Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.84
      1 /*	$NetBSD: kern_clock.c,v 1.84 2003/02/04 01:21:04 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.84 2003/02/04 01:21:04 thorpej Exp $");
     82 
     83 #include "opt_ntp.h"
     84 #include "opt_perfctrs.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/dkstat.h>
     89 #include <sys/callout.h>
     90 #include <sys/kernel.h>
     91 #include <sys/proc.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/signalvar.h>
     94 #include <sys/sysctl.h>
     95 #include <sys/timex.h>
     96 #include <sys/sched.h>
     97 #include <sys/time.h>
     98 
     99 #include <machine/cpu.h>
    100 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    101 #include <machine/intr.h>
    102 #endif
    103 
    104 #ifdef GPROF
    105 #include <sys/gmon.h>
    106 #endif
    107 
    108 /*
    109  * Clock handling routines.
    110  *
    111  * This code is written to operate with two timers that run independently of
    112  * each other.  The main clock, running hz times per second, is used to keep
    113  * track of real time.  The second timer handles kernel and user profiling,
    114  * and does resource use estimation.  If the second timer is programmable,
    115  * it is randomized to avoid aliasing between the two clocks.  For example,
    116  * the randomization prevents an adversary from always giving up the cpu
    117  * just before its quantum expires.  Otherwise, it would never accumulate
    118  * cpu ticks.  The mean frequency of the second timer is stathz.
    119  *
    120  * If no second timer exists, stathz will be zero; in this case we drive
    121  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    122  * do not do it unless absolutely necessary.
    123  *
    124  * The statistics clock may (or may not) be run at a higher rate while
    125  * profiling.  This profile clock runs at profhz.  We require that profhz
    126  * be an integral multiple of stathz.
    127  *
    128  * If the statistics clock is running fast, it must be divided by the ratio
    129  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    130  */
    131 
    132 #ifdef NTP	/* NTP phase-locked loop in kernel */
    133 /*
    134  * Phase/frequency-lock loop (PLL/FLL) definitions
    135  *
    136  * The following variables are read and set by the ntp_adjtime() system
    137  * call.
    138  *
    139  * time_state shows the state of the system clock, with values defined
    140  * in the timex.h header file.
    141  *
    142  * time_status shows the status of the system clock, with bits defined
    143  * in the timex.h header file.
    144  *
    145  * time_offset is used by the PLL/FLL to adjust the system time in small
    146  * increments.
    147  *
    148  * time_constant determines the bandwidth or "stiffness" of the PLL.
    149  *
    150  * time_tolerance determines maximum frequency error or tolerance of the
    151  * CPU clock oscillator and is a property of the architecture; however,
    152  * in principle it could change as result of the presence of external
    153  * discipline signals, for instance.
    154  *
    155  * time_precision is usually equal to the kernel tick variable; however,
    156  * in cases where a precision clock counter or external clock is
    157  * available, the resolution can be much less than this and depend on
    158  * whether the external clock is working or not.
    159  *
    160  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    161  * the kernel once each second to reflect the maximum error bound
    162  * growth.
    163  *
    164  * time_esterror is set and read by the ntp_adjtime() call, but
    165  * otherwise not used by the kernel.
    166  */
    167 int time_state = TIME_OK;	/* clock state */
    168 int time_status = STA_UNSYNC;	/* clock status bits */
    169 long time_offset = 0;		/* time offset (us) */
    170 long time_constant = 0;		/* pll time constant */
    171 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    172 long time_precision = 1;	/* clock precision (us) */
    173 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    174 long time_esterror = MAXPHASE;	/* estimated error (us) */
    175 
    176 /*
    177  * The following variables establish the state of the PLL/FLL and the
    178  * residual time and frequency offset of the local clock. The scale
    179  * factors are defined in the timex.h header file.
    180  *
    181  * time_phase and time_freq are the phase increment and the frequency
    182  * increment, respectively, of the kernel time variable.
    183  *
    184  * time_freq is set via ntp_adjtime() from a value stored in a file when
    185  * the synchronization daemon is first started. Its value is retrieved
    186  * via ntp_adjtime() and written to the file about once per hour by the
    187  * daemon.
    188  *
    189  * time_adj is the adjustment added to the value of tick at each timer
    190  * interrupt and is recomputed from time_phase and time_freq at each
    191  * seconds rollover.
    192  *
    193  * time_reftime is the second's portion of the system time at the last
    194  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    195  * and to increase the time_maxerror as the time since last update
    196  * increases.
    197  */
    198 long time_phase = 0;		/* phase offset (scaled us) */
    199 long time_freq = 0;		/* frequency offset (scaled ppm) */
    200 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    201 long time_reftime = 0;		/* time at last adjustment (s) */
    202 
    203 #ifdef PPS_SYNC
    204 /*
    205  * The following variables are used only if the kernel PPS discipline
    206  * code is configured (PPS_SYNC). The scale factors are defined in the
    207  * timex.h header file.
    208  *
    209  * pps_time contains the time at each calibration interval, as read by
    210  * microtime(). pps_count counts the seconds of the calibration
    211  * interval, the duration of which is nominally pps_shift in powers of
    212  * two.
    213  *
    214  * pps_offset is the time offset produced by the time median filter
    215  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    216  * this filter.
    217  *
    218  * pps_freq is the frequency offset produced by the frequency median
    219  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    220  * by this filter.
    221  *
    222  * pps_usec is latched from a high resolution counter or external clock
    223  * at pps_time. Here we want the hardware counter contents only, not the
    224  * contents plus the time_tv.usec as usual.
    225  *
    226  * pps_valid counts the number of seconds since the last PPS update. It
    227  * is used as a watchdog timer to disable the PPS discipline should the
    228  * PPS signal be lost.
    229  *
    230  * pps_glitch counts the number of seconds since the beginning of an
    231  * offset burst more than tick/2 from current nominal offset. It is used
    232  * mainly to suppress error bursts due to priority conflicts between the
    233  * PPS interrupt and timer interrupt.
    234  *
    235  * pps_intcnt counts the calibration intervals for use in the interval-
    236  * adaptation algorithm. It's just too complicated for words.
    237  */
    238 struct timeval pps_time;	/* kernel time at last interval */
    239 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    240 long pps_offset = 0;		/* pps time offset (us) */
    241 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    242 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    243 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    244 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    245 long pps_usec = 0;		/* microsec counter at last interval */
    246 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    247 int pps_glitch = 0;		/* pps signal glitch counter */
    248 int pps_count = 0;		/* calibration interval counter (s) */
    249 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    250 int pps_intcnt = 0;		/* intervals at current duration */
    251 
    252 /*
    253  * PPS signal quality monitors
    254  *
    255  * pps_jitcnt counts the seconds that have been discarded because the
    256  * jitter measured by the time median filter exceeds the limit MAXTIME
    257  * (100 us).
    258  *
    259  * pps_calcnt counts the frequency calibration intervals, which are
    260  * variable from 4 s to 256 s.
    261  *
    262  * pps_errcnt counts the calibration intervals which have been discarded
    263  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    264  * calibration interval jitter exceeds two ticks.
    265  *
    266  * pps_stbcnt counts the calibration intervals that have been discarded
    267  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    268  */
    269 long pps_jitcnt = 0;		/* jitter limit exceeded */
    270 long pps_calcnt = 0;		/* calibration intervals */
    271 long pps_errcnt = 0;		/* calibration errors */
    272 long pps_stbcnt = 0;		/* stability limit exceeded */
    273 #endif /* PPS_SYNC */
    274 
    275 #ifdef EXT_CLOCK
    276 /*
    277  * External clock definitions
    278  *
    279  * The following definitions and declarations are used only if an
    280  * external clock is configured on the system.
    281  */
    282 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    283 
    284 /*
    285  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    286  * interrupt and decremented once each second.
    287  */
    288 int clock_count = 0;		/* CPU clock counter */
    289 
    290 #ifdef HIGHBALL
    291 /*
    292  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    293  * interface. The clock_offset variable defines the offset between
    294  * system time and the HIGBALL counters. The clock_cpu variable contains
    295  * the offset between the system clock and the HIGHBALL clock for use in
    296  * disciplining the kernel time variable.
    297  */
    298 extern struct timeval clock_offset; /* Highball clock offset */
    299 long clock_cpu = 0;		/* CPU clock adjust */
    300 #endif /* HIGHBALL */
    301 #endif /* EXT_CLOCK */
    302 #endif /* NTP */
    303 
    304 
    305 /*
    306  * Bump a timeval by a small number of usec's.
    307  */
    308 #define BUMPTIME(t, usec) { \
    309 	volatile struct timeval *tp = (t); \
    310 	long us; \
    311  \
    312 	tp->tv_usec = us = tp->tv_usec + (usec); \
    313 	if (us >= 1000000) { \
    314 		tp->tv_usec = us - 1000000; \
    315 		tp->tv_sec++; \
    316 	} \
    317 }
    318 
    319 int	stathz;
    320 int	profhz;
    321 int	profsrc;
    322 int	schedhz;
    323 int	profprocs;
    324 int	hardclock_ticks;
    325 static int psdiv;			/* prof => stat divider */
    326 int	psratio;			/* ratio: prof / stat */
    327 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    328 #ifndef NTP
    329 static int tickfixcnt;			/* accumulated fractional error */
    330 #else
    331 int	fixtick;			/* used by NTP for same */
    332 int	shifthz;
    333 #endif
    334 
    335 /*
    336  * We might want ldd to load the both words from time at once.
    337  * To succeed we need to be quadword aligned.
    338  * The sparc already does that, and that it has worked so far is a fluke.
    339  */
    340 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    341 volatile struct	timeval mono_time;
    342 
    343 void	*softclock_si;
    344 
    345 /*
    346  * Initialize clock frequencies and start both clocks running.
    347  */
    348 void
    349 initclocks(void)
    350 {
    351 	int i;
    352 
    353 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    354 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    355 	if (softclock_si == NULL)
    356 		panic("initclocks: unable to register softclock intr");
    357 #endif
    358 
    359 	/*
    360 	 * Set divisors to 1 (normal case) and let the machine-specific
    361 	 * code do its bit.
    362 	 */
    363 	psdiv = 1;
    364 	cpu_initclocks();
    365 
    366 	/*
    367 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    368 	 */
    369 	i = stathz ? stathz : hz;
    370 	if (profhz == 0)
    371 		profhz = i;
    372 	psratio = profhz / i;
    373 	rrticks = hz / 10;
    374 
    375 #ifdef NTP
    376 	switch (hz) {
    377 	case 1:
    378 		shifthz = SHIFT_SCALE - 0;
    379 		break;
    380 	case 2:
    381 		shifthz = SHIFT_SCALE - 1;
    382 		break;
    383 	case 4:
    384 		shifthz = SHIFT_SCALE - 2;
    385 		break;
    386 	case 8:
    387 		shifthz = SHIFT_SCALE - 3;
    388 		break;
    389 	case 16:
    390 		shifthz = SHIFT_SCALE - 4;
    391 		break;
    392 	case 32:
    393 		shifthz = SHIFT_SCALE - 5;
    394 		break;
    395 	case 60:
    396 	case 64:
    397 		shifthz = SHIFT_SCALE - 6;
    398 		break;
    399 	case 96:
    400 	case 100:
    401 	case 128:
    402 		shifthz = SHIFT_SCALE - 7;
    403 		break;
    404 	case 256:
    405 		shifthz = SHIFT_SCALE - 8;
    406 		break;
    407 	case 512:
    408 		shifthz = SHIFT_SCALE - 9;
    409 		break;
    410 	case 1000:
    411 	case 1024:
    412 		shifthz = SHIFT_SCALE - 10;
    413 		break;
    414 	case 1200:
    415 	case 2048:
    416 		shifthz = SHIFT_SCALE - 11;
    417 		break;
    418 	case 4096:
    419 		shifthz = SHIFT_SCALE - 12;
    420 		break;
    421 	case 8192:
    422 		shifthz = SHIFT_SCALE - 13;
    423 		break;
    424 	case 16384:
    425 		shifthz = SHIFT_SCALE - 14;
    426 		break;
    427 	case 32768:
    428 		shifthz = SHIFT_SCALE - 15;
    429 		break;
    430 	case 65536:
    431 		shifthz = SHIFT_SCALE - 16;
    432 		break;
    433 	default:
    434 		panic("weird hz");
    435 	}
    436 	if (fixtick == 0) {
    437 		/*
    438 		 * Give MD code a chance to set this to a better
    439 		 * value; but, if it doesn't, we should.
    440 		 */
    441 		fixtick = (1000000 - (hz*tick));
    442 	}
    443 #endif
    444 }
    445 
    446 /*
    447  * The real-time timer, interrupting hz times per second.
    448  */
    449 void
    450 hardclock(struct clockframe *frame)
    451 {
    452 	struct lwp *l;
    453 	struct proc *p;
    454 	int delta;
    455 	extern int tickdelta;
    456 	extern long timedelta;
    457 	struct cpu_info *ci = curcpu();
    458 	struct ptimer *pt;
    459 #ifdef NTP
    460 	int time_update;
    461 	int ltemp;
    462 #endif
    463 
    464 	l = curlwp;
    465 	if (l) {
    466 		p = l->l_proc;
    467 		/*
    468 		 * Run current process's virtual and profile time, as needed.
    469 		 */
    470 		if (CLKF_USERMODE(frame) && p->p_timers &&
    471 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    472 			if (itimerdecr(pt, tick) == 0)
    473 				itimerfire(pt);
    474 		if (p->p_timers &&
    475 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    476 			if (itimerdecr(pt, tick) == 0)
    477 				itimerfire(pt);
    478 	}
    479 
    480 	/*
    481 	 * If no separate statistics clock is available, run it from here.
    482 	 */
    483 	if (stathz == 0)
    484 		statclock(frame);
    485 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    486 		roundrobin(ci);
    487 
    488 #if defined(MULTIPROCESSOR)
    489 	/*
    490 	 * If we are not the primary CPU, we're not allowed to do
    491 	 * any more work.
    492 	 */
    493 	if (CPU_IS_PRIMARY(ci) == 0)
    494 		return;
    495 #endif
    496 
    497 	/*
    498 	 * Increment the time-of-day.  The increment is normally just
    499 	 * ``tick''.  If the machine is one which has a clock frequency
    500 	 * such that ``hz'' would not divide the second evenly into
    501 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    502 	 * if we are still adjusting the time (see adjtime()),
    503 	 * ``tickdelta'' may also be added in.
    504 	 */
    505 	hardclock_ticks++;
    506 	delta = tick;
    507 
    508 #ifndef NTP
    509 	if (tickfix) {
    510 		tickfixcnt += tickfix;
    511 		if (tickfixcnt >= tickfixinterval) {
    512 			delta++;
    513 			tickfixcnt -= tickfixinterval;
    514 		}
    515 	}
    516 #endif /* !NTP */
    517 	/* Imprecise 4bsd adjtime() handling */
    518 	if (timedelta != 0) {
    519 		delta += tickdelta;
    520 		timedelta -= tickdelta;
    521 	}
    522 
    523 #ifdef notyet
    524 	microset();
    525 #endif
    526 
    527 #ifndef NTP
    528 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    529 #endif
    530 	BUMPTIME(&mono_time, delta);
    531 
    532 #ifdef NTP
    533 	time_update = delta;
    534 
    535 	/*
    536 	 * Compute the phase adjustment. If the low-order bits
    537 	 * (time_phase) of the update overflow, bump the high-order bits
    538 	 * (time_update).
    539 	 */
    540 	time_phase += time_adj;
    541 	if (time_phase <= -FINEUSEC) {
    542 		ltemp = -time_phase >> SHIFT_SCALE;
    543 		time_phase += ltemp << SHIFT_SCALE;
    544 		time_update -= ltemp;
    545 	} else if (time_phase >= FINEUSEC) {
    546 		ltemp = time_phase >> SHIFT_SCALE;
    547 		time_phase -= ltemp << SHIFT_SCALE;
    548 		time_update += ltemp;
    549 	}
    550 
    551 #ifdef HIGHBALL
    552 	/*
    553 	 * If the HIGHBALL board is installed, we need to adjust the
    554 	 * external clock offset in order to close the hardware feedback
    555 	 * loop. This will adjust the external clock phase and frequency
    556 	 * in small amounts. The additional phase noise and frequency
    557 	 * wander this causes should be minimal. We also need to
    558 	 * discipline the kernel time variable, since the PLL is used to
    559 	 * discipline the external clock. If the Highball board is not
    560 	 * present, we discipline kernel time with the PLL as usual. We
    561 	 * assume that the external clock phase adjustment (time_update)
    562 	 * and kernel phase adjustment (clock_cpu) are less than the
    563 	 * value of tick.
    564 	 */
    565 	clock_offset.tv_usec += time_update;
    566 	if (clock_offset.tv_usec >= 1000000) {
    567 		clock_offset.tv_sec++;
    568 		clock_offset.tv_usec -= 1000000;
    569 	}
    570 	if (clock_offset.tv_usec < 0) {
    571 		clock_offset.tv_sec--;
    572 		clock_offset.tv_usec += 1000000;
    573 	}
    574 	time.tv_usec += clock_cpu;
    575 	clock_cpu = 0;
    576 #else
    577 	time.tv_usec += time_update;
    578 #endif /* HIGHBALL */
    579 
    580 	/*
    581 	 * On rollover of the second the phase adjustment to be used for
    582 	 * the next second is calculated. Also, the maximum error is
    583 	 * increased by the tolerance. If the PPS frequency discipline
    584 	 * code is present, the phase is increased to compensate for the
    585 	 * CPU clock oscillator frequency error.
    586 	 *
    587  	 * On a 32-bit machine and given parameters in the timex.h
    588 	 * header file, the maximum phase adjustment is +-512 ms and
    589 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    590 	 * 64-bit machine, you shouldn't need to ask.
    591 	 */
    592 	if (time.tv_usec >= 1000000) {
    593 		time.tv_usec -= 1000000;
    594 		time.tv_sec++;
    595 		time_maxerror += time_tolerance >> SHIFT_USEC;
    596 
    597 		/*
    598 		 * Leap second processing. If in leap-insert state at
    599 		 * the end of the day, the system clock is set back one
    600 		 * second; if in leap-delete state, the system clock is
    601 		 * set ahead one second. The microtime() routine or
    602 		 * external clock driver will insure that reported time
    603 		 * is always monotonic. The ugly divides should be
    604 		 * replaced.
    605 		 */
    606 		switch (time_state) {
    607 		case TIME_OK:
    608 			if (time_status & STA_INS)
    609 				time_state = TIME_INS;
    610 			else if (time_status & STA_DEL)
    611 				time_state = TIME_DEL;
    612 			break;
    613 
    614 		case TIME_INS:
    615 			if (time.tv_sec % 86400 == 0) {
    616 				time.tv_sec--;
    617 				time_state = TIME_OOP;
    618 			}
    619 			break;
    620 
    621 		case TIME_DEL:
    622 			if ((time.tv_sec + 1) % 86400 == 0) {
    623 				time.tv_sec++;
    624 				time_state = TIME_WAIT;
    625 			}
    626 			break;
    627 
    628 		case TIME_OOP:
    629 			time_state = TIME_WAIT;
    630 			break;
    631 
    632 		case TIME_WAIT:
    633 			if (!(time_status & (STA_INS | STA_DEL)))
    634 				time_state = TIME_OK;
    635 			break;
    636 		}
    637 
    638 		/*
    639 		 * Compute the phase adjustment for the next second. In
    640 		 * PLL mode, the offset is reduced by a fixed factor
    641 		 * times the time constant. In FLL mode the offset is
    642 		 * used directly. In either mode, the maximum phase
    643 		 * adjustment for each second is clamped so as to spread
    644 		 * the adjustment over not more than the number of
    645 		 * seconds between updates.
    646 		 */
    647 		if (time_offset < 0) {
    648 			ltemp = -time_offset;
    649 			if (!(time_status & STA_FLL))
    650 				ltemp >>= SHIFT_KG + time_constant;
    651 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    652 				ltemp = (MAXPHASE / MINSEC) <<
    653 				    SHIFT_UPDATE;
    654 			time_offset += ltemp;
    655 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    656 		} else if (time_offset > 0) {
    657 			ltemp = time_offset;
    658 			if (!(time_status & STA_FLL))
    659 				ltemp >>= SHIFT_KG + time_constant;
    660 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    661 				ltemp = (MAXPHASE / MINSEC) <<
    662 				    SHIFT_UPDATE;
    663 			time_offset -= ltemp;
    664 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    665 		} else
    666 			time_adj = 0;
    667 
    668 		/*
    669 		 * Compute the frequency estimate and additional phase
    670 		 * adjustment due to frequency error for the next
    671 		 * second. When the PPS signal is engaged, gnaw on the
    672 		 * watchdog counter and update the frequency computed by
    673 		 * the pll and the PPS signal.
    674 		 */
    675 #ifdef PPS_SYNC
    676 		pps_valid++;
    677 		if (pps_valid == PPS_VALID) {
    678 			pps_jitter = MAXTIME;
    679 			pps_stabil = MAXFREQ;
    680 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    681 			    STA_PPSWANDER | STA_PPSERROR);
    682 		}
    683 		ltemp = time_freq + pps_freq;
    684 #else
    685 		ltemp = time_freq;
    686 #endif /* PPS_SYNC */
    687 
    688 		if (ltemp < 0)
    689 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    690 		else
    691 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    692 		time_adj += (long)fixtick << shifthz;
    693 
    694 		/*
    695 		 * When the CPU clock oscillator frequency is not a
    696 		 * power of 2 in Hz, shifthz is only an approximate
    697 		 * scale factor.
    698 		 *
    699 		 * To determine the adjustment, you can do the following:
    700 		 *   bc -q
    701 		 *   scale=24
    702 		 *   obase=2
    703 		 *   idealhz/realhz
    704 		 * where `idealhz' is the next higher power of 2, and `realhz'
    705 		 * is the actual value.  You may need to factor this result
    706 		 * into a sequence of 2 multipliers to get better precision.
    707 		 *
    708 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    709 		 *   bc -q
    710 		 *   scale=24
    711 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    712 		 * (and then multiply by 1000000 to get ppm).
    713 		 */
    714 		switch (hz) {
    715 		case 60:
    716 			/* A factor of 1.000100010001 gives about 15ppm
    717 			   error. */
    718 			if (time_adj < 0) {
    719 				time_adj -= (-time_adj >> 4);
    720 				time_adj -= (-time_adj >> 8);
    721 			} else {
    722 				time_adj += (time_adj >> 4);
    723 				time_adj += (time_adj >> 8);
    724 			}
    725 			break;
    726 
    727 		case 96:
    728 			/* A factor of 1.0101010101 gives about 244ppm error. */
    729 			if (time_adj < 0) {
    730 				time_adj -= (-time_adj >> 2);
    731 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    732 			} else {
    733 				time_adj += (time_adj >> 2);
    734 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    735 			}
    736 			break;
    737 
    738 		case 100:
    739 			/* A factor of 1.010001111010111 gives about 1ppm
    740 			   error. */
    741 			if (time_adj < 0) {
    742 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    743 				time_adj += (-time_adj >> 10);
    744 			} else {
    745 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    746 				time_adj -= (time_adj >> 10);
    747 			}
    748 			break;
    749 
    750 		case 1000:
    751 			/* A factor of 1.000001100010100001 gives about 50ppm
    752 			   error. */
    753 			if (time_adj < 0) {
    754 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    755 				time_adj -= (-time_adj >> 7);
    756 			} else {
    757 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    758 				time_adj += (time_adj >> 7);
    759 			}
    760 			break;
    761 
    762 		case 1200:
    763 			/* A factor of 1.1011010011100001 gives about 64ppm
    764 			   error. */
    765 			if (time_adj < 0) {
    766 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    767 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    768 			} else {
    769 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    770 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    771 			}
    772 			break;
    773 		}
    774 
    775 #ifdef EXT_CLOCK
    776 		/*
    777 		 * If an external clock is present, it is necessary to
    778 		 * discipline the kernel time variable anyway, since not
    779 		 * all system components use the microtime() interface.
    780 		 * Here, the time offset between the external clock and
    781 		 * kernel time variable is computed every so often.
    782 		 */
    783 		clock_count++;
    784 		if (clock_count > CLOCK_INTERVAL) {
    785 			clock_count = 0;
    786 			microtime(&clock_ext);
    787 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    788 			delta.tv_usec = clock_ext.tv_usec -
    789 			    time.tv_usec;
    790 			if (delta.tv_usec < 0)
    791 				delta.tv_sec--;
    792 			if (delta.tv_usec >= 500000) {
    793 				delta.tv_usec -= 1000000;
    794 				delta.tv_sec++;
    795 			}
    796 			if (delta.tv_usec < -500000) {
    797 				delta.tv_usec += 1000000;
    798 				delta.tv_sec--;
    799 			}
    800 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    801 			    delta.tv_usec > MAXPHASE) ||
    802 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    803 			    delta.tv_usec < -MAXPHASE)) {
    804 				time = clock_ext;
    805 				delta.tv_sec = 0;
    806 				delta.tv_usec = 0;
    807 			}
    808 #ifdef HIGHBALL
    809 			clock_cpu = delta.tv_usec;
    810 #else /* HIGHBALL */
    811 			hardupdate(delta.tv_usec);
    812 #endif /* HIGHBALL */
    813 		}
    814 #endif /* EXT_CLOCK */
    815 	}
    816 
    817 #endif /* NTP */
    818 
    819 	/*
    820 	 * Update real-time timeout queue.
    821 	 * Process callouts at a very low cpu priority, so we don't keep the
    822 	 * relatively high clock interrupt priority any longer than necessary.
    823 	 */
    824 	if (callout_hardclock()) {
    825 		if (CLKF_BASEPRI(frame)) {
    826 			/*
    827 			 * Save the overhead of a software interrupt;
    828 			 * it will happen as soon as we return, so do
    829 			 * it now.
    830 			 */
    831 			spllowersoftclock();
    832 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    833 			softclock(NULL);
    834 			KERNEL_UNLOCK();
    835 		} else {
    836 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    837 			softintr_schedule(softclock_si);
    838 #else
    839 			setsoftclock();
    840 #endif
    841 		}
    842 	}
    843 }
    844 
    845 /*
    846  * Compute number of hz until specified time.  Used to compute second
    847  * argument to callout_reset() from an absolute time.
    848  */
    849 int
    850 hzto(struct timeval *tv)
    851 {
    852 	unsigned long ticks;
    853 	long sec, usec;
    854 	int s;
    855 
    856 	/*
    857 	 * If the number of usecs in the whole seconds part of the time
    858 	 * difference fits in a long, then the total number of usecs will
    859 	 * fit in an unsigned long.  Compute the total and convert it to
    860 	 * ticks, rounding up and adding 1 to allow for the current tick
    861 	 * to expire.  Rounding also depends on unsigned long arithmetic
    862 	 * to avoid overflow.
    863 	 *
    864 	 * Otherwise, if the number of ticks in the whole seconds part of
    865 	 * the time difference fits in a long, then convert the parts to
    866 	 * ticks separately and add, using similar rounding methods and
    867 	 * overflow avoidance.  This method would work in the previous
    868 	 * case, but it is slightly slower and assume that hz is integral.
    869 	 *
    870 	 * Otherwise, round the time difference down to the maximum
    871 	 * representable value.
    872 	 *
    873 	 * If ints are 32-bit, then the maximum value for any timeout in
    874 	 * 10ms ticks is 248 days.
    875 	 */
    876 	s = splclock();
    877 	sec = tv->tv_sec - time.tv_sec;
    878 	usec = tv->tv_usec - time.tv_usec;
    879 	splx(s);
    880 
    881 	if (usec < 0) {
    882 		sec--;
    883 		usec += 1000000;
    884 	}
    885 
    886 	if (sec < 0 || (sec == 0 && usec <= 0)) {
    887 		/*
    888 		 * Would expire now or in the past.  Return 0 ticks.
    889 		 * This is different from the legacy hzto() interface,
    890 		 * and callers need to check for it.
    891 		 */
    892 		ticks = 0;
    893 	} else if (sec <= (LONG_MAX / 1000000))
    894 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    895 		    / tick) + 1;
    896 	else if (sec <= (LONG_MAX / hz))
    897 		ticks = (sec * hz) +
    898 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    899 	else
    900 		ticks = LONG_MAX;
    901 
    902 	if (ticks > INT_MAX)
    903 		ticks = INT_MAX;
    904 
    905 	return ((int)ticks);
    906 }
    907 
    908 /*
    909  * Start profiling on a process.
    910  *
    911  * Kernel profiling passes proc0 which never exits and hence
    912  * keeps the profile clock running constantly.
    913  */
    914 void
    915 startprofclock(struct proc *p)
    916 {
    917 
    918 	if ((p->p_flag & P_PROFIL) == 0) {
    919 		p->p_flag |= P_PROFIL;
    920 		/*
    921 		 * This is only necessary if using the clock as the
    922 		 * profiling source.
    923 		 */
    924 		if (++profprocs == 1 && stathz != 0)
    925 			psdiv = psratio;
    926 	}
    927 }
    928 
    929 /*
    930  * Stop profiling on a process.
    931  */
    932 void
    933 stopprofclock(struct proc *p)
    934 {
    935 
    936 	if (p->p_flag & P_PROFIL) {
    937 		p->p_flag &= ~P_PROFIL;
    938 		/*
    939 		 * This is only necessary if using the clock as the
    940 		 * profiling source.
    941 		 */
    942 		if (--profprocs == 0 && stathz != 0)
    943 			psdiv = 1;
    944 	}
    945 }
    946 
    947 #if defined(PERFCTRS)
    948 /*
    949  * Independent profiling "tick" in case we're using a separate
    950  * clock or profiling event source.  Currently, that's just
    951  * performance counters--hence the wrapper.
    952  */
    953 void
    954 proftick(struct clockframe *frame)
    955 {
    956 #ifdef GPROF
    957         struct gmonparam *g;
    958         intptr_t i;
    959 #endif
    960 	struct proc *p;
    961 
    962 	p = curproc;
    963 	if (CLKF_USERMODE(frame)) {
    964 		if (p->p_flag & P_PROFIL)
    965 			addupc_intr(p, CLKF_PC(frame));
    966 	} else {
    967 #ifdef GPROF
    968 		g = &_gmonparam;
    969 		if (g->state == GMON_PROF_ON) {
    970 			i = CLKF_PC(frame) - g->lowpc;
    971 			if (i < g->textsize) {
    972 				i /= HISTFRACTION * sizeof(*g->kcount);
    973 				g->kcount[i]++;
    974 			}
    975 		}
    976 #endif
    977 #ifdef PROC_PC
    978                 if (p && p->p_flag & P_PROFIL)
    979                         addupc_intr(p, PROC_PC(p));
    980 #endif
    981 	}
    982 }
    983 #endif
    984 
    985 /*
    986  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    987  * do process and kernel statistics.
    988  */
    989 void
    990 statclock(struct clockframe *frame)
    991 {
    992 #ifdef GPROF
    993 	struct gmonparam *g;
    994 	intptr_t i;
    995 #endif
    996 	struct cpu_info *ci = curcpu();
    997 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    998 	struct lwp *l;
    999 	struct proc *p;
   1000 
   1001 	/*
   1002 	 * Notice changes in divisor frequency, and adjust clock
   1003 	 * frequency accordingly.
   1004 	 */
   1005 	if (spc->spc_psdiv != psdiv) {
   1006 		spc->spc_psdiv = psdiv;
   1007 		spc->spc_pscnt = psdiv;
   1008 		if (psdiv == 1) {
   1009 			setstatclockrate(stathz);
   1010 		} else {
   1011 			setstatclockrate(profhz);
   1012 		}
   1013 	}
   1014 	l = curlwp;
   1015 	p = (l ? l->l_proc : 0);
   1016 	if (CLKF_USERMODE(frame)) {
   1017 		if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
   1018 			addupc_intr(p, CLKF_PC(frame));
   1019 		if (--spc->spc_pscnt > 0)
   1020 			return;
   1021 		/*
   1022 		 * Came from user mode; CPU was in user state.
   1023 		 * If this process is being profiled record the tick.
   1024 		 */
   1025 		p->p_uticks++;
   1026 		if (p->p_nice > NZERO)
   1027 			spc->spc_cp_time[CP_NICE]++;
   1028 		else
   1029 			spc->spc_cp_time[CP_USER]++;
   1030 	} else {
   1031 #ifdef GPROF
   1032 		/*
   1033 		 * Kernel statistics are just like addupc_intr, only easier.
   1034 		 */
   1035 		g = &_gmonparam;
   1036 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1037 			i = CLKF_PC(frame) - g->lowpc;
   1038 			if (i < g->textsize) {
   1039 				i /= HISTFRACTION * sizeof(*g->kcount);
   1040 				g->kcount[i]++;
   1041 			}
   1042 		}
   1043 #endif
   1044 #ifdef LWP_PC
   1045 		if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
   1046 			addupc_intr(p, LWP_PC(l));
   1047 #endif
   1048 		if (--spc->spc_pscnt > 0)
   1049 			return;
   1050 		/*
   1051 		 * Came from kernel mode, so we were:
   1052 		 * - handling an interrupt,
   1053 		 * - doing syscall or trap work on behalf of the current
   1054 		 *   user process, or
   1055 		 * - spinning in the idle loop.
   1056 		 * Whichever it is, charge the time as appropriate.
   1057 		 * Note that we charge interrupts to the current process,
   1058 		 * regardless of whether they are ``for'' that process,
   1059 		 * so that we know how much of its real time was spent
   1060 		 * in ``non-process'' (i.e., interrupt) work.
   1061 		 */
   1062 		if (CLKF_INTR(frame)) {
   1063 			if (p != NULL)
   1064 				p->p_iticks++;
   1065 			spc->spc_cp_time[CP_INTR]++;
   1066 		} else if (p != NULL) {
   1067 			p->p_sticks++;
   1068 			spc->spc_cp_time[CP_SYS]++;
   1069 		} else
   1070 			spc->spc_cp_time[CP_IDLE]++;
   1071 	}
   1072 	spc->spc_pscnt = psdiv;
   1073 
   1074 	if (l != NULL) {
   1075 		++p->p_cpticks;
   1076 		/*
   1077 		 * If no separate schedclock is provided, call it here
   1078 		 * at ~~12-25 Hz, ~~16 Hz is best
   1079 		 */
   1080 		if (schedhz == 0)
   1081 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1082 				schedclock(l);
   1083 	}
   1084 }
   1085 
   1086 
   1087 #ifdef NTP	/* NTP phase-locked loop in kernel */
   1088 
   1089 /*
   1090  * hardupdate() - local clock update
   1091  *
   1092  * This routine is called by ntp_adjtime() to update the local clock
   1093  * phase and frequency. The implementation is of an adaptive-parameter,
   1094  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1095  * time and frequency offset estimates for each call. If the kernel PPS
   1096  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1097  * determines the new time offset, instead of the calling argument.
   1098  * Presumably, calls to ntp_adjtime() occur only when the caller
   1099  * believes the local clock is valid within some bound (+-128 ms with
   1100  * NTP). If the caller's time is far different than the PPS time, an
   1101  * argument will ensue, and it's not clear who will lose.
   1102  *
   1103  * For uncompensated quartz crystal oscillatores and nominal update
   1104  * intervals less than 1024 s, operation should be in phase-lock mode
   1105  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1106  * intervals greater than thiss, operation should be in frequency-lock
   1107  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1108  *
   1109  * Note: splclock() is in effect.
   1110  */
   1111 void
   1112 hardupdate(long offset)
   1113 {
   1114 	long ltemp, mtemp;
   1115 
   1116 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1117 		return;
   1118 	ltemp = offset;
   1119 #ifdef PPS_SYNC
   1120 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1121 		ltemp = pps_offset;
   1122 #endif /* PPS_SYNC */
   1123 
   1124 	/*
   1125 	 * Scale the phase adjustment and clamp to the operating range.
   1126 	 */
   1127 	if (ltemp > MAXPHASE)
   1128 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1129 	else if (ltemp < -MAXPHASE)
   1130 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1131 	else
   1132 		time_offset = ltemp << SHIFT_UPDATE;
   1133 
   1134 	/*
   1135 	 * Select whether the frequency is to be controlled and in which
   1136 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1137 	 * multiply/divide should be replaced someday.
   1138 	 */
   1139 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1140 		time_reftime = time.tv_sec;
   1141 	mtemp = time.tv_sec - time_reftime;
   1142 	time_reftime = time.tv_sec;
   1143 	if (time_status & STA_FLL) {
   1144 		if (mtemp >= MINSEC) {
   1145 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1146 			    SHIFT_UPDATE));
   1147 			if (ltemp < 0)
   1148 				time_freq -= -ltemp >> SHIFT_KH;
   1149 			else
   1150 				time_freq += ltemp >> SHIFT_KH;
   1151 		}
   1152 	} else {
   1153 		if (mtemp < MAXSEC) {
   1154 			ltemp *= mtemp;
   1155 			if (ltemp < 0)
   1156 				time_freq -= -ltemp >> (time_constant +
   1157 				    time_constant + SHIFT_KF -
   1158 				    SHIFT_USEC);
   1159 			else
   1160 				time_freq += ltemp >> (time_constant +
   1161 				    time_constant + SHIFT_KF -
   1162 				    SHIFT_USEC);
   1163 		}
   1164 	}
   1165 	if (time_freq > time_tolerance)
   1166 		time_freq = time_tolerance;
   1167 	else if (time_freq < -time_tolerance)
   1168 		time_freq = -time_tolerance;
   1169 }
   1170 
   1171 #ifdef PPS_SYNC
   1172 /*
   1173  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1174  *
   1175  * This routine is called at each PPS interrupt in order to discipline
   1176  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1177  * and leaves it in a handy spot for the hardclock() routine. It
   1178  * integrates successive PPS phase differences and calculates the
   1179  * frequency offset. This is used in hardclock() to discipline the CPU
   1180  * clock oscillator so that intrinsic frequency error is cancelled out.
   1181  * The code requires the caller to capture the time and hardware counter
   1182  * value at the on-time PPS signal transition.
   1183  *
   1184  * Note that, on some Unix systems, this routine runs at an interrupt
   1185  * priority level higher than the timer interrupt routine hardclock().
   1186  * Therefore, the variables used are distinct from the hardclock()
   1187  * variables, except for certain exceptions: The PPS frequency pps_freq
   1188  * and phase pps_offset variables are determined by this routine and
   1189  * updated atomically. The time_tolerance variable can be considered a
   1190  * constant, since it is infrequently changed, and then only when the
   1191  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1192  * once per second by hardclock() and is atomically cleared in this
   1193  * routine.
   1194  */
   1195 void
   1196 hardpps(struct timeval *tvp,		/* time at PPS */
   1197 	long usec			/* hardware counter at PPS */)
   1198 {
   1199 	long u_usec, v_usec, bigtick;
   1200 	long cal_sec, cal_usec;
   1201 
   1202 	/*
   1203 	 * An occasional glitch can be produced when the PPS interrupt
   1204 	 * occurs in the hardclock() routine before the time variable is
   1205 	 * updated. Here the offset is discarded when the difference
   1206 	 * between it and the last one is greater than tick/2, but not
   1207 	 * if the interval since the first discard exceeds 30 s.
   1208 	 */
   1209 	time_status |= STA_PPSSIGNAL;
   1210 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1211 	pps_valid = 0;
   1212 	u_usec = -tvp->tv_usec;
   1213 	if (u_usec < -500000)
   1214 		u_usec += 1000000;
   1215 	v_usec = pps_offset - u_usec;
   1216 	if (v_usec < 0)
   1217 		v_usec = -v_usec;
   1218 	if (v_usec > (tick >> 1)) {
   1219 		if (pps_glitch > MAXGLITCH) {
   1220 			pps_glitch = 0;
   1221 			pps_tf[2] = u_usec;
   1222 			pps_tf[1] = u_usec;
   1223 		} else {
   1224 			pps_glitch++;
   1225 			u_usec = pps_offset;
   1226 		}
   1227 	} else
   1228 		pps_glitch = 0;
   1229 
   1230 	/*
   1231 	 * A three-stage median filter is used to help deglitch the pps
   1232 	 * time. The median sample becomes the time offset estimate; the
   1233 	 * difference between the other two samples becomes the time
   1234 	 * dispersion (jitter) estimate.
   1235 	 */
   1236 	pps_tf[2] = pps_tf[1];
   1237 	pps_tf[1] = pps_tf[0];
   1238 	pps_tf[0] = u_usec;
   1239 	if (pps_tf[0] > pps_tf[1]) {
   1240 		if (pps_tf[1] > pps_tf[2]) {
   1241 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1242 			v_usec = pps_tf[0] - pps_tf[2];
   1243 		} else if (pps_tf[2] > pps_tf[0]) {
   1244 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1245 			v_usec = pps_tf[2] - pps_tf[1];
   1246 		} else {
   1247 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1248 			v_usec = pps_tf[0] - pps_tf[1];
   1249 		}
   1250 	} else {
   1251 		if (pps_tf[1] < pps_tf[2]) {
   1252 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1253 			v_usec = pps_tf[2] - pps_tf[0];
   1254 		} else  if (pps_tf[2] < pps_tf[0]) {
   1255 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1256 			v_usec = pps_tf[1] - pps_tf[2];
   1257 		} else {
   1258 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1259 			v_usec = pps_tf[1] - pps_tf[0];
   1260 		}
   1261 	}
   1262 	if (v_usec > MAXTIME)
   1263 		pps_jitcnt++;
   1264 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1265 	if (v_usec < 0)
   1266 		pps_jitter -= -v_usec >> PPS_AVG;
   1267 	else
   1268 		pps_jitter += v_usec >> PPS_AVG;
   1269 	if (pps_jitter > (MAXTIME >> 1))
   1270 		time_status |= STA_PPSJITTER;
   1271 
   1272 	/*
   1273 	 * During the calibration interval adjust the starting time when
   1274 	 * the tick overflows. At the end of the interval compute the
   1275 	 * duration of the interval and the difference of the hardware
   1276 	 * counters at the beginning and end of the interval. This code
   1277 	 * is deliciously complicated by the fact valid differences may
   1278 	 * exceed the value of tick when using long calibration
   1279 	 * intervals and small ticks. Note that the counter can be
   1280 	 * greater than tick if caught at just the wrong instant, but
   1281 	 * the values returned and used here are correct.
   1282 	 */
   1283 	bigtick = (long)tick << SHIFT_USEC;
   1284 	pps_usec -= pps_freq;
   1285 	if (pps_usec >= bigtick)
   1286 		pps_usec -= bigtick;
   1287 	if (pps_usec < 0)
   1288 		pps_usec += bigtick;
   1289 	pps_time.tv_sec++;
   1290 	pps_count++;
   1291 	if (pps_count < (1 << pps_shift))
   1292 		return;
   1293 	pps_count = 0;
   1294 	pps_calcnt++;
   1295 	u_usec = usec << SHIFT_USEC;
   1296 	v_usec = pps_usec - u_usec;
   1297 	if (v_usec >= bigtick >> 1)
   1298 		v_usec -= bigtick;
   1299 	if (v_usec < -(bigtick >> 1))
   1300 		v_usec += bigtick;
   1301 	if (v_usec < 0)
   1302 		v_usec = -(-v_usec >> pps_shift);
   1303 	else
   1304 		v_usec = v_usec >> pps_shift;
   1305 	pps_usec = u_usec;
   1306 	cal_sec = tvp->tv_sec;
   1307 	cal_usec = tvp->tv_usec;
   1308 	cal_sec -= pps_time.tv_sec;
   1309 	cal_usec -= pps_time.tv_usec;
   1310 	if (cal_usec < 0) {
   1311 		cal_usec += 1000000;
   1312 		cal_sec--;
   1313 	}
   1314 	pps_time = *tvp;
   1315 
   1316 	/*
   1317 	 * Check for lost interrupts, noise, excessive jitter and
   1318 	 * excessive frequency error. The number of timer ticks during
   1319 	 * the interval may vary +-1 tick. Add to this a margin of one
   1320 	 * tick for the PPS signal jitter and maximum frequency
   1321 	 * deviation. If the limits are exceeded, the calibration
   1322 	 * interval is reset to the minimum and we start over.
   1323 	 */
   1324 	u_usec = (long)tick << 1;
   1325 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1326 	    || (cal_sec == 0 && cal_usec < u_usec))
   1327 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1328 		pps_errcnt++;
   1329 		pps_shift = PPS_SHIFT;
   1330 		pps_intcnt = 0;
   1331 		time_status |= STA_PPSERROR;
   1332 		return;
   1333 	}
   1334 
   1335 	/*
   1336 	 * A three-stage median filter is used to help deglitch the pps
   1337 	 * frequency. The median sample becomes the frequency offset
   1338 	 * estimate; the difference between the other two samples
   1339 	 * becomes the frequency dispersion (stability) estimate.
   1340 	 */
   1341 	pps_ff[2] = pps_ff[1];
   1342 	pps_ff[1] = pps_ff[0];
   1343 	pps_ff[0] = v_usec;
   1344 	if (pps_ff[0] > pps_ff[1]) {
   1345 		if (pps_ff[1] > pps_ff[2]) {
   1346 			u_usec = pps_ff[1];		/* 0 1 2 */
   1347 			v_usec = pps_ff[0] - pps_ff[2];
   1348 		} else if (pps_ff[2] > pps_ff[0]) {
   1349 			u_usec = pps_ff[0];		/* 2 0 1 */
   1350 			v_usec = pps_ff[2] - pps_ff[1];
   1351 		} else {
   1352 			u_usec = pps_ff[2];		/* 0 2 1 */
   1353 			v_usec = pps_ff[0] - pps_ff[1];
   1354 		}
   1355 	} else {
   1356 		if (pps_ff[1] < pps_ff[2]) {
   1357 			u_usec = pps_ff[1];		/* 2 1 0 */
   1358 			v_usec = pps_ff[2] - pps_ff[0];
   1359 		} else  if (pps_ff[2] < pps_ff[0]) {
   1360 			u_usec = pps_ff[0];		/* 1 0 2 */
   1361 			v_usec = pps_ff[1] - pps_ff[2];
   1362 		} else {
   1363 			u_usec = pps_ff[2];		/* 1 2 0 */
   1364 			v_usec = pps_ff[1] - pps_ff[0];
   1365 		}
   1366 	}
   1367 
   1368 	/*
   1369 	 * Here the frequency dispersion (stability) is updated. If it
   1370 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1371 	 * offset is updated as well, but clamped to the tolerance. It
   1372 	 * will be processed later by the hardclock() routine.
   1373 	 */
   1374 	v_usec = (v_usec >> 1) - pps_stabil;
   1375 	if (v_usec < 0)
   1376 		pps_stabil -= -v_usec >> PPS_AVG;
   1377 	else
   1378 		pps_stabil += v_usec >> PPS_AVG;
   1379 	if (pps_stabil > MAXFREQ >> 2) {
   1380 		pps_stbcnt++;
   1381 		time_status |= STA_PPSWANDER;
   1382 		return;
   1383 	}
   1384 	if (time_status & STA_PPSFREQ) {
   1385 		if (u_usec < 0) {
   1386 			pps_freq -= -u_usec >> PPS_AVG;
   1387 			if (pps_freq < -time_tolerance)
   1388 				pps_freq = -time_tolerance;
   1389 			u_usec = -u_usec;
   1390 		} else {
   1391 			pps_freq += u_usec >> PPS_AVG;
   1392 			if (pps_freq > time_tolerance)
   1393 				pps_freq = time_tolerance;
   1394 		}
   1395 	}
   1396 
   1397 	/*
   1398 	 * Here the calibration interval is adjusted. If the maximum
   1399 	 * time difference is greater than tick / 4, reduce the interval
   1400 	 * by half. If this is not the case for four consecutive
   1401 	 * intervals, double the interval.
   1402 	 */
   1403 	if (u_usec << pps_shift > bigtick >> 2) {
   1404 		pps_intcnt = 0;
   1405 		if (pps_shift > PPS_SHIFT)
   1406 			pps_shift--;
   1407 	} else if (pps_intcnt >= 4) {
   1408 		pps_intcnt = 0;
   1409 		if (pps_shift < PPS_SHIFTMAX)
   1410 			pps_shift++;
   1411 	} else
   1412 		pps_intcnt++;
   1413 }
   1414 #endif /* PPS_SYNC */
   1415 #endif /* NTP  */
   1416 
   1417 /*
   1418  * Return information about system clocks.
   1419  */
   1420 int
   1421 sysctl_clockrate(void *where, size_t *sizep)
   1422 {
   1423 	struct clockinfo clkinfo;
   1424 
   1425 	/*
   1426 	 * Construct clockinfo structure.
   1427 	 */
   1428 	clkinfo.tick = tick;
   1429 	clkinfo.tickadj = tickadj;
   1430 	clkinfo.hz = hz;
   1431 	clkinfo.profhz = profhz;
   1432 	clkinfo.stathz = stathz ? stathz : hz;
   1433 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1434 }
   1435