kern_clock.c revision 1.84 1 /* $NetBSD: kern_clock.c,v 1.84 2003/02/04 01:21:04 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.84 2003/02/04 01:21:04 thorpej Exp $");
82
83 #include "opt_ntp.h"
84 #include "opt_perfctrs.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/dkstat.h>
89 #include <sys/callout.h>
90 #include <sys/kernel.h>
91 #include <sys/proc.h>
92 #include <sys/resourcevar.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/timex.h>
96 #include <sys/sched.h>
97 #include <sys/time.h>
98
99 #include <machine/cpu.h>
100 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
101 #include <machine/intr.h>
102 #endif
103
104 #ifdef GPROF
105 #include <sys/gmon.h>
106 #endif
107
108 /*
109 * Clock handling routines.
110 *
111 * This code is written to operate with two timers that run independently of
112 * each other. The main clock, running hz times per second, is used to keep
113 * track of real time. The second timer handles kernel and user profiling,
114 * and does resource use estimation. If the second timer is programmable,
115 * it is randomized to avoid aliasing between the two clocks. For example,
116 * the randomization prevents an adversary from always giving up the cpu
117 * just before its quantum expires. Otherwise, it would never accumulate
118 * cpu ticks. The mean frequency of the second timer is stathz.
119 *
120 * If no second timer exists, stathz will be zero; in this case we drive
121 * profiling and statistics off the main clock. This WILL NOT be accurate;
122 * do not do it unless absolutely necessary.
123 *
124 * The statistics clock may (or may not) be run at a higher rate while
125 * profiling. This profile clock runs at profhz. We require that profhz
126 * be an integral multiple of stathz.
127 *
128 * If the statistics clock is running fast, it must be divided by the ratio
129 * profhz/stathz for statistics. (For profiling, every tick counts.)
130 */
131
132 #ifdef NTP /* NTP phase-locked loop in kernel */
133 /*
134 * Phase/frequency-lock loop (PLL/FLL) definitions
135 *
136 * The following variables are read and set by the ntp_adjtime() system
137 * call.
138 *
139 * time_state shows the state of the system clock, with values defined
140 * in the timex.h header file.
141 *
142 * time_status shows the status of the system clock, with bits defined
143 * in the timex.h header file.
144 *
145 * time_offset is used by the PLL/FLL to adjust the system time in small
146 * increments.
147 *
148 * time_constant determines the bandwidth or "stiffness" of the PLL.
149 *
150 * time_tolerance determines maximum frequency error or tolerance of the
151 * CPU clock oscillator and is a property of the architecture; however,
152 * in principle it could change as result of the presence of external
153 * discipline signals, for instance.
154 *
155 * time_precision is usually equal to the kernel tick variable; however,
156 * in cases where a precision clock counter or external clock is
157 * available, the resolution can be much less than this and depend on
158 * whether the external clock is working or not.
159 *
160 * time_maxerror is initialized by a ntp_adjtime() call and increased by
161 * the kernel once each second to reflect the maximum error bound
162 * growth.
163 *
164 * time_esterror is set and read by the ntp_adjtime() call, but
165 * otherwise not used by the kernel.
166 */
167 int time_state = TIME_OK; /* clock state */
168 int time_status = STA_UNSYNC; /* clock status bits */
169 long time_offset = 0; /* time offset (us) */
170 long time_constant = 0; /* pll time constant */
171 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
172 long time_precision = 1; /* clock precision (us) */
173 long time_maxerror = MAXPHASE; /* maximum error (us) */
174 long time_esterror = MAXPHASE; /* estimated error (us) */
175
176 /*
177 * The following variables establish the state of the PLL/FLL and the
178 * residual time and frequency offset of the local clock. The scale
179 * factors are defined in the timex.h header file.
180 *
181 * time_phase and time_freq are the phase increment and the frequency
182 * increment, respectively, of the kernel time variable.
183 *
184 * time_freq is set via ntp_adjtime() from a value stored in a file when
185 * the synchronization daemon is first started. Its value is retrieved
186 * via ntp_adjtime() and written to the file about once per hour by the
187 * daemon.
188 *
189 * time_adj is the adjustment added to the value of tick at each timer
190 * interrupt and is recomputed from time_phase and time_freq at each
191 * seconds rollover.
192 *
193 * time_reftime is the second's portion of the system time at the last
194 * call to ntp_adjtime(). It is used to adjust the time_freq variable
195 * and to increase the time_maxerror as the time since last update
196 * increases.
197 */
198 long time_phase = 0; /* phase offset (scaled us) */
199 long time_freq = 0; /* frequency offset (scaled ppm) */
200 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
201 long time_reftime = 0; /* time at last adjustment (s) */
202
203 #ifdef PPS_SYNC
204 /*
205 * The following variables are used only if the kernel PPS discipline
206 * code is configured (PPS_SYNC). The scale factors are defined in the
207 * timex.h header file.
208 *
209 * pps_time contains the time at each calibration interval, as read by
210 * microtime(). pps_count counts the seconds of the calibration
211 * interval, the duration of which is nominally pps_shift in powers of
212 * two.
213 *
214 * pps_offset is the time offset produced by the time median filter
215 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
216 * this filter.
217 *
218 * pps_freq is the frequency offset produced by the frequency median
219 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
220 * by this filter.
221 *
222 * pps_usec is latched from a high resolution counter or external clock
223 * at pps_time. Here we want the hardware counter contents only, not the
224 * contents plus the time_tv.usec as usual.
225 *
226 * pps_valid counts the number of seconds since the last PPS update. It
227 * is used as a watchdog timer to disable the PPS discipline should the
228 * PPS signal be lost.
229 *
230 * pps_glitch counts the number of seconds since the beginning of an
231 * offset burst more than tick/2 from current nominal offset. It is used
232 * mainly to suppress error bursts due to priority conflicts between the
233 * PPS interrupt and timer interrupt.
234 *
235 * pps_intcnt counts the calibration intervals for use in the interval-
236 * adaptation algorithm. It's just too complicated for words.
237 */
238 struct timeval pps_time; /* kernel time at last interval */
239 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
240 long pps_offset = 0; /* pps time offset (us) */
241 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
242 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
243 long pps_freq = 0; /* frequency offset (scaled ppm) */
244 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
245 long pps_usec = 0; /* microsec counter at last interval */
246 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
247 int pps_glitch = 0; /* pps signal glitch counter */
248 int pps_count = 0; /* calibration interval counter (s) */
249 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
250 int pps_intcnt = 0; /* intervals at current duration */
251
252 /*
253 * PPS signal quality monitors
254 *
255 * pps_jitcnt counts the seconds that have been discarded because the
256 * jitter measured by the time median filter exceeds the limit MAXTIME
257 * (100 us).
258 *
259 * pps_calcnt counts the frequency calibration intervals, which are
260 * variable from 4 s to 256 s.
261 *
262 * pps_errcnt counts the calibration intervals which have been discarded
263 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
264 * calibration interval jitter exceeds two ticks.
265 *
266 * pps_stbcnt counts the calibration intervals that have been discarded
267 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
268 */
269 long pps_jitcnt = 0; /* jitter limit exceeded */
270 long pps_calcnt = 0; /* calibration intervals */
271 long pps_errcnt = 0; /* calibration errors */
272 long pps_stbcnt = 0; /* stability limit exceeded */
273 #endif /* PPS_SYNC */
274
275 #ifdef EXT_CLOCK
276 /*
277 * External clock definitions
278 *
279 * The following definitions and declarations are used only if an
280 * external clock is configured on the system.
281 */
282 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
283
284 /*
285 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
286 * interrupt and decremented once each second.
287 */
288 int clock_count = 0; /* CPU clock counter */
289
290 #ifdef HIGHBALL
291 /*
292 * The clock_offset and clock_cpu variables are used by the HIGHBALL
293 * interface. The clock_offset variable defines the offset between
294 * system time and the HIGBALL counters. The clock_cpu variable contains
295 * the offset between the system clock and the HIGHBALL clock for use in
296 * disciplining the kernel time variable.
297 */
298 extern struct timeval clock_offset; /* Highball clock offset */
299 long clock_cpu = 0; /* CPU clock adjust */
300 #endif /* HIGHBALL */
301 #endif /* EXT_CLOCK */
302 #endif /* NTP */
303
304
305 /*
306 * Bump a timeval by a small number of usec's.
307 */
308 #define BUMPTIME(t, usec) { \
309 volatile struct timeval *tp = (t); \
310 long us; \
311 \
312 tp->tv_usec = us = tp->tv_usec + (usec); \
313 if (us >= 1000000) { \
314 tp->tv_usec = us - 1000000; \
315 tp->tv_sec++; \
316 } \
317 }
318
319 int stathz;
320 int profhz;
321 int profsrc;
322 int schedhz;
323 int profprocs;
324 int hardclock_ticks;
325 static int psdiv; /* prof => stat divider */
326 int psratio; /* ratio: prof / stat */
327 int tickfix, tickfixinterval; /* used if tick not really integral */
328 #ifndef NTP
329 static int tickfixcnt; /* accumulated fractional error */
330 #else
331 int fixtick; /* used by NTP for same */
332 int shifthz;
333 #endif
334
335 /*
336 * We might want ldd to load the both words from time at once.
337 * To succeed we need to be quadword aligned.
338 * The sparc already does that, and that it has worked so far is a fluke.
339 */
340 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
341 volatile struct timeval mono_time;
342
343 void *softclock_si;
344
345 /*
346 * Initialize clock frequencies and start both clocks running.
347 */
348 void
349 initclocks(void)
350 {
351 int i;
352
353 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
354 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
355 if (softclock_si == NULL)
356 panic("initclocks: unable to register softclock intr");
357 #endif
358
359 /*
360 * Set divisors to 1 (normal case) and let the machine-specific
361 * code do its bit.
362 */
363 psdiv = 1;
364 cpu_initclocks();
365
366 /*
367 * Compute profhz/stathz/rrticks, and fix profhz if needed.
368 */
369 i = stathz ? stathz : hz;
370 if (profhz == 0)
371 profhz = i;
372 psratio = profhz / i;
373 rrticks = hz / 10;
374
375 #ifdef NTP
376 switch (hz) {
377 case 1:
378 shifthz = SHIFT_SCALE - 0;
379 break;
380 case 2:
381 shifthz = SHIFT_SCALE - 1;
382 break;
383 case 4:
384 shifthz = SHIFT_SCALE - 2;
385 break;
386 case 8:
387 shifthz = SHIFT_SCALE - 3;
388 break;
389 case 16:
390 shifthz = SHIFT_SCALE - 4;
391 break;
392 case 32:
393 shifthz = SHIFT_SCALE - 5;
394 break;
395 case 60:
396 case 64:
397 shifthz = SHIFT_SCALE - 6;
398 break;
399 case 96:
400 case 100:
401 case 128:
402 shifthz = SHIFT_SCALE - 7;
403 break;
404 case 256:
405 shifthz = SHIFT_SCALE - 8;
406 break;
407 case 512:
408 shifthz = SHIFT_SCALE - 9;
409 break;
410 case 1000:
411 case 1024:
412 shifthz = SHIFT_SCALE - 10;
413 break;
414 case 1200:
415 case 2048:
416 shifthz = SHIFT_SCALE - 11;
417 break;
418 case 4096:
419 shifthz = SHIFT_SCALE - 12;
420 break;
421 case 8192:
422 shifthz = SHIFT_SCALE - 13;
423 break;
424 case 16384:
425 shifthz = SHIFT_SCALE - 14;
426 break;
427 case 32768:
428 shifthz = SHIFT_SCALE - 15;
429 break;
430 case 65536:
431 shifthz = SHIFT_SCALE - 16;
432 break;
433 default:
434 panic("weird hz");
435 }
436 if (fixtick == 0) {
437 /*
438 * Give MD code a chance to set this to a better
439 * value; but, if it doesn't, we should.
440 */
441 fixtick = (1000000 - (hz*tick));
442 }
443 #endif
444 }
445
446 /*
447 * The real-time timer, interrupting hz times per second.
448 */
449 void
450 hardclock(struct clockframe *frame)
451 {
452 struct lwp *l;
453 struct proc *p;
454 int delta;
455 extern int tickdelta;
456 extern long timedelta;
457 struct cpu_info *ci = curcpu();
458 struct ptimer *pt;
459 #ifdef NTP
460 int time_update;
461 int ltemp;
462 #endif
463
464 l = curlwp;
465 if (l) {
466 p = l->l_proc;
467 /*
468 * Run current process's virtual and profile time, as needed.
469 */
470 if (CLKF_USERMODE(frame) && p->p_timers &&
471 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
472 if (itimerdecr(pt, tick) == 0)
473 itimerfire(pt);
474 if (p->p_timers &&
475 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
476 if (itimerdecr(pt, tick) == 0)
477 itimerfire(pt);
478 }
479
480 /*
481 * If no separate statistics clock is available, run it from here.
482 */
483 if (stathz == 0)
484 statclock(frame);
485 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
486 roundrobin(ci);
487
488 #if defined(MULTIPROCESSOR)
489 /*
490 * If we are not the primary CPU, we're not allowed to do
491 * any more work.
492 */
493 if (CPU_IS_PRIMARY(ci) == 0)
494 return;
495 #endif
496
497 /*
498 * Increment the time-of-day. The increment is normally just
499 * ``tick''. If the machine is one which has a clock frequency
500 * such that ``hz'' would not divide the second evenly into
501 * milliseconds, a periodic adjustment must be applied. Finally,
502 * if we are still adjusting the time (see adjtime()),
503 * ``tickdelta'' may also be added in.
504 */
505 hardclock_ticks++;
506 delta = tick;
507
508 #ifndef NTP
509 if (tickfix) {
510 tickfixcnt += tickfix;
511 if (tickfixcnt >= tickfixinterval) {
512 delta++;
513 tickfixcnt -= tickfixinterval;
514 }
515 }
516 #endif /* !NTP */
517 /* Imprecise 4bsd adjtime() handling */
518 if (timedelta != 0) {
519 delta += tickdelta;
520 timedelta -= tickdelta;
521 }
522
523 #ifdef notyet
524 microset();
525 #endif
526
527 #ifndef NTP
528 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
529 #endif
530 BUMPTIME(&mono_time, delta);
531
532 #ifdef NTP
533 time_update = delta;
534
535 /*
536 * Compute the phase adjustment. If the low-order bits
537 * (time_phase) of the update overflow, bump the high-order bits
538 * (time_update).
539 */
540 time_phase += time_adj;
541 if (time_phase <= -FINEUSEC) {
542 ltemp = -time_phase >> SHIFT_SCALE;
543 time_phase += ltemp << SHIFT_SCALE;
544 time_update -= ltemp;
545 } else if (time_phase >= FINEUSEC) {
546 ltemp = time_phase >> SHIFT_SCALE;
547 time_phase -= ltemp << SHIFT_SCALE;
548 time_update += ltemp;
549 }
550
551 #ifdef HIGHBALL
552 /*
553 * If the HIGHBALL board is installed, we need to adjust the
554 * external clock offset in order to close the hardware feedback
555 * loop. This will adjust the external clock phase and frequency
556 * in small amounts. The additional phase noise and frequency
557 * wander this causes should be minimal. We also need to
558 * discipline the kernel time variable, since the PLL is used to
559 * discipline the external clock. If the Highball board is not
560 * present, we discipline kernel time with the PLL as usual. We
561 * assume that the external clock phase adjustment (time_update)
562 * and kernel phase adjustment (clock_cpu) are less than the
563 * value of tick.
564 */
565 clock_offset.tv_usec += time_update;
566 if (clock_offset.tv_usec >= 1000000) {
567 clock_offset.tv_sec++;
568 clock_offset.tv_usec -= 1000000;
569 }
570 if (clock_offset.tv_usec < 0) {
571 clock_offset.tv_sec--;
572 clock_offset.tv_usec += 1000000;
573 }
574 time.tv_usec += clock_cpu;
575 clock_cpu = 0;
576 #else
577 time.tv_usec += time_update;
578 #endif /* HIGHBALL */
579
580 /*
581 * On rollover of the second the phase adjustment to be used for
582 * the next second is calculated. Also, the maximum error is
583 * increased by the tolerance. If the PPS frequency discipline
584 * code is present, the phase is increased to compensate for the
585 * CPU clock oscillator frequency error.
586 *
587 * On a 32-bit machine and given parameters in the timex.h
588 * header file, the maximum phase adjustment is +-512 ms and
589 * maximum frequency offset is a tad less than) +-512 ppm. On a
590 * 64-bit machine, you shouldn't need to ask.
591 */
592 if (time.tv_usec >= 1000000) {
593 time.tv_usec -= 1000000;
594 time.tv_sec++;
595 time_maxerror += time_tolerance >> SHIFT_USEC;
596
597 /*
598 * Leap second processing. If in leap-insert state at
599 * the end of the day, the system clock is set back one
600 * second; if in leap-delete state, the system clock is
601 * set ahead one second. The microtime() routine or
602 * external clock driver will insure that reported time
603 * is always monotonic. The ugly divides should be
604 * replaced.
605 */
606 switch (time_state) {
607 case TIME_OK:
608 if (time_status & STA_INS)
609 time_state = TIME_INS;
610 else if (time_status & STA_DEL)
611 time_state = TIME_DEL;
612 break;
613
614 case TIME_INS:
615 if (time.tv_sec % 86400 == 0) {
616 time.tv_sec--;
617 time_state = TIME_OOP;
618 }
619 break;
620
621 case TIME_DEL:
622 if ((time.tv_sec + 1) % 86400 == 0) {
623 time.tv_sec++;
624 time_state = TIME_WAIT;
625 }
626 break;
627
628 case TIME_OOP:
629 time_state = TIME_WAIT;
630 break;
631
632 case TIME_WAIT:
633 if (!(time_status & (STA_INS | STA_DEL)))
634 time_state = TIME_OK;
635 break;
636 }
637
638 /*
639 * Compute the phase adjustment for the next second. In
640 * PLL mode, the offset is reduced by a fixed factor
641 * times the time constant. In FLL mode the offset is
642 * used directly. In either mode, the maximum phase
643 * adjustment for each second is clamped so as to spread
644 * the adjustment over not more than the number of
645 * seconds between updates.
646 */
647 if (time_offset < 0) {
648 ltemp = -time_offset;
649 if (!(time_status & STA_FLL))
650 ltemp >>= SHIFT_KG + time_constant;
651 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
652 ltemp = (MAXPHASE / MINSEC) <<
653 SHIFT_UPDATE;
654 time_offset += ltemp;
655 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
656 } else if (time_offset > 0) {
657 ltemp = time_offset;
658 if (!(time_status & STA_FLL))
659 ltemp >>= SHIFT_KG + time_constant;
660 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
661 ltemp = (MAXPHASE / MINSEC) <<
662 SHIFT_UPDATE;
663 time_offset -= ltemp;
664 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
665 } else
666 time_adj = 0;
667
668 /*
669 * Compute the frequency estimate and additional phase
670 * adjustment due to frequency error for the next
671 * second. When the PPS signal is engaged, gnaw on the
672 * watchdog counter and update the frequency computed by
673 * the pll and the PPS signal.
674 */
675 #ifdef PPS_SYNC
676 pps_valid++;
677 if (pps_valid == PPS_VALID) {
678 pps_jitter = MAXTIME;
679 pps_stabil = MAXFREQ;
680 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
681 STA_PPSWANDER | STA_PPSERROR);
682 }
683 ltemp = time_freq + pps_freq;
684 #else
685 ltemp = time_freq;
686 #endif /* PPS_SYNC */
687
688 if (ltemp < 0)
689 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
690 else
691 time_adj += ltemp >> (SHIFT_USEC - shifthz);
692 time_adj += (long)fixtick << shifthz;
693
694 /*
695 * When the CPU clock oscillator frequency is not a
696 * power of 2 in Hz, shifthz is only an approximate
697 * scale factor.
698 *
699 * To determine the adjustment, you can do the following:
700 * bc -q
701 * scale=24
702 * obase=2
703 * idealhz/realhz
704 * where `idealhz' is the next higher power of 2, and `realhz'
705 * is the actual value. You may need to factor this result
706 * into a sequence of 2 multipliers to get better precision.
707 *
708 * Likewise, the error can be calculated with (e.g. for 100Hz):
709 * bc -q
710 * scale=24
711 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
712 * (and then multiply by 1000000 to get ppm).
713 */
714 switch (hz) {
715 case 60:
716 /* A factor of 1.000100010001 gives about 15ppm
717 error. */
718 if (time_adj < 0) {
719 time_adj -= (-time_adj >> 4);
720 time_adj -= (-time_adj >> 8);
721 } else {
722 time_adj += (time_adj >> 4);
723 time_adj += (time_adj >> 8);
724 }
725 break;
726
727 case 96:
728 /* A factor of 1.0101010101 gives about 244ppm error. */
729 if (time_adj < 0) {
730 time_adj -= (-time_adj >> 2);
731 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
732 } else {
733 time_adj += (time_adj >> 2);
734 time_adj += (time_adj >> 4) + (time_adj >> 8);
735 }
736 break;
737
738 case 100:
739 /* A factor of 1.010001111010111 gives about 1ppm
740 error. */
741 if (time_adj < 0) {
742 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
743 time_adj += (-time_adj >> 10);
744 } else {
745 time_adj += (time_adj >> 2) + (time_adj >> 5);
746 time_adj -= (time_adj >> 10);
747 }
748 break;
749
750 case 1000:
751 /* A factor of 1.000001100010100001 gives about 50ppm
752 error. */
753 if (time_adj < 0) {
754 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
755 time_adj -= (-time_adj >> 7);
756 } else {
757 time_adj += (time_adj >> 6) + (time_adj >> 11);
758 time_adj += (time_adj >> 7);
759 }
760 break;
761
762 case 1200:
763 /* A factor of 1.1011010011100001 gives about 64ppm
764 error. */
765 if (time_adj < 0) {
766 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
767 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
768 } else {
769 time_adj += (time_adj >> 1) + (time_adj >> 6);
770 time_adj += (time_adj >> 3) + (time_adj >> 10);
771 }
772 break;
773 }
774
775 #ifdef EXT_CLOCK
776 /*
777 * If an external clock is present, it is necessary to
778 * discipline the kernel time variable anyway, since not
779 * all system components use the microtime() interface.
780 * Here, the time offset between the external clock and
781 * kernel time variable is computed every so often.
782 */
783 clock_count++;
784 if (clock_count > CLOCK_INTERVAL) {
785 clock_count = 0;
786 microtime(&clock_ext);
787 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
788 delta.tv_usec = clock_ext.tv_usec -
789 time.tv_usec;
790 if (delta.tv_usec < 0)
791 delta.tv_sec--;
792 if (delta.tv_usec >= 500000) {
793 delta.tv_usec -= 1000000;
794 delta.tv_sec++;
795 }
796 if (delta.tv_usec < -500000) {
797 delta.tv_usec += 1000000;
798 delta.tv_sec--;
799 }
800 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
801 delta.tv_usec > MAXPHASE) ||
802 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
803 delta.tv_usec < -MAXPHASE)) {
804 time = clock_ext;
805 delta.tv_sec = 0;
806 delta.tv_usec = 0;
807 }
808 #ifdef HIGHBALL
809 clock_cpu = delta.tv_usec;
810 #else /* HIGHBALL */
811 hardupdate(delta.tv_usec);
812 #endif /* HIGHBALL */
813 }
814 #endif /* EXT_CLOCK */
815 }
816
817 #endif /* NTP */
818
819 /*
820 * Update real-time timeout queue.
821 * Process callouts at a very low cpu priority, so we don't keep the
822 * relatively high clock interrupt priority any longer than necessary.
823 */
824 if (callout_hardclock()) {
825 if (CLKF_BASEPRI(frame)) {
826 /*
827 * Save the overhead of a software interrupt;
828 * it will happen as soon as we return, so do
829 * it now.
830 */
831 spllowersoftclock();
832 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
833 softclock(NULL);
834 KERNEL_UNLOCK();
835 } else {
836 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
837 softintr_schedule(softclock_si);
838 #else
839 setsoftclock();
840 #endif
841 }
842 }
843 }
844
845 /*
846 * Compute number of hz until specified time. Used to compute second
847 * argument to callout_reset() from an absolute time.
848 */
849 int
850 hzto(struct timeval *tv)
851 {
852 unsigned long ticks;
853 long sec, usec;
854 int s;
855
856 /*
857 * If the number of usecs in the whole seconds part of the time
858 * difference fits in a long, then the total number of usecs will
859 * fit in an unsigned long. Compute the total and convert it to
860 * ticks, rounding up and adding 1 to allow for the current tick
861 * to expire. Rounding also depends on unsigned long arithmetic
862 * to avoid overflow.
863 *
864 * Otherwise, if the number of ticks in the whole seconds part of
865 * the time difference fits in a long, then convert the parts to
866 * ticks separately and add, using similar rounding methods and
867 * overflow avoidance. This method would work in the previous
868 * case, but it is slightly slower and assume that hz is integral.
869 *
870 * Otherwise, round the time difference down to the maximum
871 * representable value.
872 *
873 * If ints are 32-bit, then the maximum value for any timeout in
874 * 10ms ticks is 248 days.
875 */
876 s = splclock();
877 sec = tv->tv_sec - time.tv_sec;
878 usec = tv->tv_usec - time.tv_usec;
879 splx(s);
880
881 if (usec < 0) {
882 sec--;
883 usec += 1000000;
884 }
885
886 if (sec < 0 || (sec == 0 && usec <= 0)) {
887 /*
888 * Would expire now or in the past. Return 0 ticks.
889 * This is different from the legacy hzto() interface,
890 * and callers need to check for it.
891 */
892 ticks = 0;
893 } else if (sec <= (LONG_MAX / 1000000))
894 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
895 / tick) + 1;
896 else if (sec <= (LONG_MAX / hz))
897 ticks = (sec * hz) +
898 (((unsigned long)usec + (tick - 1)) / tick) + 1;
899 else
900 ticks = LONG_MAX;
901
902 if (ticks > INT_MAX)
903 ticks = INT_MAX;
904
905 return ((int)ticks);
906 }
907
908 /*
909 * Start profiling on a process.
910 *
911 * Kernel profiling passes proc0 which never exits and hence
912 * keeps the profile clock running constantly.
913 */
914 void
915 startprofclock(struct proc *p)
916 {
917
918 if ((p->p_flag & P_PROFIL) == 0) {
919 p->p_flag |= P_PROFIL;
920 /*
921 * This is only necessary if using the clock as the
922 * profiling source.
923 */
924 if (++profprocs == 1 && stathz != 0)
925 psdiv = psratio;
926 }
927 }
928
929 /*
930 * Stop profiling on a process.
931 */
932 void
933 stopprofclock(struct proc *p)
934 {
935
936 if (p->p_flag & P_PROFIL) {
937 p->p_flag &= ~P_PROFIL;
938 /*
939 * This is only necessary if using the clock as the
940 * profiling source.
941 */
942 if (--profprocs == 0 && stathz != 0)
943 psdiv = 1;
944 }
945 }
946
947 #if defined(PERFCTRS)
948 /*
949 * Independent profiling "tick" in case we're using a separate
950 * clock or profiling event source. Currently, that's just
951 * performance counters--hence the wrapper.
952 */
953 void
954 proftick(struct clockframe *frame)
955 {
956 #ifdef GPROF
957 struct gmonparam *g;
958 intptr_t i;
959 #endif
960 struct proc *p;
961
962 p = curproc;
963 if (CLKF_USERMODE(frame)) {
964 if (p->p_flag & P_PROFIL)
965 addupc_intr(p, CLKF_PC(frame));
966 } else {
967 #ifdef GPROF
968 g = &_gmonparam;
969 if (g->state == GMON_PROF_ON) {
970 i = CLKF_PC(frame) - g->lowpc;
971 if (i < g->textsize) {
972 i /= HISTFRACTION * sizeof(*g->kcount);
973 g->kcount[i]++;
974 }
975 }
976 #endif
977 #ifdef PROC_PC
978 if (p && p->p_flag & P_PROFIL)
979 addupc_intr(p, PROC_PC(p));
980 #endif
981 }
982 }
983 #endif
984
985 /*
986 * Statistics clock. Grab profile sample, and if divider reaches 0,
987 * do process and kernel statistics.
988 */
989 void
990 statclock(struct clockframe *frame)
991 {
992 #ifdef GPROF
993 struct gmonparam *g;
994 intptr_t i;
995 #endif
996 struct cpu_info *ci = curcpu();
997 struct schedstate_percpu *spc = &ci->ci_schedstate;
998 struct lwp *l;
999 struct proc *p;
1000
1001 /*
1002 * Notice changes in divisor frequency, and adjust clock
1003 * frequency accordingly.
1004 */
1005 if (spc->spc_psdiv != psdiv) {
1006 spc->spc_psdiv = psdiv;
1007 spc->spc_pscnt = psdiv;
1008 if (psdiv == 1) {
1009 setstatclockrate(stathz);
1010 } else {
1011 setstatclockrate(profhz);
1012 }
1013 }
1014 l = curlwp;
1015 p = (l ? l->l_proc : 0);
1016 if (CLKF_USERMODE(frame)) {
1017 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1018 addupc_intr(p, CLKF_PC(frame));
1019 if (--spc->spc_pscnt > 0)
1020 return;
1021 /*
1022 * Came from user mode; CPU was in user state.
1023 * If this process is being profiled record the tick.
1024 */
1025 p->p_uticks++;
1026 if (p->p_nice > NZERO)
1027 spc->spc_cp_time[CP_NICE]++;
1028 else
1029 spc->spc_cp_time[CP_USER]++;
1030 } else {
1031 #ifdef GPROF
1032 /*
1033 * Kernel statistics are just like addupc_intr, only easier.
1034 */
1035 g = &_gmonparam;
1036 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1037 i = CLKF_PC(frame) - g->lowpc;
1038 if (i < g->textsize) {
1039 i /= HISTFRACTION * sizeof(*g->kcount);
1040 g->kcount[i]++;
1041 }
1042 }
1043 #endif
1044 #ifdef LWP_PC
1045 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1046 addupc_intr(p, LWP_PC(l));
1047 #endif
1048 if (--spc->spc_pscnt > 0)
1049 return;
1050 /*
1051 * Came from kernel mode, so we were:
1052 * - handling an interrupt,
1053 * - doing syscall or trap work on behalf of the current
1054 * user process, or
1055 * - spinning in the idle loop.
1056 * Whichever it is, charge the time as appropriate.
1057 * Note that we charge interrupts to the current process,
1058 * regardless of whether they are ``for'' that process,
1059 * so that we know how much of its real time was spent
1060 * in ``non-process'' (i.e., interrupt) work.
1061 */
1062 if (CLKF_INTR(frame)) {
1063 if (p != NULL)
1064 p->p_iticks++;
1065 spc->spc_cp_time[CP_INTR]++;
1066 } else if (p != NULL) {
1067 p->p_sticks++;
1068 spc->spc_cp_time[CP_SYS]++;
1069 } else
1070 spc->spc_cp_time[CP_IDLE]++;
1071 }
1072 spc->spc_pscnt = psdiv;
1073
1074 if (l != NULL) {
1075 ++p->p_cpticks;
1076 /*
1077 * If no separate schedclock is provided, call it here
1078 * at ~~12-25 Hz, ~~16 Hz is best
1079 */
1080 if (schedhz == 0)
1081 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1082 schedclock(l);
1083 }
1084 }
1085
1086
1087 #ifdef NTP /* NTP phase-locked loop in kernel */
1088
1089 /*
1090 * hardupdate() - local clock update
1091 *
1092 * This routine is called by ntp_adjtime() to update the local clock
1093 * phase and frequency. The implementation is of an adaptive-parameter,
1094 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1095 * time and frequency offset estimates for each call. If the kernel PPS
1096 * discipline code is configured (PPS_SYNC), the PPS signal itself
1097 * determines the new time offset, instead of the calling argument.
1098 * Presumably, calls to ntp_adjtime() occur only when the caller
1099 * believes the local clock is valid within some bound (+-128 ms with
1100 * NTP). If the caller's time is far different than the PPS time, an
1101 * argument will ensue, and it's not clear who will lose.
1102 *
1103 * For uncompensated quartz crystal oscillatores and nominal update
1104 * intervals less than 1024 s, operation should be in phase-lock mode
1105 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1106 * intervals greater than thiss, operation should be in frequency-lock
1107 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1108 *
1109 * Note: splclock() is in effect.
1110 */
1111 void
1112 hardupdate(long offset)
1113 {
1114 long ltemp, mtemp;
1115
1116 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1117 return;
1118 ltemp = offset;
1119 #ifdef PPS_SYNC
1120 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1121 ltemp = pps_offset;
1122 #endif /* PPS_SYNC */
1123
1124 /*
1125 * Scale the phase adjustment and clamp to the operating range.
1126 */
1127 if (ltemp > MAXPHASE)
1128 time_offset = MAXPHASE << SHIFT_UPDATE;
1129 else if (ltemp < -MAXPHASE)
1130 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1131 else
1132 time_offset = ltemp << SHIFT_UPDATE;
1133
1134 /*
1135 * Select whether the frequency is to be controlled and in which
1136 * mode (PLL or FLL). Clamp to the operating range. Ugly
1137 * multiply/divide should be replaced someday.
1138 */
1139 if (time_status & STA_FREQHOLD || time_reftime == 0)
1140 time_reftime = time.tv_sec;
1141 mtemp = time.tv_sec - time_reftime;
1142 time_reftime = time.tv_sec;
1143 if (time_status & STA_FLL) {
1144 if (mtemp >= MINSEC) {
1145 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1146 SHIFT_UPDATE));
1147 if (ltemp < 0)
1148 time_freq -= -ltemp >> SHIFT_KH;
1149 else
1150 time_freq += ltemp >> SHIFT_KH;
1151 }
1152 } else {
1153 if (mtemp < MAXSEC) {
1154 ltemp *= mtemp;
1155 if (ltemp < 0)
1156 time_freq -= -ltemp >> (time_constant +
1157 time_constant + SHIFT_KF -
1158 SHIFT_USEC);
1159 else
1160 time_freq += ltemp >> (time_constant +
1161 time_constant + SHIFT_KF -
1162 SHIFT_USEC);
1163 }
1164 }
1165 if (time_freq > time_tolerance)
1166 time_freq = time_tolerance;
1167 else if (time_freq < -time_tolerance)
1168 time_freq = -time_tolerance;
1169 }
1170
1171 #ifdef PPS_SYNC
1172 /*
1173 * hardpps() - discipline CPU clock oscillator to external PPS signal
1174 *
1175 * This routine is called at each PPS interrupt in order to discipline
1176 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1177 * and leaves it in a handy spot for the hardclock() routine. It
1178 * integrates successive PPS phase differences and calculates the
1179 * frequency offset. This is used in hardclock() to discipline the CPU
1180 * clock oscillator so that intrinsic frequency error is cancelled out.
1181 * The code requires the caller to capture the time and hardware counter
1182 * value at the on-time PPS signal transition.
1183 *
1184 * Note that, on some Unix systems, this routine runs at an interrupt
1185 * priority level higher than the timer interrupt routine hardclock().
1186 * Therefore, the variables used are distinct from the hardclock()
1187 * variables, except for certain exceptions: The PPS frequency pps_freq
1188 * and phase pps_offset variables are determined by this routine and
1189 * updated atomically. The time_tolerance variable can be considered a
1190 * constant, since it is infrequently changed, and then only when the
1191 * PPS signal is disabled. The watchdog counter pps_valid is updated
1192 * once per second by hardclock() and is atomically cleared in this
1193 * routine.
1194 */
1195 void
1196 hardpps(struct timeval *tvp, /* time at PPS */
1197 long usec /* hardware counter at PPS */)
1198 {
1199 long u_usec, v_usec, bigtick;
1200 long cal_sec, cal_usec;
1201
1202 /*
1203 * An occasional glitch can be produced when the PPS interrupt
1204 * occurs in the hardclock() routine before the time variable is
1205 * updated. Here the offset is discarded when the difference
1206 * between it and the last one is greater than tick/2, but not
1207 * if the interval since the first discard exceeds 30 s.
1208 */
1209 time_status |= STA_PPSSIGNAL;
1210 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1211 pps_valid = 0;
1212 u_usec = -tvp->tv_usec;
1213 if (u_usec < -500000)
1214 u_usec += 1000000;
1215 v_usec = pps_offset - u_usec;
1216 if (v_usec < 0)
1217 v_usec = -v_usec;
1218 if (v_usec > (tick >> 1)) {
1219 if (pps_glitch > MAXGLITCH) {
1220 pps_glitch = 0;
1221 pps_tf[2] = u_usec;
1222 pps_tf[1] = u_usec;
1223 } else {
1224 pps_glitch++;
1225 u_usec = pps_offset;
1226 }
1227 } else
1228 pps_glitch = 0;
1229
1230 /*
1231 * A three-stage median filter is used to help deglitch the pps
1232 * time. The median sample becomes the time offset estimate; the
1233 * difference between the other two samples becomes the time
1234 * dispersion (jitter) estimate.
1235 */
1236 pps_tf[2] = pps_tf[1];
1237 pps_tf[1] = pps_tf[0];
1238 pps_tf[0] = u_usec;
1239 if (pps_tf[0] > pps_tf[1]) {
1240 if (pps_tf[1] > pps_tf[2]) {
1241 pps_offset = pps_tf[1]; /* 0 1 2 */
1242 v_usec = pps_tf[0] - pps_tf[2];
1243 } else if (pps_tf[2] > pps_tf[0]) {
1244 pps_offset = pps_tf[0]; /* 2 0 1 */
1245 v_usec = pps_tf[2] - pps_tf[1];
1246 } else {
1247 pps_offset = pps_tf[2]; /* 0 2 1 */
1248 v_usec = pps_tf[0] - pps_tf[1];
1249 }
1250 } else {
1251 if (pps_tf[1] < pps_tf[2]) {
1252 pps_offset = pps_tf[1]; /* 2 1 0 */
1253 v_usec = pps_tf[2] - pps_tf[0];
1254 } else if (pps_tf[2] < pps_tf[0]) {
1255 pps_offset = pps_tf[0]; /* 1 0 2 */
1256 v_usec = pps_tf[1] - pps_tf[2];
1257 } else {
1258 pps_offset = pps_tf[2]; /* 1 2 0 */
1259 v_usec = pps_tf[1] - pps_tf[0];
1260 }
1261 }
1262 if (v_usec > MAXTIME)
1263 pps_jitcnt++;
1264 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1265 if (v_usec < 0)
1266 pps_jitter -= -v_usec >> PPS_AVG;
1267 else
1268 pps_jitter += v_usec >> PPS_AVG;
1269 if (pps_jitter > (MAXTIME >> 1))
1270 time_status |= STA_PPSJITTER;
1271
1272 /*
1273 * During the calibration interval adjust the starting time when
1274 * the tick overflows. At the end of the interval compute the
1275 * duration of the interval and the difference of the hardware
1276 * counters at the beginning and end of the interval. This code
1277 * is deliciously complicated by the fact valid differences may
1278 * exceed the value of tick when using long calibration
1279 * intervals and small ticks. Note that the counter can be
1280 * greater than tick if caught at just the wrong instant, but
1281 * the values returned and used here are correct.
1282 */
1283 bigtick = (long)tick << SHIFT_USEC;
1284 pps_usec -= pps_freq;
1285 if (pps_usec >= bigtick)
1286 pps_usec -= bigtick;
1287 if (pps_usec < 0)
1288 pps_usec += bigtick;
1289 pps_time.tv_sec++;
1290 pps_count++;
1291 if (pps_count < (1 << pps_shift))
1292 return;
1293 pps_count = 0;
1294 pps_calcnt++;
1295 u_usec = usec << SHIFT_USEC;
1296 v_usec = pps_usec - u_usec;
1297 if (v_usec >= bigtick >> 1)
1298 v_usec -= bigtick;
1299 if (v_usec < -(bigtick >> 1))
1300 v_usec += bigtick;
1301 if (v_usec < 0)
1302 v_usec = -(-v_usec >> pps_shift);
1303 else
1304 v_usec = v_usec >> pps_shift;
1305 pps_usec = u_usec;
1306 cal_sec = tvp->tv_sec;
1307 cal_usec = tvp->tv_usec;
1308 cal_sec -= pps_time.tv_sec;
1309 cal_usec -= pps_time.tv_usec;
1310 if (cal_usec < 0) {
1311 cal_usec += 1000000;
1312 cal_sec--;
1313 }
1314 pps_time = *tvp;
1315
1316 /*
1317 * Check for lost interrupts, noise, excessive jitter and
1318 * excessive frequency error. The number of timer ticks during
1319 * the interval may vary +-1 tick. Add to this a margin of one
1320 * tick for the PPS signal jitter and maximum frequency
1321 * deviation. If the limits are exceeded, the calibration
1322 * interval is reset to the minimum and we start over.
1323 */
1324 u_usec = (long)tick << 1;
1325 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1326 || (cal_sec == 0 && cal_usec < u_usec))
1327 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1328 pps_errcnt++;
1329 pps_shift = PPS_SHIFT;
1330 pps_intcnt = 0;
1331 time_status |= STA_PPSERROR;
1332 return;
1333 }
1334
1335 /*
1336 * A three-stage median filter is used to help deglitch the pps
1337 * frequency. The median sample becomes the frequency offset
1338 * estimate; the difference between the other two samples
1339 * becomes the frequency dispersion (stability) estimate.
1340 */
1341 pps_ff[2] = pps_ff[1];
1342 pps_ff[1] = pps_ff[0];
1343 pps_ff[0] = v_usec;
1344 if (pps_ff[0] > pps_ff[1]) {
1345 if (pps_ff[1] > pps_ff[2]) {
1346 u_usec = pps_ff[1]; /* 0 1 2 */
1347 v_usec = pps_ff[0] - pps_ff[2];
1348 } else if (pps_ff[2] > pps_ff[0]) {
1349 u_usec = pps_ff[0]; /* 2 0 1 */
1350 v_usec = pps_ff[2] - pps_ff[1];
1351 } else {
1352 u_usec = pps_ff[2]; /* 0 2 1 */
1353 v_usec = pps_ff[0] - pps_ff[1];
1354 }
1355 } else {
1356 if (pps_ff[1] < pps_ff[2]) {
1357 u_usec = pps_ff[1]; /* 2 1 0 */
1358 v_usec = pps_ff[2] - pps_ff[0];
1359 } else if (pps_ff[2] < pps_ff[0]) {
1360 u_usec = pps_ff[0]; /* 1 0 2 */
1361 v_usec = pps_ff[1] - pps_ff[2];
1362 } else {
1363 u_usec = pps_ff[2]; /* 1 2 0 */
1364 v_usec = pps_ff[1] - pps_ff[0];
1365 }
1366 }
1367
1368 /*
1369 * Here the frequency dispersion (stability) is updated. If it
1370 * is less than one-fourth the maximum (MAXFREQ), the frequency
1371 * offset is updated as well, but clamped to the tolerance. It
1372 * will be processed later by the hardclock() routine.
1373 */
1374 v_usec = (v_usec >> 1) - pps_stabil;
1375 if (v_usec < 0)
1376 pps_stabil -= -v_usec >> PPS_AVG;
1377 else
1378 pps_stabil += v_usec >> PPS_AVG;
1379 if (pps_stabil > MAXFREQ >> 2) {
1380 pps_stbcnt++;
1381 time_status |= STA_PPSWANDER;
1382 return;
1383 }
1384 if (time_status & STA_PPSFREQ) {
1385 if (u_usec < 0) {
1386 pps_freq -= -u_usec >> PPS_AVG;
1387 if (pps_freq < -time_tolerance)
1388 pps_freq = -time_tolerance;
1389 u_usec = -u_usec;
1390 } else {
1391 pps_freq += u_usec >> PPS_AVG;
1392 if (pps_freq > time_tolerance)
1393 pps_freq = time_tolerance;
1394 }
1395 }
1396
1397 /*
1398 * Here the calibration interval is adjusted. If the maximum
1399 * time difference is greater than tick / 4, reduce the interval
1400 * by half. If this is not the case for four consecutive
1401 * intervals, double the interval.
1402 */
1403 if (u_usec << pps_shift > bigtick >> 2) {
1404 pps_intcnt = 0;
1405 if (pps_shift > PPS_SHIFT)
1406 pps_shift--;
1407 } else if (pps_intcnt >= 4) {
1408 pps_intcnt = 0;
1409 if (pps_shift < PPS_SHIFTMAX)
1410 pps_shift++;
1411 } else
1412 pps_intcnt++;
1413 }
1414 #endif /* PPS_SYNC */
1415 #endif /* NTP */
1416
1417 /*
1418 * Return information about system clocks.
1419 */
1420 int
1421 sysctl_clockrate(void *where, size_t *sizep)
1422 {
1423 struct clockinfo clkinfo;
1424
1425 /*
1426 * Construct clockinfo structure.
1427 */
1428 clkinfo.tick = tick;
1429 clkinfo.tickadj = tickadj;
1430 clkinfo.hz = hz;
1431 clkinfo.profhz = profhz;
1432 clkinfo.stathz = stathz ? stathz : hz;
1433 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1434 }
1435