &= ~CALLOUT_ACTIVE;
   1145 		return;
   1146 	}
   1147 
   1148 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
   1149 
   1150 	if (nextsoftcheck == c)
   1151 		nextsoftcheck = TAILQ_NEXT(c, c_link);
   1152 
   1153 	bucket = &callwheel[c->c_time & callwheelmask];
   1154 	TAILQ_REMOVE(&bucket->cq_q, c, c_link);
   1155 	if (TAILQ_EMPTY(&bucket->cq_q))
   1156 		bucket->cq_hint = UQUAD_MAX;
   1157 #ifdef CALLWHEEL_STATS
   1158 	callwheel_count.ev_count--;
   1159 	callwheel_disestablished.ev_count++;
   1160 	callwheel_sizes[c->c_time & callwheelmask]--;
   1161 #endif
   1162 
   1163 	c->c_func = NULL;
   1164 }
   1165 
   1166 /*
   1167  * callout_stop:
   1168  *
   1169  *	Disestablish a timeout.  Callwheel is unlocked.  This is
   1170  *	the standard entry point.
   1171  */
   1172 void
   1173 callout_stop(struct callout *c)
   1174 {
   1175 	int s;
   1176 
   1177 	CALLWHEEL_LOCK(s);
   1178 	callout_stop_locked(c);
   1179 	CALLWHEEL_UNLOCK(s);
   1180 }
   1181 
   1182 #ifdef CALLWHEEL_STATS
   1183 /*
   1184  * callout_showstats:
   1185  *
   1186  *	Display callout statistics.  Call it from DDB.
   1187  */
   1188 void
   1189 callout_showstats(void)
   1190 {
   1191 	u_int64_t curticks;
   1192 	int s;
   1193 
   1194 	s = splclock();
   1195 	curticks = softclock_ticks;
   1196 	splx(s);
   1197 
   1198 	printf("Callwheel statistics:\n");
   1199 	printf("\tCallouts currently queued: %llu\n",
   1200 	    (long long) callwheel_count.ev_count);
   1201 	printf("\tCallouts established: %llu\n",
   1202 	    (long long) callwheel_established.ev_count);
   1203 	printf("\tCallouts disestablished: %llu\n",
   1204 	    (long long) callwheel_disestablished.ev_count);
   1205 	if (callwheel_changed.ev_count != 0)
   1206 		printf("\t\tOf those, %llu were changes\n",
   1207 		    (long long) callwheel_changed.ev_count);
   1208 	printf("\tCallouts that fired: %llu\n",
   1209 	    (long long) callwheel_fired.ev_count);
   1210 	printf("\tNumber of buckets: %d\n", callwheelsize);
   1211 	printf("\tNumber of hash collisions: %llu\n",
   1212 	    (long long) callwheel_collisions.ev_count);
   1213 	printf("\tMaximum hash chain length: %llu\n",
   1214 	    (long long) callwheel_maxlength.ev_count);
   1215 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
   1216 	    (long long) callwheel_softclocks.ev_count,
   1217 	    (long long) callwheel_softchecks.ev_count);
   1218 	printf("\t\tEmpty buckets seen: %llu\n",
   1219 	    (long long) callwheel_softempty.ev_count);
   1220 	printf("\t\tTimes hint saved scan: %llu\n",
   1221 	    (long long) callwheel_hintworked.ev_count);
   1222 }
   1223 #endif
   1224 
   1225 /*
   1226  * Compute number of hz until specified time.  Used to compute second
   1227  * argument to callout_reset() from an absolute time.
   1228  */
   1229 int
   1230 hzto(struct timeval *tv)
   1231 {
   1232 	unsigned long ticks;
   1233 	long sec, usec;
   1234 	int s;
   1235 
   1236 	/*
   1237 	 * If the number of usecs in the whole seconds part of the time
   1238 	 * difference fits in a long, then the total number of usecs will
   1239 	 * fit in an unsigned long.  Compute the total and convert it to
   1240 	 * ticks, rounding up and adding 1 to allow for the current tick
   1241 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1242 	 * to avoid overflow.
   1243 	 *
   1244 	 * Otherwise, if the number of ticks in the whole seconds part of
   1245 	 * the time difference fits in a long, then convert the parts to
   1246 	 * ticks separately and add, using similar rounding methods and
   1247 	 * overflow avoidance.  This method would work in the previous
   1248 	 * case, but it is slightly slower and assume that hz is integral.
   1249 	 *
   1250 	 * Otherwise, round the time difference down to the maximum
   1251 	 * representable value.
   1252 	 *
   1253 	 * If ints are 32-bit, then the maximum value for any timeout in
   1254 	 * 10ms ticks is 248 days.
   1255 	 */
   1256 	s = splclock();
   1257 	sec = tv->tv_sec - time.tv_sec;
   1258 	usec = tv->tv_usec - time.tv_usec;
   1259 	splx(s);
   1260 
   1261 	if (usec < 0) {
   1262 		sec--;
   1263 		usec += 1000000;
   1264 	}
   1265 
   1266 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1267 		/*
   1268 		 * Would expire now or in the past.  Return 0 ticks.
   1269 		 * This is different from the legacy hzto() interface,
   1270 		 * and callers need to check for it.
   1271 		 */
   1272 		ticks = 0;
   1273 	} else if (sec <= (LONG_MAX / 1000000))
   1274 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1275 		    / tick) + 1;
   1276 	else if (sec <= (LONG_MAX / hz))
   1277 		ticks = (sec * hz) +
   1278 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1279 	else
   1280 		ticks = LONG_MAX;
   1281 
   1282 	if (ticks > INT_MAX)
   1283 		ticks = INT_MAX;
   1284 
   1285 	return ((int)ticks);
   1286 }
   1287 
   1288 /*
   1289  * Start profiling on a process.
   1290  *
   1291  * Kernel profiling passes proc0 which never exits and hence
   1292  * keeps the profile clock running constantly.
   1293  */
   1294 void
   1295 startprofclock(struct proc *p)
   1296 {
   1297 
   1298 	if ((p->p_flag & P_PROFIL) == 0) {
   1299 		p->p_flag |= P_PROFIL;
   1300 		if (++profprocs == 1 && stathz != 0)
   1301 			psdiv = psratio;
   1302 	}
   1303 }
   1304 
   1305 /*
   1306  * Stop profiling on a process.
   1307  */
   1308 void
   1309 stopprofclock(struct proc *p)
   1310 {
   1311 
   1312 	if (p->p_flag & P_PROFIL) {
   1313 		p->p_flag &= ~P_PROFIL;
   1314 		if (--profprocs == 0 && stathz != 0)
   1315 			psdiv = 1;
   1316 	}
   1317 }
   1318 
   1319 /*
   1320  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1321  * do process and kernel statistics.
   1322  */
   1323 void
   1324 statclock(struct clockframe *frame)
   1325 {
   1326 #ifdef GPROF
   1327 	struct gmonparam *g;
   1328 	intptr_t i;
   1329 #endif
   1330 	struct cpu_info *ci = curcpu();
   1331 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1332 	struct proc *p;
   1333 
   1334 	/*
   1335 	 * Notice changes in divisor frequency, and adjust clock
   1336 	 * frequency accordingly.
   1337 	 */
   1338 	if (spc->spc_psdiv != psdiv) {
   1339 		spc->spc_psdiv = psdiv;
   1340 		spc->spc_pscnt = psdiv;
   1341 		if (psdiv == 1) {
   1342 			setstatclockrate(stathz);
   1343 		} else {
   1344 			setstatclockrate(profhz);
   1345 		}
   1346 	}
   1347 	p = curproc;
   1348 	if (CLKF_USERMODE(frame)) {
   1349 		if (p->p_flag & P_PROFIL)
   1350 			addupc_intr(p, CLKF_PC(frame));
   1351 		if (--spc->spc_pscnt > 0)
   1352 			return;
   1353 		/*
   1354 		 * Came from user mode; CPU was in user state.
   1355 		 * If this process is being profiled record the tick.
   1356 		 */
   1357 		p->p_uticks++;
   1358 		if (p->p_nice > NZERO)
   1359 			spc->spc_cp_time[CP_NICE]++;
   1360 		else
   1361 			spc->spc_cp_time[CP_USER]++;
   1362 	} else {
   1363 #ifdef GPROF
   1364 		/*
   1365 		 * Kernel statistics are just like addupc_intr, only easier.
   1366 		 */
   1367 		g = &_gmonparam;
   1368 		if (g->state == GMON_PROF_ON) {
   1369 			i = CLKF_PC(frame) - g->lowpc;
   1370 			if (i < g->textsize) {
   1371 				i /= HISTFRACTION * sizeof(*g->kcount);
   1372 				g->kcount[i]++;
   1373 			}
   1374 		}
   1375 #endif
   1376 #ifdef PROC_PC
   1377 		if (p && p->p_flag & P_PROFIL)
   1378 			addupc_intr(p, PROC_PC(p));
   1379 #endif
   1380 		if (--spc->spc_pscnt > 0)
   1381 			return;
   1382 		/*
   1383 		 * Came from kernel mode, so we were:
   1384 		 * - handling an interrupt,
   1385 		 * - doing syscall or trap work on behalf of the current
   1386 		 *   user process, or
   1387 		 * - spinning in the idle loop.
   1388 		 * Whichever it is, charge the time as appropriate.
   1389 		 * Note that we charge interrupts to the current process,
   1390 		 * regardless of whether they are ``for'' that process,
   1391 		 * so that we know how much of its real time was spent
   1392 		 * in ``non-process'' (i.e., interrupt) work.
   1393 		 */
   1394 		if (CLKF_INTR(frame)) {
   1395 			if (p != NULL)
   1396 				p->p_iticks++;
   1397 			spc->spc_cp_time[CP_INTR]++;
   1398 		} else if (p != NULL) {
   1399 			p->p_sticks++;
   1400 			spc->spc_cp_time[CP_SYS]++;
   1401 		} else
   1402 			spc->spc_cp_time[CP_IDLE]++;
   1403 	}
   1404 	spc->spc_pscnt = psdiv;
   1405 
   1406 	if (p != NULL) {
   1407 		++p->p_cpticks;
   1408 		/*
   1409 		 * If no separate schedclock is provided, call it here
   1410 		 * at ~~12-25 Hz, ~~16 Hz is best
   1411 		 */
   1412 		if (schedhz == 0)
   1413 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1414 				schedclock(p);
   1415 	}
   1416 }
   1417 
   1418 
   1419 #ifdef NTP	/* NTP phase-locked loop in kernel */
   1420 
   1421 /*
   1422  * hardupdate() - local clock update
   1423  *
   1424  * This routine is called by ntp_adjtime() to update the local clock
   1425  * phase and frequency. The implementation is of an adaptive-parameter,
   1426  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1427  * time and frequency offset estimates for each call. If the kernel PPS
   1428  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1429  * determines the new time offset, instead of the calling argument.
   1430  * Presumably, calls to ntp_adjtime() occur only when the caller
   1431  * believes the local clock is valid within some bound (+-128 ms with
   1432  * NTP). If the caller's time is far different than the PPS time, an
   1433  * argument will ensue, and it's not clear who will lose.
   1434  *
   1435  * For uncompensated quartz crystal oscillatores and nominal update
   1436  * intervals less than 1024 s, operation should be in phase-lock mode
   1437  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1438  * intervals greater than thiss, operation should be in frequency-lock
   1439  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1440  *
   1441  * Note: splclock() is in effect.
   1442  */
   1443 void
   1444 hardupdate(long offset)
   1445 {
   1446 	long ltemp, mtemp;
   1447 
   1448 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1449 		return;
   1450 	ltemp = offset;
   1451 #ifdef PPS_SYNC
   1452 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1453 		ltemp = pps_offset;
   1454 #endif /* PPS_SYNC */
   1455 
   1456 	/*
   1457 	 * Scale the phase adjustment and clamp to the operating range.
   1458 	 */
   1459 	if (ltemp > MAXPHASE)
   1460 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1461 	else if (ltemp < -MAXPHASE)
   1462 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1463 	else
   1464 		time_offset = ltemp << SHIFT_UPDATE;
   1465 
   1466 	/*
   1467 	 * Select whether the frequency is to be controlled and in which
   1468 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1469 	 * multiply/divide should be replaced someday.
   1470 	 */
   1471 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1472 		time_reftime = time.tv_sec;
   1473 	mtemp = time.tv_sec - time_reftime;
   1474 	time_reftime = time.tv_sec;
   1475 	if (time_status & STA_FLL) {
   1476 		if (mtemp >= MINSEC) {
   1477 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1478 			    SHIFT_UPDATE));
   1479 			if (ltemp < 0)
   1480 				time_freq -= -ltemp >> SHIFT_KH;
   1481 			else
   1482 				time_freq += ltemp >> SHIFT_KH;
   1483 		}
   1484 	} else {
   1485 		if (mtemp < MAXSEC) {
   1486 			ltemp *= mtemp;
   1487 			if (ltemp < 0)
   1488 				time_freq -= -ltemp >> (time_constant +
   1489 				    time_constant + SHIFT_KF -
   1490 				    SHIFT_USEC);
   1491 			else
   1492 				time_freq += ltemp >> (time_constant +
   1493 				    time_constant + SHIFT_KF -
   1494 				    SHIFT_USEC);
   1495 		}
   1496 	}
   1497 	if (time_freq > time_tolerance)
   1498 		time_freq = time_tolerance;
   1499 	else if (time_freq < -time_tolerance)
   1500 		time_freq = -time_tolerance;
   1501 }
   1502 
   1503 #ifdef PPS_SYNC
   1504 /*
   1505  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1506  *
   1507  * This routine is called at each PPS interrupt in order to discipline
   1508  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1509  * and leaves it in a handy spot for the hardclock() routine. It
   1510  * integrates successive PPS phase differences and calculates the
   1511  * frequency offset. This is used in hardclock() to discipline the CPU
   1512  * clock oscillator so that intrinsic frequency error is cancelled out.
   1513  * The code requires the caller to capture the time and hardware counter
   1514  * value at the on-time PPS signal transition.
   1515  *
   1516  * Note that, on some Unix systems, this routine runs at an interrupt
   1517  * priority level higher than the timer interrupt routine hardclock().
   1518  * Therefore, the variables used are distinct from the hardclock()
   1519  * variables, except for certain exceptions: The PPS frequency pps_freq
   1520  * and phase pps_offset variables are determined by this routine and
   1521  * updated atomically. The time_tolerance variable can be considered a
   1522  * constant, since it is infrequently changed, and then only when the
   1523  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1524  * once per second by hardclock() and is atomically cleared in this
   1525  * routine.
   1526  */
   1527 void
   1528 hardpps(struct timeval *tvp,		/* time at PPS */
   1529 	long usec			/* hardware counter at PPS */)
   1530 {
   1531 	long u_usec, v_usec, bigtick;
   1532 	long cal_sec, cal_usec;
   1533 
   1534 	/*
   1535 	 * An occasional glitch can be produced when the PPS interrupt
   1536 	 * occurs in the hardclock() routine before the time variable is
   1537 	 * updated. Here the offset is discarded when the difference
   1538 	 * between it and the last one is greater than tick/2, but not
   1539 	 * if the interval since the first discard exceeds 30 s.
   1540 	 */
   1541 	time_status |= STA_PPSSIGNAL;
   1542 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1543 	pps_valid = 0;
   1544 	u_usec = -tvp->tv_usec;
   1545 	if (u_usec < -500000)
   1546 		u_usec += 1000000;
   1547 	v_usec = pps_offset - u_usec;
   1548 	if (v_usec < 0)
   1549 		v_usec = -v_usec;
   1550 	if (v_usec > (tick >> 1)) {
   1551 		if (pps_glitch > MAXGLITCH) {
   1552 			pps_glitch = 0;
   1553 			pps_tf[2] = u_usec;
   1554 			pps_tf[1] = u_usec;
   1555 		} else {
   1556 			pps_glitch++;
   1557 			u_usec = pps_offset;
   1558 		}
   1559 	} else
   1560 		pps_glitch = 0;
   1561 
   1562 	/*
   1563 	 * A three-stage median filter is used to help deglitch the pps
   1564 	 * time. The median sample becomes the time offset estimate; the
   1565 	 * difference between the other two samples becomes the time
   1566 	 * dispersion (jitter) estimate.
   1567 	 */
   1568 	pps_tf[2] = pps_tf[1];
   1569 	pps_tf[1] = pps_tf[0];
   1570 	pps_tf[0] = u_usec;
   1571 	if (pps_tf[0] > pps_tf[1]) {
   1572 		if (pps_tf[1] > pps_tf[2]) {
   1573 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1574 			v_usec = pps_tf[0] - pps_tf[2];
   1575 		} else if (pps_tf[2] > pps_tf[0]) {
   1576 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1577 			v_usec = pps_tf[2] - pps_tf[1];
   1578 		} else {
   1579 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1580 			v_usec = pps_tf[0] - pps_tf[1];
   1581 		}
   1582 	} else {
   1583 		if (pps_tf[1] < pps_tf[2]) {
   1584 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1585 			v_usec = pps_tf[2] - pps_tf[0];
   1586 		} else  if (pps_tf[2] < pps_tf[0]) {
   1587 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1588 			v_usec = pps_tf[1] - pps_tf[2];
   1589 		} else {
   1590 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1591 			v_usec = pps_tf[1] - pps_tf[0];
   1592 		}
   1593 	}
   1594 	if (v_usec > MAXTIME)
   1595 		pps_jitcnt++;
   1596 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1597 	if (v_usec < 0)
   1598 		pps_jitter -= -v_usec >> PPS_AVG;
   1599 	else
   1600 		pps_jitter += v_usec >> PPS_AVG;
   1601 	if (pps_jitter > (MAXTIME >> 1))
   1602 		time_status |= STA_PPSJITTER;
   1603 
   1604 	/*
   1605 	 * During the calibration interval adjust the starting time when
   1606 	 * the tick overflows. At the end of the interval compute the
   1607 	 * duration of the interval and the difference of the hardware
   1608 	 * counters at the beginning and end of the interval. This code
   1609 	 * is deliciously complicated by the fact valid differences may
   1610 	 * exceed the value of tick when using long calibration
   1611 	 * intervals and small ticks. Note that the counter can be
   1612 	 * greater than tick if caught at just the wrong instant, but
   1613 	 * the values returned and used here are correct.
   1614 	 */
   1615 	bigtick = (long)tick << SHIFT_USEC;
   1616 	pps_usec -= pps_freq;
   1617 	if (pps_usec >= bigtick)
   1618 		pps_usec -= bigtick;
   1619 	if (pps_usec < 0)
   1620 		pps_usec += bigtick;
   1621 	pps_time.tv_sec++;
   1622 	pps_count++;
   1623 	if (pps_count < (1 << pps_shift))
   1624 		return;
   1625 	pps_count = 0;
   1626 	pps_calcnt++;
   1627 	u_usec = usec << SHIFT_USEC;
   1628 	v_usec = pps_usec - u_usec;
   1629 	if (v_usec >= bigtick >> 1)
   1630 		v_usec -= bigtick;
   1631 	if (v_usec < -(bigtick >> 1))
   1632 		v_usec += bigtick;
   1633 	if (v_usec < 0)
   1634 		v_usec = -(-v_usec >> pps_shift);
   1635 	else
   1636 		v_usec = v_usec >> pps_shift;
   1637 	pps_usec = u_usec;
   1638 	cal_sec = tvp->tv_sec;
   1639 	cal_usec = tvp->tv_usec;
   1640 	cal_sec -= pps_time.tv_sec;
   1641 	cal_usec -= pps_time.tv_usec;
   1642 	if (cal_usec < 0) {
   1643 		cal_usec += 1000000;
   1644 		cal_sec--;
   1645 	}
   1646 	pps_time = *tvp;
   1647 
   1648 	/*
   1649 	 * Check for lost interrupts, noise, excessive jitter and
   1650 	 * excessive frequency error. The number of timer ticks during
   1651 	 * the interval may vary +-1 tick. Add to this a margin of one
   1652 	 * tick for the PPS signal jitter and maximum frequency
   1653 	 * deviation. If the limits are exceeded, the calibration
   1654 	 * interval is reset to the minimum and we start over.
   1655 	 */
   1656 	u_usec = (long)tick << 1;
   1657 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1658 	    || (cal_sec == 0 && cal_usec < u_usec))
   1659 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1660 		pps_errcnt++;
   1661 		pps_shift = PPS_SHIFT;
   1662 		pps_intcnt = 0;
   1663 		time_status |= STA_PPSERROR;
   1664 		return;
   1665 	}
   1666 
   1667 	/*
   1668 	 * A three-stage median filter is used to help deglitch the pps
   1669 	 * frequency. The median sample becomes the frequency offset
   1670 	 * estimate; the difference between the other two samples
   1671 	 * becomes the frequency dispersion (stability) estimate.
   1672 	 */
   1673 	pps_ff[2] = pps_ff[1];
   1674 	pps_ff[1] = pps_ff[0];
   1675 	pps_ff[0] = v_usec;
   1676 	if (pps_ff[0] > pps_ff[1]) {
   1677 		if (pps_ff[1] > pps_ff[2]) {
   1678 			u_usec = pps_ff[1];		/* 0 1 2 */
   1679 			v_usec = pps_ff[0] - pps_ff[2];
   1680 		} else if (pps_ff[2] > pps_ff[0]) {
   1681 			u_usec = pps_ff[0];		/* 2 0 1 */
   1682 			v_usec = pps_ff[2] - pps_ff[1];
   1683 		} else {
   1684 			u_usec = pps_ff[2];		/* 0 2 1 */
   1685 			v_usec = pps_ff[0] - pps_ff[1];
   1686 		}
   1687 	} else {
   1688 		if (pps_ff[1] < pps_ff[2]) {
   1689 			u_usec = pps_ff[1];		/* 2 1 0 */
   1690 			v_usec = pps_ff[2] - pps_ff[0];
   1691 		} else  if (pps_ff[2] < pps_ff[0]) {
   1692 			u_usec = pps_ff[0];		/* 1 0 2 */
   1693 			v_usec = pps_ff[1] - pps_ff[2];
   1694 		} else {
   1695 			u_usec = pps_ff[2];		/* 1 2 0 */
   1696 			v_usec = pps_ff[1] - pps_ff[0];
   1697 		}
   1698 	}
   1699 
   1700 	/*
   1701 	 * Here the frequency dispersion (stability) is updated. If it
   1702 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1703 	 * offset is updated as well, but clamped to the tolerance. It
   1704 	 * will be processed later by the hardclock() routine.
   1705 	 */
   1706 	v_usec = (v_usec >> 1) - pps_stabil;
   1707 	if (v_usec < 0)
   1708 		pps_stabil -= -v_usec >> PPS_AVG;
   1709 	else
   1710 		pps_stabil += v_usec >> PPS_AVG;
   1711 	if (pps_stabil > MAXFREQ >> 2) {
   1712 		pps_stbcnt++;
   1713 		time_status |= STA_PPSWANDER;
   1714 		return;
   1715 	}
   1716 	if (time_status & STA_PPSFREQ) {
   1717 		if (u_usec < 0) {
   1718 			pps_freq -= -u_usec >> PPS_AVG;
   1719 			if (pps_freq < -time_tolerance)
   1720 				pps_freq = -time_tolerance;
   1721 			u_usec = -u_usec;
   1722 		} else {
   1723 			pps_freq += u_usec >> PPS_AVG;
   1724 			if (pps_freq > time_tolerance)
   1725 				pps_freq = time_tolerance;
   1726 		}
   1727 	}
   1728 
   1729 	/*
   1730 	 * Here the calibration interval is adjusted. If the maximum
   1731 	 * time difference is greater than tick / 4, reduce the interval
   1732 	 * by half. If this is not the case for four consecutive
   1733 	 * intervals, double the interval.
   1734 	 */
   1735 	if (u_usec << pps_shift > bigtick >> 2) {
   1736 		pps_intcnt = 0;
   1737 		if (pps_shift > PPS_SHIFT)
   1738 			pps_shift--;
   1739 	} else if (pps_intcnt >= 4) {
   1740 		pps_intcnt = 0;
   1741 		if (pps_shift < PPS_SHIFTMAX)
   1742 			pps_shift++;
   1743 	} else
   1744 		pps_intcnt++;
   1745 }
   1746 #endif /* PPS_SYNC */
   1747 #endif /* NTP  */
   1748 
   1749 /*
   1750  * Return information about system clocks.
   1751  */
   1752 int
   1753 sysctl_clockrate(void *where, size_t *sizep)
   1754 {
   1755 	struct clockinfo clkinfo;
   1756 
   1757 	/*
   1758 	 * Construct clockinfo structure.
   1759 	 */
   1760 	clkinfo.tick = tick;
   1761 	clkinfo.tickadj = tickadj;
   1762 	clkinfo.hz = hz;
   1763 	clkinfo.profhz = profhz;
   1764 	clkinfo.stathz = stathz ? stathz : hz;
   1765 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1766 }
   1767