kern_clock.c revision 1.83 1 /* $NetBSD: kern_clock.c,v 1.83 2003/01/27 22:38:24 pk Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.83 2003/01/27 22:38:24 pk Exp $");
82
83 #include "opt_callout.h"
84 #include "opt_ntp.h"
85 #include "opt_perfctrs.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/dkstat.h>
90 #include <sys/callout.h>
91 #include <sys/kernel.h>
92 #include <sys/proc.h>
93 #include <sys/resourcevar.h>
94 #include <sys/signalvar.h>
95 #include <sys/sysctl.h>
96 #include <sys/timex.h>
97 #include <sys/sched.h>
98 #include <sys/time.h>
99 #ifdef CALLWHEEL_STATS
100 #include <sys/device.h>
101 #endif
102
103 #include <machine/cpu.h>
104 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
105 #include <machine/intr.h>
106 #endif
107
108 #ifdef GPROF
109 #include <sys/gmon.h>
110 #endif
111
112 /*
113 * Clock handling routines.
114 *
115 * This code is written to operate with two timers that run independently of
116 * each other. The main clock, running hz times per second, is used to keep
117 * track of real time. The second timer handles kernel and user profiling,
118 * and does resource use estimation. If the second timer is programmable,
119 * it is randomized to avoid aliasing between the two clocks. For example,
120 * the randomization prevents an adversary from always giving up the cpu
121 * just before its quantum expires. Otherwise, it would never accumulate
122 * cpu ticks. The mean frequency of the second timer is stathz.
123 *
124 * If no second timer exists, stathz will be zero; in this case we drive
125 * profiling and statistics off the main clock. This WILL NOT be accurate;
126 * do not do it unless absolutely necessary.
127 *
128 * The statistics clock may (or may not) be run at a higher rate while
129 * profiling. This profile clock runs at profhz. We require that profhz
130 * be an integral multiple of stathz.
131 *
132 * If the statistics clock is running fast, it must be divided by the ratio
133 * profhz/stathz for statistics. (For profiling, every tick counts.)
134 */
135
136 #ifdef NTP /* NTP phase-locked loop in kernel */
137 /*
138 * Phase/frequency-lock loop (PLL/FLL) definitions
139 *
140 * The following variables are read and set by the ntp_adjtime() system
141 * call.
142 *
143 * time_state shows the state of the system clock, with values defined
144 * in the timex.h header file.
145 *
146 * time_status shows the status of the system clock, with bits defined
147 * in the timex.h header file.
148 *
149 * time_offset is used by the PLL/FLL to adjust the system time in small
150 * increments.
151 *
152 * time_constant determines the bandwidth or "stiffness" of the PLL.
153 *
154 * time_tolerance determines maximum frequency error or tolerance of the
155 * CPU clock oscillator and is a property of the architecture; however,
156 * in principle it could change as result of the presence of external
157 * discipline signals, for instance.
158 *
159 * time_precision is usually equal to the kernel tick variable; however,
160 * in cases where a precision clock counter or external clock is
161 * available, the resolution can be much less than this and depend on
162 * whether the external clock is working or not.
163 *
164 * time_maxerror is initialized by a ntp_adjtime() call and increased by
165 * the kernel once each second to reflect the maximum error bound
166 * growth.
167 *
168 * time_esterror is set and read by the ntp_adjtime() call, but
169 * otherwise not used by the kernel.
170 */
171 int time_state = TIME_OK; /* clock state */
172 int time_status = STA_UNSYNC; /* clock status bits */
173 long time_offset = 0; /* time offset (us) */
174 long time_constant = 0; /* pll time constant */
175 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
176 long time_precision = 1; /* clock precision (us) */
177 long time_maxerror = MAXPHASE; /* maximum error (us) */
178 long time_esterror = MAXPHASE; /* estimated error (us) */
179
180 /*
181 * The following variables establish the state of the PLL/FLL and the
182 * residual time and frequency offset of the local clock. The scale
183 * factors are defined in the timex.h header file.
184 *
185 * time_phase and time_freq are the phase increment and the frequency
186 * increment, respectively, of the kernel time variable.
187 *
188 * time_freq is set via ntp_adjtime() from a value stored in a file when
189 * the synchronization daemon is first started. Its value is retrieved
190 * via ntp_adjtime() and written to the file about once per hour by the
191 * daemon.
192 *
193 * time_adj is the adjustment added to the value of tick at each timer
194 * interrupt and is recomputed from time_phase and time_freq at each
195 * seconds rollover.
196 *
197 * time_reftime is the second's portion of the system time at the last
198 * call to ntp_adjtime(). It is used to adjust the time_freq variable
199 * and to increase the time_maxerror as the time since last update
200 * increases.
201 */
202 long time_phase = 0; /* phase offset (scaled us) */
203 long time_freq = 0; /* frequency offset (scaled ppm) */
204 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
205 long time_reftime = 0; /* time at last adjustment (s) */
206
207 #ifdef PPS_SYNC
208 /*
209 * The following variables are used only if the kernel PPS discipline
210 * code is configured (PPS_SYNC). The scale factors are defined in the
211 * timex.h header file.
212 *
213 * pps_time contains the time at each calibration interval, as read by
214 * microtime(). pps_count counts the seconds of the calibration
215 * interval, the duration of which is nominally pps_shift in powers of
216 * two.
217 *
218 * pps_offset is the time offset produced by the time median filter
219 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
220 * this filter.
221 *
222 * pps_freq is the frequency offset produced by the frequency median
223 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
224 * by this filter.
225 *
226 * pps_usec is latched from a high resolution counter or external clock
227 * at pps_time. Here we want the hardware counter contents only, not the
228 * contents plus the time_tv.usec as usual.
229 *
230 * pps_valid counts the number of seconds since the last PPS update. It
231 * is used as a watchdog timer to disable the PPS discipline should the
232 * PPS signal be lost.
233 *
234 * pps_glitch counts the number of seconds since the beginning of an
235 * offset burst more than tick/2 from current nominal offset. It is used
236 * mainly to suppress error bursts due to priority conflicts between the
237 * PPS interrupt and timer interrupt.
238 *
239 * pps_intcnt counts the calibration intervals for use in the interval-
240 * adaptation algorithm. It's just too complicated for words.
241 */
242 struct timeval pps_time; /* kernel time at last interval */
243 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
244 long pps_offset = 0; /* pps time offset (us) */
245 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
246 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
247 long pps_freq = 0; /* frequency offset (scaled ppm) */
248 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
249 long pps_usec = 0; /* microsec counter at last interval */
250 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
251 int pps_glitch = 0; /* pps signal glitch counter */
252 int pps_count = 0; /* calibration interval counter (s) */
253 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
254 int pps_intcnt = 0; /* intervals at current duration */
255
256 /*
257 * PPS signal quality monitors
258 *
259 * pps_jitcnt counts the seconds that have been discarded because the
260 * jitter measured by the time median filter exceeds the limit MAXTIME
261 * (100 us).
262 *
263 * pps_calcnt counts the frequency calibration intervals, which are
264 * variable from 4 s to 256 s.
265 *
266 * pps_errcnt counts the calibration intervals which have been discarded
267 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
268 * calibration interval jitter exceeds two ticks.
269 *
270 * pps_stbcnt counts the calibration intervals that have been discarded
271 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
272 */
273 long pps_jitcnt = 0; /* jitter limit exceeded */
274 long pps_calcnt = 0; /* calibration intervals */
275 long pps_errcnt = 0; /* calibration errors */
276 long pps_stbcnt = 0; /* stability limit exceeded */
277 #endif /* PPS_SYNC */
278
279 #ifdef EXT_CLOCK
280 /*
281 * External clock definitions
282 *
283 * The following definitions and declarations are used only if an
284 * external clock is configured on the system.
285 */
286 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
287
288 /*
289 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
290 * interrupt and decremented once each second.
291 */
292 int clock_count = 0; /* CPU clock counter */
293
294 #ifdef HIGHBALL
295 /*
296 * The clock_offset and clock_cpu variables are used by the HIGHBALL
297 * interface. The clock_offset variable defines the offset between
298 * system time and the HIGBALL counters. The clock_cpu variable contains
299 * the offset between the system clock and the HIGHBALL clock for use in
300 * disciplining the kernel time variable.
301 */
302 extern struct timeval clock_offset; /* Highball clock offset */
303 long clock_cpu = 0; /* CPU clock adjust */
304 #endif /* HIGHBALL */
305 #endif /* EXT_CLOCK */
306 #endif /* NTP */
307
308
309 /*
310 * Bump a timeval by a small number of usec's.
311 */
312 #define BUMPTIME(t, usec) { \
313 volatile struct timeval *tp = (t); \
314 long us; \
315 \
316 tp->tv_usec = us = tp->tv_usec + (usec); \
317 if (us >= 1000000) { \
318 tp->tv_usec = us - 1000000; \
319 tp->tv_sec++; \
320 } \
321 }
322
323 int stathz;
324 int profhz;
325 int profsrc;
326 int schedhz;
327 int profprocs;
328 int softclock_running; /* 1 => softclock() is running */
329 static int psdiv; /* prof => stat divider */
330 int psratio; /* ratio: prof / stat */
331 int tickfix, tickfixinterval; /* used if tick not really integral */
332 #ifndef NTP
333 static int tickfixcnt; /* accumulated fractional error */
334 #else
335 int fixtick; /* used by NTP for same */
336 int shifthz;
337 #endif
338
339 /*
340 * We might want ldd to load the both words from time at once.
341 * To succeed we need to be quadword aligned.
342 * The sparc already does that, and that it has worked so far is a fluke.
343 */
344 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
345 volatile struct timeval mono_time;
346
347 /*
348 * The callout mechanism is based on the work of Adam M. Costello and
349 * George Varghese, published in a technical report entitled "Redesigning
350 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
351 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
352 *
353 * The original work on the data structures used in this implementation
354 * was published by G. Varghese and A. Lauck in the paper "Hashed and
355 * Hierarchical Timing Wheels: Data Structures for the Efficient
356 * Implementation of a Timer Facility" in the Proceedings of the 11th
357 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
358 * November 1987.
359 */
360 struct callout_queue *callwheel;
361 int callwheelsize, callwheelbits, callwheelmask;
362
363 static struct callout *nextsoftcheck; /* next callout to be checked */
364
365 #ifdef CALLWHEEL_STATS
366 int *callwheel_sizes; /* per-bucket length count */
367 struct evcnt callwheel_collisions; /* number of hash collisions */
368 struct evcnt callwheel_maxlength; /* length of the longest hash chain */
369 struct evcnt callwheel_count; /* # callouts currently */
370 struct evcnt callwheel_established; /* # callouts established */
371 struct evcnt callwheel_fired; /* # callouts that fired */
372 struct evcnt callwheel_disestablished; /* # callouts disestablished */
373 struct evcnt callwheel_changed; /* # callouts changed */
374 struct evcnt callwheel_softclocks; /* # times softclock() called */
375 struct evcnt callwheel_softchecks; /* # checks per softclock() */
376 struct evcnt callwheel_softempty; /* # empty buckets seen */
377 struct evcnt callwheel_hintworked; /* # times hint saved scan */
378 #endif /* CALLWHEEL_STATS */
379
380 /*
381 * This value indicates the number of consecutive callouts that
382 * will be checked before we allow interrupts to have a chance
383 * again.
384 */
385 #ifndef MAX_SOFTCLOCK_STEPS
386 #define MAX_SOFTCLOCK_STEPS 100
387 #endif
388
389 struct simplelock callwheel_slock;
390
391 #define CALLWHEEL_LOCK(s) \
392 do { \
393 s = splsched(); \
394 simple_lock(&callwheel_slock); \
395 } while (/*CONSTCOND*/ 0)
396
397 #define CALLWHEEL_UNLOCK(s) \
398 do { \
399 simple_unlock(&callwheel_slock); \
400 splx(s); \
401 } while (/*CONSTCOND*/ 0)
402
403 static void callout_stop_locked(struct callout *);
404
405 /*
406 * These are both protected by callwheel_lock.
407 * XXX SHOULD BE STATIC!!
408 */
409 u_int64_t hardclock_ticks, softclock_ticks;
410
411 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
412 void softclock(void *);
413 void *softclock_si;
414 #endif
415
416 /*
417 * Initialize clock frequencies and start both clocks running.
418 */
419 void
420 initclocks(void)
421 {
422 int i;
423
424 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
425 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
426 if (softclock_si == NULL)
427 panic("initclocks: unable to register softclock intr");
428 #endif
429
430 /*
431 * Set divisors to 1 (normal case) and let the machine-specific
432 * code do its bit.
433 */
434 psdiv = 1;
435 cpu_initclocks();
436
437 /*
438 * Compute profhz/stathz/rrticks, and fix profhz if needed.
439 */
440 i = stathz ? stathz : hz;
441 if (profhz == 0)
442 profhz = i;
443 psratio = profhz / i;
444 rrticks = hz / 10;
445
446 #ifdef NTP
447 switch (hz) {
448 case 1:
449 shifthz = SHIFT_SCALE - 0;
450 break;
451 case 2:
452 shifthz = SHIFT_SCALE - 1;
453 break;
454 case 4:
455 shifthz = SHIFT_SCALE - 2;
456 break;
457 case 8:
458 shifthz = SHIFT_SCALE - 3;
459 break;
460 case 16:
461 shifthz = SHIFT_SCALE - 4;
462 break;
463 case 32:
464 shifthz = SHIFT_SCALE - 5;
465 break;
466 case 60:
467 case 64:
468 shifthz = SHIFT_SCALE - 6;
469 break;
470 case 96:
471 case 100:
472 case 128:
473 shifthz = SHIFT_SCALE - 7;
474 break;
475 case 256:
476 shifthz = SHIFT_SCALE - 8;
477 break;
478 case 512:
479 shifthz = SHIFT_SCALE - 9;
480 break;
481 case 1000:
482 case 1024:
483 shifthz = SHIFT_SCALE - 10;
484 break;
485 case 1200:
486 case 2048:
487 shifthz = SHIFT_SCALE - 11;
488 break;
489 case 4096:
490 shifthz = SHIFT_SCALE - 12;
491 break;
492 case 8192:
493 shifthz = SHIFT_SCALE - 13;
494 break;
495 case 16384:
496 shifthz = SHIFT_SCALE - 14;
497 break;
498 case 32768:
499 shifthz = SHIFT_SCALE - 15;
500 break;
501 case 65536:
502 shifthz = SHIFT_SCALE - 16;
503 break;
504 default:
505 panic("weird hz");
506 }
507 if (fixtick == 0) {
508 /*
509 * Give MD code a chance to set this to a better
510 * value; but, if it doesn't, we should.
511 */
512 fixtick = (1000000 - (hz*tick));
513 }
514 #endif
515 }
516
517 /*
518 * The real-time timer, interrupting hz times per second.
519 */
520 void
521 hardclock(struct clockframe *frame)
522 {
523 struct lwp *l;
524 struct proc *p;
525 int delta;
526 extern int tickdelta;
527 extern long timedelta;
528 struct cpu_info *ci = curcpu();
529 struct ptimer *pt;
530 int s;
531 #ifdef NTP
532 int time_update;
533 int ltemp;
534 #endif
535
536 l = curlwp;
537 if (l) {
538 p = l->l_proc;
539 /*
540 * Run current process's virtual and profile time, as needed.
541 */
542 if (CLKF_USERMODE(frame) && p->p_timers &&
543 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
544 if (itimerdecr(pt, tick) == 0)
545 itimerfire(pt);
546 if (p->p_timers &&
547 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
548 if (itimerdecr(pt, tick) == 0)
549 itimerfire(pt);
550 }
551
552 /*
553 * If no separate statistics clock is available, run it from here.
554 */
555 if (stathz == 0)
556 statclock(frame);
557 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
558 roundrobin(ci);
559
560 #if defined(MULTIPROCESSOR)
561 /*
562 * If we are not the primary CPU, we're not allowed to do
563 * any more work.
564 */
565 if (CPU_IS_PRIMARY(ci) == 0)
566 return;
567 #endif
568
569 /*
570 * Increment the time-of-day. The increment is normally just
571 * ``tick''. If the machine is one which has a clock frequency
572 * such that ``hz'' would not divide the second evenly into
573 * milliseconds, a periodic adjustment must be applied. Finally,
574 * if we are still adjusting the time (see adjtime()),
575 * ``tickdelta'' may also be added in.
576 */
577 delta = tick;
578
579 #ifndef NTP
580 if (tickfix) {
581 tickfixcnt += tickfix;
582 if (tickfixcnt >= tickfixinterval) {
583 delta++;
584 tickfixcnt -= tickfixinterval;
585 }
586 }
587 #endif /* !NTP */
588 /* Imprecise 4bsd adjtime() handling */
589 if (timedelta != 0) {
590 delta += tickdelta;
591 timedelta -= tickdelta;
592 }
593
594 #ifdef notyet
595 microset();
596 #endif
597
598 #ifndef NTP
599 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
600 #endif
601 BUMPTIME(&mono_time, delta);
602
603 #ifdef NTP
604 time_update = delta;
605
606 /*
607 * Compute the phase adjustment. If the low-order bits
608 * (time_phase) of the update overflow, bump the high-order bits
609 * (time_update).
610 */
611 time_phase += time_adj;
612 if (time_phase <= -FINEUSEC) {
613 ltemp = -time_phase >> SHIFT_SCALE;
614 time_phase += ltemp << SHIFT_SCALE;
615 time_update -= ltemp;
616 } else if (time_phase >= FINEUSEC) {
617 ltemp = time_phase >> SHIFT_SCALE;
618 time_phase -= ltemp << SHIFT_SCALE;
619 time_update += ltemp;
620 }
621
622 #ifdef HIGHBALL
623 /*
624 * If the HIGHBALL board is installed, we need to adjust the
625 * external clock offset in order to close the hardware feedback
626 * loop. This will adjust the external clock phase and frequency
627 * in small amounts. The additional phase noise and frequency
628 * wander this causes should be minimal. We also need to
629 * discipline the kernel time variable, since the PLL is used to
630 * discipline the external clock. If the Highball board is not
631 * present, we discipline kernel time with the PLL as usual. We
632 * assume that the external clock phase adjustment (time_update)
633 * and kernel phase adjustment (clock_cpu) are less than the
634 * value of tick.
635 */
636 clock_offset.tv_usec += time_update;
637 if (clock_offset.tv_usec >= 1000000) {
638 clock_offset.tv_sec++;
639 clock_offset.tv_usec -= 1000000;
640 }
641 if (clock_offset.tv_usec < 0) {
642 clock_offset.tv_sec--;
643 clock_offset.tv_usec += 1000000;
644 }
645 time.tv_usec += clock_cpu;
646 clock_cpu = 0;
647 #else
648 time.tv_usec += time_update;
649 #endif /* HIGHBALL */
650
651 /*
652 * On rollover of the second the phase adjustment to be used for
653 * the next second is calculated. Also, the maximum error is
654 * increased by the tolerance. If the PPS frequency discipline
655 * code is present, the phase is increased to compensate for the
656 * CPU clock oscillator frequency error.
657 *
658 * On a 32-bit machine and given parameters in the timex.h
659 * header file, the maximum phase adjustment is +-512 ms and
660 * maximum frequency offset is a tad less than) +-512 ppm. On a
661 * 64-bit machine, you shouldn't need to ask.
662 */
663 if (time.tv_usec >= 1000000) {
664 time.tv_usec -= 1000000;
665 time.tv_sec++;
666 time_maxerror += time_tolerance >> SHIFT_USEC;
667
668 /*
669 * Leap second processing. If in leap-insert state at
670 * the end of the day, the system clock is set back one
671 * second; if in leap-delete state, the system clock is
672 * set ahead one second. The microtime() routine or
673 * external clock driver will insure that reported time
674 * is always monotonic. The ugly divides should be
675 * replaced.
676 */
677 switch (time_state) {
678 case TIME_OK:
679 if (time_status & STA_INS)
680 time_state = TIME_INS;
681 else if (time_status & STA_DEL)
682 time_state = TIME_DEL;
683 break;
684
685 case TIME_INS:
686 if (time.tv_sec % 86400 == 0) {
687 time.tv_sec--;
688 time_state = TIME_OOP;
689 }
690 break;
691
692 case TIME_DEL:
693 if ((time.tv_sec + 1) % 86400 == 0) {
694 time.tv_sec++;
695 time_state = TIME_WAIT;
696 }
697 break;
698
699 case TIME_OOP:
700 time_state = TIME_WAIT;
701 break;
702
703 case TIME_WAIT:
704 if (!(time_status & (STA_INS | STA_DEL)))
705 time_state = TIME_OK;
706 break;
707 }
708
709 /*
710 * Compute the phase adjustment for the next second. In
711 * PLL mode, the offset is reduced by a fixed factor
712 * times the time constant. In FLL mode the offset is
713 * used directly. In either mode, the maximum phase
714 * adjustment for each second is clamped so as to spread
715 * the adjustment over not more than the number of
716 * seconds between updates.
717 */
718 if (time_offset < 0) {
719 ltemp = -time_offset;
720 if (!(time_status & STA_FLL))
721 ltemp >>= SHIFT_KG + time_constant;
722 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
723 ltemp = (MAXPHASE / MINSEC) <<
724 SHIFT_UPDATE;
725 time_offset += ltemp;
726 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
727 } else if (time_offset > 0) {
728 ltemp = time_offset;
729 if (!(time_status & STA_FLL))
730 ltemp >>= SHIFT_KG + time_constant;
731 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
732 ltemp = (MAXPHASE / MINSEC) <<
733 SHIFT_UPDATE;
734 time_offset -= ltemp;
735 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
736 } else
737 time_adj = 0;
738
739 /*
740 * Compute the frequency estimate and additional phase
741 * adjustment due to frequency error for the next
742 * second. When the PPS signal is engaged, gnaw on the
743 * watchdog counter and update the frequency computed by
744 * the pll and the PPS signal.
745 */
746 #ifdef PPS_SYNC
747 pps_valid++;
748 if (pps_valid == PPS_VALID) {
749 pps_jitter = MAXTIME;
750 pps_stabil = MAXFREQ;
751 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
752 STA_PPSWANDER | STA_PPSERROR);
753 }
754 ltemp = time_freq + pps_freq;
755 #else
756 ltemp = time_freq;
757 #endif /* PPS_SYNC */
758
759 if (ltemp < 0)
760 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
761 else
762 time_adj += ltemp >> (SHIFT_USEC - shifthz);
763 time_adj += (long)fixtick << shifthz;
764
765 /*
766 * When the CPU clock oscillator frequency is not a
767 * power of 2 in Hz, shifthz is only an approximate
768 * scale factor.
769 *
770 * To determine the adjustment, you can do the following:
771 * bc -q
772 * scale=24
773 * obase=2
774 * idealhz/realhz
775 * where `idealhz' is the next higher power of 2, and `realhz'
776 * is the actual value. You may need to factor this result
777 * into a sequence of 2 multipliers to get better precision.
778 *
779 * Likewise, the error can be calculated with (e.g. for 100Hz):
780 * bc -q
781 * scale=24
782 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
783 * (and then multiply by 1000000 to get ppm).
784 */
785 switch (hz) {
786 case 60:
787 /* A factor of 1.000100010001 gives about 15ppm
788 error. */
789 if (time_adj < 0) {
790 time_adj -= (-time_adj >> 4);
791 time_adj -= (-time_adj >> 8);
792 } else {
793 time_adj += (time_adj >> 4);
794 time_adj += (time_adj >> 8);
795 }
796 break;
797
798 case 96:
799 /* A factor of 1.0101010101 gives about 244ppm error. */
800 if (time_adj < 0) {
801 time_adj -= (-time_adj >> 2);
802 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
803 } else {
804 time_adj += (time_adj >> 2);
805 time_adj += (time_adj >> 4) + (time_adj >> 8);
806 }
807 break;
808
809 case 100:
810 /* A factor of 1.010001111010111 gives about 1ppm
811 error. */
812 if (time_adj < 0) {
813 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
814 time_adj += (-time_adj >> 10);
815 } else {
816 time_adj += (time_adj >> 2) + (time_adj >> 5);
817 time_adj -= (time_adj >> 10);
818 }
819 break;
820
821 case 1000:
822 /* A factor of 1.000001100010100001 gives about 50ppm
823 error. */
824 if (time_adj < 0) {
825 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
826 time_adj -= (-time_adj >> 7);
827 } else {
828 time_adj += (time_adj >> 6) + (time_adj >> 11);
829 time_adj += (time_adj >> 7);
830 }
831 break;
832
833 case 1200:
834 /* A factor of 1.1011010011100001 gives about 64ppm
835 error. */
836 if (time_adj < 0) {
837 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
838 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
839 } else {
840 time_adj += (time_adj >> 1) + (time_adj >> 6);
841 time_adj += (time_adj >> 3) + (time_adj >> 10);
842 }
843 break;
844 }
845
846 #ifdef EXT_CLOCK
847 /*
848 * If an external clock is present, it is necessary to
849 * discipline the kernel time variable anyway, since not
850 * all system components use the microtime() interface.
851 * Here, the time offset between the external clock and
852 * kernel time variable is computed every so often.
853 */
854 clock_count++;
855 if (clock_count > CLOCK_INTERVAL) {
856 clock_count = 0;
857 microtime(&clock_ext);
858 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
859 delta.tv_usec = clock_ext.tv_usec -
860 time.tv_usec;
861 if (delta.tv_usec < 0)
862 delta.tv_sec--;
863 if (delta.tv_usec >= 500000) {
864 delta.tv_usec -= 1000000;
865 delta.tv_sec++;
866 }
867 if (delta.tv_usec < -500000) {
868 delta.tv_usec += 1000000;
869 delta.tv_sec--;
870 }
871 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
872 delta.tv_usec > MAXPHASE) ||
873 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
874 delta.tv_usec < -MAXPHASE)) {
875 time = clock_ext;
876 delta.tv_sec = 0;
877 delta.tv_usec = 0;
878 }
879 #ifdef HIGHBALL
880 clock_cpu = delta.tv_usec;
881 #else /* HIGHBALL */
882 hardupdate(delta.tv_usec);
883 #endif /* HIGHBALL */
884 }
885 #endif /* EXT_CLOCK */
886 }
887
888 #endif /* NTP */
889
890 /*
891 * Process callouts at a very low cpu priority, so we don't keep the
892 * relatively high clock interrupt priority any longer than necessary.
893 */
894 CALLWHEEL_LOCK(s);
895 hardclock_ticks++;
896 if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
897 CALLWHEEL_UNLOCK(s);
898 if (CLKF_BASEPRI(frame)) {
899 /*
900 * Save the overhead of a software interrupt;
901 * it will happen as soon as we return, so do
902 * it now.
903 *
904 * NOTE: If we're at ``base priority'', softclock()
905 * was not already running.
906 */
907 spllowersoftclock();
908 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
909 softclock(NULL);
910 KERNEL_UNLOCK();
911 } else {
912 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
913 softintr_schedule(softclock_si);
914 #else
915 setsoftclock();
916 #endif
917 }
918 return;
919 } else if (softclock_running == 0 &&
920 (softclock_ticks + 1) == hardclock_ticks) {
921 softclock_ticks++;
922 }
923 CALLWHEEL_UNLOCK(s);
924 }
925
926 /*
927 * Software (low priority) clock interrupt.
928 * Run periodic events from timeout queue.
929 */
930 /*ARGSUSED*/
931 void
932 softclock(void *v)
933 {
934 struct callout_queue *bucket;
935 struct callout *c;
936 void (*func)(void *);
937 void *arg;
938 int s, idx;
939 int steps = 0;
940
941 CALLWHEEL_LOCK(s);
942
943 softclock_running = 1;
944
945 #ifdef CALLWHEEL_STATS
946 callwheel_softclocks.ev_count++;
947 #endif
948
949 while (softclock_ticks != hardclock_ticks) {
950 softclock_ticks++;
951 idx = (int)(softclock_ticks & callwheelmask);
952 bucket = &callwheel[idx];
953 c = TAILQ_FIRST(&bucket->cq_q);
954 if (c == NULL) {
955 #ifdef CALLWHEEL_STATS
956 callwheel_softempty.ev_count++;
957 #endif
958 continue;
959 }
960 if (softclock_ticks < bucket->cq_hint) {
961 #ifdef CALLWHEEL_STATS
962 callwheel_hintworked.ev_count++;
963 #endif
964 continue;
965 }
966 bucket->cq_hint = UQUAD_MAX;
967 while (c != NULL) {
968 #ifdef CALLWHEEL_STATS
969 callwheel_softchecks.ev_count++;
970 #endif
971 if (c->c_time != softclock_ticks) {
972 if (c->c_time < bucket->cq_hint)
973 bucket->cq_hint = c->c_time;
974 c = TAILQ_NEXT(c, c_link);
975 if (++steps >= MAX_SOFTCLOCK_STEPS) {
976 nextsoftcheck = c;
977 /* Give interrupts a chance. */
978 CALLWHEEL_UNLOCK(s);
979 CALLWHEEL_LOCK(s);
980 c = nextsoftcheck;
981 steps = 0;
982 }
983 } else {
984 nextsoftcheck = TAILQ_NEXT(c, c_link);
985 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
986 #ifdef CALLWHEEL_STATS
987 callwheel_sizes[idx]--;
988 callwheel_fired.ev_count++;
989 callwheel_count.ev_count--;
990 #endif
991 func = c->c_func;
992 arg = c->c_arg;
993 c->c_func = NULL;
994 c->c_flags &= ~CALLOUT_PENDING;
995 CALLWHEEL_UNLOCK(s);
996 (*func)(arg);
997 CALLWHEEL_LOCK(s);
998 steps = 0;
999 c = nextsoftcheck;
1000 }
1001 }
1002 if (TAILQ_EMPTY(&bucket->cq_q))
1003 bucket->cq_hint = UQUAD_MAX;
1004 }
1005 nextsoftcheck = NULL;
1006 softclock_running = 0;
1007 CALLWHEEL_UNLOCK(s);
1008 }
1009
1010 /*
1011 * callout_setsize:
1012 *
1013 * Determine how many callwheels are necessary and
1014 * set hash mask. Called from allocsys().
1015 */
1016 void
1017 callout_setsize(void)
1018 {
1019
1020 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
1021 /* loop */ ;
1022 callwheelmask = callwheelsize - 1;
1023 }
1024
1025 /*
1026 * callout_startup:
1027 *
1028 * Initialize the callwheel buckets.
1029 */
1030 void
1031 callout_startup(void)
1032 {
1033 int i;
1034
1035 for (i = 0; i < callwheelsize; i++) {
1036 callwheel[i].cq_hint = UQUAD_MAX;
1037 TAILQ_INIT(&callwheel[i].cq_q);
1038 }
1039
1040 simple_lock_init(&callwheel_slock);
1041
1042 #ifdef CALLWHEEL_STATS
1043 evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
1044 NULL, "callwheel", "collisions");
1045 evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
1046 NULL, "callwheel", "maxlength");
1047 evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
1048 NULL, "callwheel", "count");
1049 evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
1050 NULL, "callwheel", "established");
1051 evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
1052 NULL, "callwheel", "fired");
1053 evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
1054 NULL, "callwheel", "disestablished");
1055 evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
1056 NULL, "callwheel", "changed");
1057 evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
1058 NULL, "callwheel", "softclocks");
1059 evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
1060 NULL, "callwheel", "softempty");
1061 evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
1062 NULL, "callwheel", "hintworked");
1063 #endif /* CALLWHEEL_STATS */
1064 }
1065
1066 /*
1067 * callout_init:
1068 *
1069 * Initialize a callout structure so that it can be used
1070 * by callout_reset() and callout_stop().
1071 */
1072 void
1073 callout_init(struct callout *c)
1074 {
1075
1076 memset(c, 0, sizeof(*c));
1077 }
1078
1079 /*
1080 * callout_reset:
1081 *
1082 * Establish or change a timeout.
1083 */
1084 void
1085 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1086 {
1087 struct callout_queue *bucket;
1088 int s;
1089
1090 if (ticks <= 0)
1091 ticks = 1;
1092
1093 CALLWHEEL_LOCK(s);
1094
1095 /*
1096 * If this callout's timer is already running, cancel it
1097 * before we modify it.
1098 */
1099 if (c->c_flags & CALLOUT_PENDING) {
1100 callout_stop_locked(c); /* Already locked */
1101 #ifdef CALLWHEEL_STATS
1102 callwheel_changed.ev_count++;
1103 #endif
1104 }
1105
1106 c->c_arg = arg;
1107 c->c_func = func;
1108 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1109 c->c_time = hardclock_ticks + ticks;
1110
1111 bucket = &callwheel[c->c_time & callwheelmask];
1112
1113 #ifdef CALLWHEEL_STATS
1114 if (! TAILQ_EMPTY(&bucket->cq_q))
1115 callwheel_collisions.ev_count++;
1116 #endif
1117
1118 TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
1119 if (c->c_time < bucket->cq_hint)
1120 bucket->cq_hint = c->c_time;
1121
1122 #ifdef CALLWHEEL_STATS
1123 callwheel_count.ev_count++;
1124 callwheel_established.ev_count++;
1125 if (++callwheel_sizes[c->c_time & callwheelmask] >
1126 callwheel_maxlength.ev_count)
1127 callwheel_maxlength.ev_count =
1128 callwheel_sizes[c->c_time & callwheelmask];
1129 #endif
1130
1131 CALLWHEEL_UNLOCK(s);
1132 }
1133
1134 /*
1135 * callout_stop_locked:
1136 *
1137 * Disestablish a timeout. Callwheel is locked.
1138 */
1139 static void
1140 callout_stop_locked(struct callout *c)
1141 {
1142 struct callout_queue *bucket;
1143
1144 /*
1145 * Don't attempt to delete a callout that's not on the queue.
1146 */
1147 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1148 c->c_flags &= ~CALLOUT_ACTIVE;
1149 return;
1150 }
1151
1152 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1153
1154 if (nextsoftcheck == c)
1155 nextsoftcheck = TAILQ_NEXT(c, c_link);
1156
1157 bucket = &callwheel[c->c_time & callwheelmask];
1158 TAILQ_REMOVE(&bucket->cq_q, c, c_link);
1159 if (TAILQ_EMPTY(&bucket->cq_q))
1160 bucket->cq_hint = UQUAD_MAX;
1161 #ifdef CALLWHEEL_STATS
1162 callwheel_count.ev_count--;
1163 callwheel_disestablished.ev_count++;
1164 callwheel_sizes[c->c_time & callwheelmask]--;
1165 #endif
1166
1167 c->c_func = NULL;
1168 }
1169
1170 /*
1171 * callout_stop:
1172 *
1173 * Disestablish a timeout. Callwheel is unlocked. This is
1174 * the standard entry point.
1175 */
1176 void
1177 callout_stop(struct callout *c)
1178 {
1179 int s;
1180
1181 CALLWHEEL_LOCK(s);
1182 callout_stop_locked(c);
1183 CALLWHEEL_UNLOCK(s);
1184 }
1185
1186 #ifdef CALLWHEEL_STATS
1187 /*
1188 * callout_showstats:
1189 *
1190 * Display callout statistics. Call it from DDB.
1191 */
1192 void
1193 callout_showstats(void)
1194 {
1195 u_int64_t curticks;
1196 int s;
1197
1198 s = splclock();
1199 curticks = softclock_ticks;
1200 splx(s);
1201
1202 printf("Callwheel statistics:\n");
1203 printf("\tCallouts currently queued: %llu\n",
1204 (long long) callwheel_count.ev_count);
1205 printf("\tCallouts established: %llu\n",
1206 (long long) callwheel_established.ev_count);
1207 printf("\tCallouts disestablished: %llu\n",
1208 (long long) callwheel_disestablished.ev_count);
1209 if (callwheel_changed.ev_count != 0)
1210 printf("\t\tOf those, %llu were changes\n",
1211 (long long) callwheel_changed.ev_count);
1212 printf("\tCallouts that fired: %llu\n",
1213 (long long) callwheel_fired.ev_count);
1214 printf("\tNumber of buckets: %d\n", callwheelsize);
1215 printf("\tNumber of hash collisions: %llu\n",
1216 (long long) callwheel_collisions.ev_count);
1217 printf("\tMaximum hash chain length: %llu\n",
1218 (long long) callwheel_maxlength.ev_count);
1219 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1220 (long long) callwheel_softclocks.ev_count,
1221 (long long) callwheel_softchecks.ev_count);
1222 printf("\t\tEmpty buckets seen: %llu\n",
1223 (long long) callwheel_softempty.ev_count);
1224 printf("\t\tTimes hint saved scan: %llu\n",
1225 (long long) callwheel_hintworked.ev_count);
1226 }
1227 #endif
1228
1229 /*
1230 * Compute number of hz until specified time. Used to compute second
1231 * argument to callout_reset() from an absolute time.
1232 */
1233 int
1234 hzto(struct timeval *tv)
1235 {
1236 unsigned long ticks;
1237 long sec, usec;
1238 int s;
1239
1240 /*
1241 * If the number of usecs in the whole seconds part of the time
1242 * difference fits in a long, then the total number of usecs will
1243 * fit in an unsigned long. Compute the total and convert it to
1244 * ticks, rounding up and adding 1 to allow for the current tick
1245 * to expire. Rounding also depends on unsigned long arithmetic
1246 * to avoid overflow.
1247 *
1248 * Otherwise, if the number of ticks in the whole seconds part of
1249 * the time difference fits in a long, then convert the parts to
1250 * ticks separately and add, using similar rounding methods and
1251 * overflow avoidance. This method would work in the previous
1252 * case, but it is slightly slower and assume that hz is integral.
1253 *
1254 * Otherwise, round the time difference down to the maximum
1255 * representable value.
1256 *
1257 * If ints are 32-bit, then the maximum value for any timeout in
1258 * 10ms ticks is 248 days.
1259 */
1260 s = splclock();
1261 sec = tv->tv_sec - time.tv_sec;
1262 usec = tv->tv_usec - time.tv_usec;
1263 splx(s);
1264
1265 if (usec < 0) {
1266 sec--;
1267 usec += 1000000;
1268 }
1269
1270 if (sec < 0 || (sec == 0 && usec <= 0)) {
1271 /*
1272 * Would expire now or in the past. Return 0 ticks.
1273 * This is different from the legacy hzto() interface,
1274 * and callers need to check for it.
1275 */
1276 ticks = 0;
1277 } else if (sec <= (LONG_MAX / 1000000))
1278 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1279 / tick) + 1;
1280 else if (sec <= (LONG_MAX / hz))
1281 ticks = (sec * hz) +
1282 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1283 else
1284 ticks = LONG_MAX;
1285
1286 if (ticks > INT_MAX)
1287 ticks = INT_MAX;
1288
1289 return ((int)ticks);
1290 }
1291
1292 /*
1293 * Start profiling on a process.
1294 *
1295 * Kernel profiling passes proc0 which never exits and hence
1296 * keeps the profile clock running constantly.
1297 */
1298 void
1299 startprofclock(struct proc *p)
1300 {
1301
1302 if ((p->p_flag & P_PROFIL) == 0) {
1303 p->p_flag |= P_PROFIL;
1304 /*
1305 * This is only necessary if using the clock as the
1306 * profiling source.
1307 */
1308 if (++profprocs == 1 && stathz != 0)
1309 psdiv = psratio;
1310 }
1311 }
1312
1313 /*
1314 * Stop profiling on a process.
1315 */
1316 void
1317 stopprofclock(struct proc *p)
1318 {
1319
1320 if (p->p_flag & P_PROFIL) {
1321 p->p_flag &= ~P_PROFIL;
1322 /*
1323 * This is only necessary if using the clock as the
1324 * profiling source.
1325 */
1326 if (--profprocs == 0 && stathz != 0)
1327 psdiv = 1;
1328 }
1329 }
1330
1331 #if defined(PERFCTRS)
1332 /*
1333 * Independent profiling "tick" in case we're using a separate
1334 * clock or profiling event source. Currently, that's just
1335 * performance counters--hence the wrapper.
1336 */
1337 void
1338 proftick(struct clockframe *frame)
1339 {
1340 #ifdef GPROF
1341 struct gmonparam *g;
1342 intptr_t i;
1343 #endif
1344 struct proc *p;
1345
1346 p = curproc;
1347 if (CLKF_USERMODE(frame)) {
1348 if (p->p_flag & P_PROFIL)
1349 addupc_intr(p, CLKF_PC(frame));
1350 } else {
1351 #ifdef GPROF
1352 g = &_gmonparam;
1353 if (g->state == GMON_PROF_ON) {
1354 i = CLKF_PC(frame) - g->lowpc;
1355 if (i < g->textsize) {
1356 i /= HISTFRACTION * sizeof(*g->kcount);
1357 g->kcount[i]++;
1358 }
1359 }
1360 #endif
1361 #ifdef PROC_PC
1362 if (p && p->p_flag & P_PROFIL)
1363 addupc_intr(p, PROC_PC(p));
1364 #endif
1365 }
1366 }
1367 #endif
1368
1369 /*
1370 * Statistics clock. Grab profile sample, and if divider reaches 0,
1371 * do process and kernel statistics.
1372 */
1373 void
1374 statclock(struct clockframe *frame)
1375 {
1376 #ifdef GPROF
1377 struct gmonparam *g;
1378 intptr_t i;
1379 #endif
1380 struct cpu_info *ci = curcpu();
1381 struct schedstate_percpu *spc = &ci->ci_schedstate;
1382 struct lwp *l;
1383 struct proc *p;
1384
1385 /*
1386 * Notice changes in divisor frequency, and adjust clock
1387 * frequency accordingly.
1388 */
1389 if (spc->spc_psdiv != psdiv) {
1390 spc->spc_psdiv = psdiv;
1391 spc->spc_pscnt = psdiv;
1392 if (psdiv == 1) {
1393 setstatclockrate(stathz);
1394 } else {
1395 setstatclockrate(profhz);
1396 }
1397 }
1398 l = curlwp;
1399 p = (l ? l->l_proc : 0);
1400 if (CLKF_USERMODE(frame)) {
1401 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1402 addupc_intr(p, CLKF_PC(frame));
1403 if (--spc->spc_pscnt > 0)
1404 return;
1405 /*
1406 * Came from user mode; CPU was in user state.
1407 * If this process is being profiled record the tick.
1408 */
1409 p->p_uticks++;
1410 if (p->p_nice > NZERO)
1411 spc->spc_cp_time[CP_NICE]++;
1412 else
1413 spc->spc_cp_time[CP_USER]++;
1414 } else {
1415 #ifdef GPROF
1416 /*
1417 * Kernel statistics are just like addupc_intr, only easier.
1418 */
1419 g = &_gmonparam;
1420 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1421 i = CLKF_PC(frame) - g->lowpc;
1422 if (i < g->textsize) {
1423 i /= HISTFRACTION * sizeof(*g->kcount);
1424 g->kcount[i]++;
1425 }
1426 }
1427 #endif
1428 #ifdef LWP_PC
1429 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1430 addupc_intr(p, LWP_PC(l));
1431 #endif
1432 if (--spc->spc_pscnt > 0)
1433 return;
1434 /*
1435 * Came from kernel mode, so we were:
1436 * - handling an interrupt,
1437 * - doing syscall or trap work on behalf of the current
1438 * user process, or
1439 * - spinning in the idle loop.
1440 * Whichever it is, charge the time as appropriate.
1441 * Note that we charge interrupts to the current process,
1442 * regardless of whether they are ``for'' that process,
1443 * so that we know how much of its real time was spent
1444 * in ``non-process'' (i.e., interrupt) work.
1445 */
1446 if (CLKF_INTR(frame)) {
1447 if (p != NULL)
1448 p->p_iticks++;
1449 spc->spc_cp_time[CP_INTR]++;
1450 } else if (p != NULL) {
1451 p->p_sticks++;
1452 spc->spc_cp_time[CP_SYS]++;
1453 } else
1454 spc->spc_cp_time[CP_IDLE]++;
1455 }
1456 spc->spc_pscnt = psdiv;
1457
1458 if (l != NULL) {
1459 ++p->p_cpticks;
1460 /*
1461 * If no separate schedclock is provided, call it here
1462 * at ~~12-25 Hz, ~~16 Hz is best
1463 */
1464 if (schedhz == 0)
1465 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1466 schedclock(l);
1467 }
1468 }
1469
1470
1471 #ifdef NTP /* NTP phase-locked loop in kernel */
1472
1473 /*
1474 * hardupdate() - local clock update
1475 *
1476 * This routine is called by ntp_adjtime() to update the local clock
1477 * phase and frequency. The implementation is of an adaptive-parameter,
1478 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1479 * time and frequency offset estimates for each call. If the kernel PPS
1480 * discipline code is configured (PPS_SYNC), the PPS signal itself
1481 * determines the new time offset, instead of the calling argument.
1482 * Presumably, calls to ntp_adjtime() occur only when the caller
1483 * believes the local clock is valid within some bound (+-128 ms with
1484 * NTP). If the caller's time is far different than the PPS time, an
1485 * argument will ensue, and it's not clear who will lose.
1486 *
1487 * For uncompensated quartz crystal oscillatores and nominal update
1488 * intervals less than 1024 s, operation should be in phase-lock mode
1489 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1490 * intervals greater than thiss, operation should be in frequency-lock
1491 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1492 *
1493 * Note: splclock() is in effect.
1494 */
1495 void
1496 hardupdate(long offset)
1497 {
1498 long ltemp, mtemp;
1499
1500 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1501 return;
1502 ltemp = offset;
1503 #ifdef PPS_SYNC
1504 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1505 ltemp = pps_offset;
1506 #endif /* PPS_SYNC */
1507
1508 /*
1509 * Scale the phase adjustment and clamp to the operating range.
1510 */
1511 if (ltemp > MAXPHASE)
1512 time_offset = MAXPHASE << SHIFT_UPDATE;
1513 else if (ltemp < -MAXPHASE)
1514 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1515 else
1516 time_offset = ltemp << SHIFT_UPDATE;
1517
1518 /*
1519 * Select whether the frequency is to be controlled and in which
1520 * mode (PLL or FLL). Clamp to the operating range. Ugly
1521 * multiply/divide should be replaced someday.
1522 */
1523 if (time_status & STA_FREQHOLD || time_reftime == 0)
1524 time_reftime = time.tv_sec;
1525 mtemp = time.tv_sec - time_reftime;
1526 time_reftime = time.tv_sec;
1527 if (time_status & STA_FLL) {
1528 if (mtemp >= MINSEC) {
1529 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1530 SHIFT_UPDATE));
1531 if (ltemp < 0)
1532 time_freq -= -ltemp >> SHIFT_KH;
1533 else
1534 time_freq += ltemp >> SHIFT_KH;
1535 }
1536 } else {
1537 if (mtemp < MAXSEC) {
1538 ltemp *= mtemp;
1539 if (ltemp < 0)
1540 time_freq -= -ltemp >> (time_constant +
1541 time_constant + SHIFT_KF -
1542 SHIFT_USEC);
1543 else
1544 time_freq += ltemp >> (time_constant +
1545 time_constant + SHIFT_KF -
1546 SHIFT_USEC);
1547 }
1548 }
1549 if (time_freq > time_tolerance)
1550 time_freq = time_tolerance;
1551 else if (time_freq < -time_tolerance)
1552 time_freq = -time_tolerance;
1553 }
1554
1555 #ifdef PPS_SYNC
1556 /*
1557 * hardpps() - discipline CPU clock oscillator to external PPS signal
1558 *
1559 * This routine is called at each PPS interrupt in order to discipline
1560 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1561 * and leaves it in a handy spot for the hardclock() routine. It
1562 * integrates successive PPS phase differences and calculates the
1563 * frequency offset. This is used in hardclock() to discipline the CPU
1564 * clock oscillator so that intrinsic frequency error is cancelled out.
1565 * The code requires the caller to capture the time and hardware counter
1566 * value at the on-time PPS signal transition.
1567 *
1568 * Note that, on some Unix systems, this routine runs at an interrupt
1569 * priority level higher than the timer interrupt routine hardclock().
1570 * Therefore, the variables used are distinct from the hardclock()
1571 * variables, except for certain exceptions: The PPS frequency pps_freq
1572 * and phase pps_offset variables are determined by this routine and
1573 * updated atomically. The time_tolerance variable can be considered a
1574 * constant, since it is infrequently changed, and then only when the
1575 * PPS signal is disabled. The watchdog counter pps_valid is updated
1576 * once per second by hardclock() and is atomically cleared in this
1577 * routine.
1578 */
1579 void
1580 hardpps(struct timeval *tvp, /* time at PPS */
1581 long usec /* hardware counter at PPS */)
1582 {
1583 long u_usec, v_usec, bigtick;
1584 long cal_sec, cal_usec;
1585
1586 /*
1587 * An occasional glitch can be produced when the PPS interrupt
1588 * occurs in the hardclock() routine before the time variable is
1589 * updated. Here the offset is discarded when the difference
1590 * between it and the last one is greater than tick/2, but not
1591 * if the interval since the first discard exceeds 30 s.
1592 */
1593 time_status |= STA_PPSSIGNAL;
1594 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1595 pps_valid = 0;
1596 u_usec = -tvp->tv_usec;
1597 if (u_usec < -500000)
1598 u_usec += 1000000;
1599 v_usec = pps_offset - u_usec;
1600 if (v_usec < 0)
1601 v_usec = -v_usec;
1602 if (v_usec > (tick >> 1)) {
1603 if (pps_glitch > MAXGLITCH) {
1604 pps_glitch = 0;
1605 pps_tf[2] = u_usec;
1606 pps_tf[1] = u_usec;
1607 } else {
1608 pps_glitch++;
1609 u_usec = pps_offset;
1610 }
1611 } else
1612 pps_glitch = 0;
1613
1614 /*
1615 * A three-stage median filter is used to help deglitch the pps
1616 * time. The median sample becomes the time offset estimate; the
1617 * difference between the other two samples becomes the time
1618 * dispersion (jitter) estimate.
1619 */
1620 pps_tf[2] = pps_tf[1];
1621 pps_tf[1] = pps_tf[0];
1622 pps_tf[0] = u_usec;
1623 if (pps_tf[0] > pps_tf[1]) {
1624 if (pps_tf[1] > pps_tf[2]) {
1625 pps_offset = pps_tf[1]; /* 0 1 2 */
1626 v_usec = pps_tf[0] - pps_tf[2];
1627 } else if (pps_tf[2] > pps_tf[0]) {
1628 pps_offset = pps_tf[0]; /* 2 0 1 */
1629 v_usec = pps_tf[2] - pps_tf[1];
1630 } else {
1631 pps_offset = pps_tf[2]; /* 0 2 1 */
1632 v_usec = pps_tf[0] - pps_tf[1];
1633 }
1634 } else {
1635 if (pps_tf[1] < pps_tf[2]) {
1636 pps_offset = pps_tf[1]; /* 2 1 0 */
1637 v_usec = pps_tf[2] - pps_tf[0];
1638 } else if (pps_tf[2] < pps_tf[0]) {
1639 pps_offset = pps_tf[0]; /* 1 0 2 */
1640 v_usec = pps_tf[1] - pps_tf[2];
1641 } else {
1642 pps_offset = pps_tf[2]; /* 1 2 0 */
1643 v_usec = pps_tf[1] - pps_tf[0];
1644 }
1645 }
1646 if (v_usec > MAXTIME)
1647 pps_jitcnt++;
1648 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1649 if (v_usec < 0)
1650 pps_jitter -= -v_usec >> PPS_AVG;
1651 else
1652 pps_jitter += v_usec >> PPS_AVG;
1653 if (pps_jitter > (MAXTIME >> 1))
1654 time_status |= STA_PPSJITTER;
1655
1656 /*
1657 * During the calibration interval adjust the starting time when
1658 * the tick overflows. At the end of the interval compute the
1659 * duration of the interval and the difference of the hardware
1660 * counters at the beginning and end of the interval. This code
1661 * is deliciously complicated by the fact valid differences may
1662 * exceed the value of tick when using long calibration
1663 * intervals and small ticks. Note that the counter can be
1664 * greater than tick if caught at just the wrong instant, but
1665 * the values returned and used here are correct.
1666 */
1667 bigtick = (long)tick << SHIFT_USEC;
1668 pps_usec -= pps_freq;
1669 if (pps_usec >= bigtick)
1670 pps_usec -= bigtick;
1671 if (pps_usec < 0)
1672 pps_usec += bigtick;
1673 pps_time.tv_sec++;
1674 pps_count++;
1675 if (pps_count < (1 << pps_shift))
1676 return;
1677 pps_count = 0;
1678 pps_calcnt++;
1679 u_usec = usec << SHIFT_USEC;
1680 v_usec = pps_usec - u_usec;
1681 if (v_usec >= bigtick >> 1)
1682 v_usec -= bigtick;
1683 if (v_usec < -(bigtick >> 1))
1684 v_usec += bigtick;
1685 if (v_usec < 0)
1686 v_usec = -(-v_usec >> pps_shift);
1687 else
1688 v_usec = v_usec >> pps_shift;
1689 pps_usec = u_usec;
1690 cal_sec = tvp->tv_sec;
1691 cal_usec = tvp->tv_usec;
1692 cal_sec -= pps_time.tv_sec;
1693 cal_usec -= pps_time.tv_usec;
1694 if (cal_usec < 0) {
1695 cal_usec += 1000000;
1696 cal_sec--;
1697 }
1698 pps_time = *tvp;
1699
1700 /*
1701 * Check for lost interrupts, noise, excessive jitter and
1702 * excessive frequency error. The number of timer ticks during
1703 * the interval may vary +-1 tick. Add to this a margin of one
1704 * tick for the PPS signal jitter and maximum frequency
1705 * deviation. If the limits are exceeded, the calibration
1706 * interval is reset to the minimum and we start over.
1707 */
1708 u_usec = (long)tick << 1;
1709 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1710 || (cal_sec == 0 && cal_usec < u_usec))
1711 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1712 pps_errcnt++;
1713 pps_shift = PPS_SHIFT;
1714 pps_intcnt = 0;
1715 time_status |= STA_PPSERROR;
1716 return;
1717 }
1718
1719 /*
1720 * A three-stage median filter is used to help deglitch the pps
1721 * frequency. The median sample becomes the frequency offset
1722 * estimate; the difference between the other two samples
1723 * becomes the frequency dispersion (stability) estimate.
1724 */
1725 pps_ff[2] = pps_ff[1];
1726 pps_ff[1] = pps_ff[0];
1727 pps_ff[0] = v_usec;
1728 if (pps_ff[0] > pps_ff[1]) {
1729 if (pps_ff[1] > pps_ff[2]) {
1730 u_usec = pps_ff[1]; /* 0 1 2 */
1731 v_usec = pps_ff[0] - pps_ff[2];
1732 } else if (pps_ff[2] > pps_ff[0]) {
1733 u_usec = pps_ff[0]; /* 2 0 1 */
1734 v_usec = pps_ff[2] - pps_ff[1];
1735 } else {
1736 u_usec = pps_ff[2]; /* 0 2 1 */
1737 v_usec = pps_ff[0] - pps_ff[1];
1738 }
1739 } else {
1740 if (pps_ff[1] < pps_ff[2]) {
1741 u_usec = pps_ff[1]; /* 2 1 0 */
1742 v_usec = pps_ff[2] - pps_ff[0];
1743 } else if (pps_ff[2] < pps_ff[0]) {
1744 u_usec = pps_ff[0]; /* 1 0 2 */
1745 v_usec = pps_ff[1] - pps_ff[2];
1746 } else {
1747 u_usec = pps_ff[2]; /* 1 2 0 */
1748 v_usec = pps_ff[1] - pps_ff[0];
1749 }
1750 }
1751
1752 /*
1753 * Here the frequency dispersion (stability) is updated. If it
1754 * is less than one-fourth the maximum (MAXFREQ), the frequency
1755 * offset is updated as well, but clamped to the tolerance. It
1756 * will be processed later by the hardclock() routine.
1757 */
1758 v_usec = (v_usec >> 1) - pps_stabil;
1759 if (v_usec < 0)
1760 pps_stabil -= -v_usec >> PPS_AVG;
1761 else
1762 pps_stabil += v_usec >> PPS_AVG;
1763 if (pps_stabil > MAXFREQ >> 2) {
1764 pps_stbcnt++;
1765 time_status |= STA_PPSWANDER;
1766 return;
1767 }
1768 if (time_status & STA_PPSFREQ) {
1769 if (u_usec < 0) {
1770 pps_freq -= -u_usec >> PPS_AVG;
1771 if (pps_freq < -time_tolerance)
1772 pps_freq = -time_tolerance;
1773 u_usec = -u_usec;
1774 } else {
1775 pps_freq += u_usec >> PPS_AVG;
1776 if (pps_freq > time_tolerance)
1777 pps_freq = time_tolerance;
1778 }
1779 }
1780
1781 /*
1782 * Here the calibration interval is adjusted. If the maximum
1783 * time difference is greater than tick / 4, reduce the interval
1784 * by half. If this is not the case for four consecutive
1785 * intervals, double the interval.
1786 */
1787 if (u_usec << pps_shift > bigtick >> 2) {
1788 pps_intcnt = 0;
1789 if (pps_shift > PPS_SHIFT)
1790 pps_shift--;
1791 } else if (pps_intcnt >= 4) {
1792 pps_intcnt = 0;
1793 if (pps_shift < PPS_SHIFTMAX)
1794 pps_shift++;
1795 } else
1796 pps_intcnt++;
1797 }
1798 #endif /* PPS_SYNC */
1799 #endif /* NTP */
1800
1801 /*
1802 * Return information about system clocks.
1803 */
1804 int
1805 sysctl_clockrate(void *where, size_t *sizep)
1806 {
1807 struct clockinfo clkinfo;
1808
1809 /*
1810 * Construct clockinfo structure.
1811 */
1812 clkinfo.tick = tick;
1813 clkinfo.tickadj = tickadj;
1814 clkinfo.hz = hz;
1815 clkinfo.profhz = profhz;
1816 clkinfo.stathz = stathz ? stathz : hz;
1817 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1818 }
1819