Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.87
      1 /*	$NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $");
     78 
     79 #include "opt_ntp.h"
     80 #include "opt_multiprocessor.h"
     81 #include "opt_perfctrs.h"
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/callout.h>
     86 #include <sys/kernel.h>
     87 #include <sys/proc.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/timex.h>
     92 #include <sys/sched.h>
     93 #include <sys/time.h>
     94 
     95 #include <machine/cpu.h>
     96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
     97 #include <machine/intr.h>
     98 #endif
     99 
    100 #ifdef GPROF
    101 #include <sys/gmon.h>
    102 #endif
    103 
    104 /*
    105  * Clock handling routines.
    106  *
    107  * This code is written to operate with two timers that run independently of
    108  * each other.  The main clock, running hz times per second, is used to keep
    109  * track of real time.  The second timer handles kernel and user profiling,
    110  * and does resource use estimation.  If the second timer is programmable,
    111  * it is randomized to avoid aliasing between the two clocks.  For example,
    112  * the randomization prevents an adversary from always giving up the cpu
    113  * just before its quantum expires.  Otherwise, it would never accumulate
    114  * cpu ticks.  The mean frequency of the second timer is stathz.
    115  *
    116  * If no second timer exists, stathz will be zero; in this case we drive
    117  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    118  * do not do it unless absolutely necessary.
    119  *
    120  * The statistics clock may (or may not) be run at a higher rate while
    121  * profiling.  This profile clock runs at profhz.  We require that profhz
    122  * be an integral multiple of stathz.
    123  *
    124  * If the statistics clock is running fast, it must be divided by the ratio
    125  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    126  */
    127 
    128 #ifdef NTP	/* NTP phase-locked loop in kernel */
    129 /*
    130  * Phase/frequency-lock loop (PLL/FLL) definitions
    131  *
    132  * The following variables are read and set by the ntp_adjtime() system
    133  * call.
    134  *
    135  * time_state shows the state of the system clock, with values defined
    136  * in the timex.h header file.
    137  *
    138  * time_status shows the status of the system clock, with bits defined
    139  * in the timex.h header file.
    140  *
    141  * time_offset is used by the PLL/FLL to adjust the system time in small
    142  * increments.
    143  *
    144  * time_constant determines the bandwidth or "stiffness" of the PLL.
    145  *
    146  * time_tolerance determines maximum frequency error or tolerance of the
    147  * CPU clock oscillator and is a property of the architecture; however,
    148  * in principle it could change as result of the presence of external
    149  * discipline signals, for instance.
    150  *
    151  * time_precision is usually equal to the kernel tick variable; however,
    152  * in cases where a precision clock counter or external clock is
    153  * available, the resolution can be much less than this and depend on
    154  * whether the external clock is working or not.
    155  *
    156  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    157  * the kernel once each second to reflect the maximum error bound
    158  * growth.
    159  *
    160  * time_esterror is set and read by the ntp_adjtime() call, but
    161  * otherwise not used by the kernel.
    162  */
    163 int time_state = TIME_OK;	/* clock state */
    164 int time_status = STA_UNSYNC;	/* clock status bits */
    165 long time_offset = 0;		/* time offset (us) */
    166 long time_constant = 0;		/* pll time constant */
    167 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    168 long time_precision = 1;	/* clock precision (us) */
    169 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    170 long time_esterror = MAXPHASE;	/* estimated error (us) */
    171 
    172 /*
    173  * The following variables establish the state of the PLL/FLL and the
    174  * residual time and frequency offset of the local clock. The scale
    175  * factors are defined in the timex.h header file.
    176  *
    177  * time_phase and time_freq are the phase increment and the frequency
    178  * increment, respectively, of the kernel time variable.
    179  *
    180  * time_freq is set via ntp_adjtime() from a value stored in a file when
    181  * the synchronization daemon is first started. Its value is retrieved
    182  * via ntp_adjtime() and written to the file about once per hour by the
    183  * daemon.
    184  *
    185  * time_adj is the adjustment added to the value of tick at each timer
    186  * interrupt and is recomputed from time_phase and time_freq at each
    187  * seconds rollover.
    188  *
    189  * time_reftime is the second's portion of the system time at the last
    190  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    191  * and to increase the time_maxerror as the time since last update
    192  * increases.
    193  */
    194 long time_phase = 0;		/* phase offset (scaled us) */
    195 long time_freq = 0;		/* frequency offset (scaled ppm) */
    196 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    197 long time_reftime = 0;		/* time at last adjustment (s) */
    198 
    199 #ifdef PPS_SYNC
    200 /*
    201  * The following variables are used only if the kernel PPS discipline
    202  * code is configured (PPS_SYNC). The scale factors are defined in the
    203  * timex.h header file.
    204  *
    205  * pps_time contains the time at each calibration interval, as read by
    206  * microtime(). pps_count counts the seconds of the calibration
    207  * interval, the duration of which is nominally pps_shift in powers of
    208  * two.
    209  *
    210  * pps_offset is the time offset produced by the time median filter
    211  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    212  * this filter.
    213  *
    214  * pps_freq is the frequency offset produced by the frequency median
    215  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    216  * by this filter.
    217  *
    218  * pps_usec is latched from a high resolution counter or external clock
    219  * at pps_time. Here we want the hardware counter contents only, not the
    220  * contents plus the time_tv.usec as usual.
    221  *
    222  * pps_valid counts the number of seconds since the last PPS update. It
    223  * is used as a watchdog timer to disable the PPS discipline should the
    224  * PPS signal be lost.
    225  *
    226  * pps_glitch counts the number of seconds since the beginning of an
    227  * offset burst more than tick/2 from current nominal offset. It is used
    228  * mainly to suppress error bursts due to priority conflicts between the
    229  * PPS interrupt and timer interrupt.
    230  *
    231  * pps_intcnt counts the calibration intervals for use in the interval-
    232  * adaptation algorithm. It's just too complicated for words.
    233  */
    234 struct timeval pps_time;	/* kernel time at last interval */
    235 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    236 long pps_offset = 0;		/* pps time offset (us) */
    237 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    238 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    239 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    240 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    241 long pps_usec = 0;		/* microsec counter at last interval */
    242 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    243 int pps_glitch = 0;		/* pps signal glitch counter */
    244 int pps_count = 0;		/* calibration interval counter (s) */
    245 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    246 int pps_intcnt = 0;		/* intervals at current duration */
    247 
    248 /*
    249  * PPS signal quality monitors
    250  *
    251  * pps_jitcnt counts the seconds that have been discarded because the
    252  * jitter measured by the time median filter exceeds the limit MAXTIME
    253  * (100 us).
    254  *
    255  * pps_calcnt counts the frequency calibration intervals, which are
    256  * variable from 4 s to 256 s.
    257  *
    258  * pps_errcnt counts the calibration intervals which have been discarded
    259  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    260  * calibration interval jitter exceeds two ticks.
    261  *
    262  * pps_stbcnt counts the calibration intervals that have been discarded
    263  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    264  */
    265 long pps_jitcnt = 0;		/* jitter limit exceeded */
    266 long pps_calcnt = 0;		/* calibration intervals */
    267 long pps_errcnt = 0;		/* calibration errors */
    268 long pps_stbcnt = 0;		/* stability limit exceeded */
    269 #endif /* PPS_SYNC */
    270 
    271 #ifdef EXT_CLOCK
    272 /*
    273  * External clock definitions
    274  *
    275  * The following definitions and declarations are used only if an
    276  * external clock is configured on the system.
    277  */
    278 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    279 
    280 /*
    281  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    282  * interrupt and decremented once each second.
    283  */
    284 int clock_count = 0;		/* CPU clock counter */
    285 
    286 #ifdef HIGHBALL
    287 /*
    288  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    289  * interface. The clock_offset variable defines the offset between
    290  * system time and the HIGBALL counters. The clock_cpu variable contains
    291  * the offset between the system clock and the HIGHBALL clock for use in
    292  * disciplining the kernel time variable.
    293  */
    294 extern struct timeval clock_offset; /* Highball clock offset */
    295 long clock_cpu = 0;		/* CPU clock adjust */
    296 #endif /* HIGHBALL */
    297 #endif /* EXT_CLOCK */
    298 #endif /* NTP */
    299 
    300 
    301 /*
    302  * Bump a timeval by a small number of usec's.
    303  */
    304 #define BUMPTIME(t, usec) { \
    305 	volatile struct timeval *tp = (t); \
    306 	long us; \
    307  \
    308 	tp->tv_usec = us = tp->tv_usec + (usec); \
    309 	if (us >= 1000000) { \
    310 		tp->tv_usec = us - 1000000; \
    311 		tp->tv_sec++; \
    312 	} \
    313 }
    314 
    315 int	stathz;
    316 int	profhz;
    317 int	profsrc;
    318 int	schedhz;
    319 int	profprocs;
    320 int	hardclock_ticks;
    321 static int psdiv;			/* prof => stat divider */
    322 int	psratio;			/* ratio: prof / stat */
    323 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    324 #ifndef NTP
    325 static int tickfixcnt;			/* accumulated fractional error */
    326 #else
    327 int	fixtick;			/* used by NTP for same */
    328 int	shifthz;
    329 #endif
    330 
    331 /*
    332  * We might want ldd to load the both words from time at once.
    333  * To succeed we need to be quadword aligned.
    334  * The sparc already does that, and that it has worked so far is a fluke.
    335  */
    336 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    337 volatile struct	timeval mono_time;
    338 
    339 void	*softclock_si;
    340 
    341 /*
    342  * Initialize clock frequencies and start both clocks running.
    343  */
    344 void
    345 initclocks(void)
    346 {
    347 	int i;
    348 
    349 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    350 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    351 	if (softclock_si == NULL)
    352 		panic("initclocks: unable to register softclock intr");
    353 #endif
    354 
    355 	/*
    356 	 * Set divisors to 1 (normal case) and let the machine-specific
    357 	 * code do its bit.
    358 	 */
    359 	psdiv = 1;
    360 	cpu_initclocks();
    361 
    362 	/*
    363 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    364 	 */
    365 	i = stathz ? stathz : hz;
    366 	if (profhz == 0)
    367 		profhz = i;
    368 	psratio = profhz / i;
    369 	rrticks = hz / 10;
    370 
    371 #ifdef NTP
    372 	switch (hz) {
    373 	case 1:
    374 		shifthz = SHIFT_SCALE - 0;
    375 		break;
    376 	case 2:
    377 		shifthz = SHIFT_SCALE - 1;
    378 		break;
    379 	case 4:
    380 		shifthz = SHIFT_SCALE - 2;
    381 		break;
    382 	case 8:
    383 		shifthz = SHIFT_SCALE - 3;
    384 		break;
    385 	case 16:
    386 		shifthz = SHIFT_SCALE - 4;
    387 		break;
    388 	case 32:
    389 		shifthz = SHIFT_SCALE - 5;
    390 		break;
    391 	case 60:
    392 	case 64:
    393 		shifthz = SHIFT_SCALE - 6;
    394 		break;
    395 	case 96:
    396 	case 100:
    397 	case 128:
    398 		shifthz = SHIFT_SCALE - 7;
    399 		break;
    400 	case 256:
    401 		shifthz = SHIFT_SCALE - 8;
    402 		break;
    403 	case 512:
    404 		shifthz = SHIFT_SCALE - 9;
    405 		break;
    406 	case 1000:
    407 	case 1024:
    408 		shifthz = SHIFT_SCALE - 10;
    409 		break;
    410 	case 1200:
    411 	case 2048:
    412 		shifthz = SHIFT_SCALE - 11;
    413 		break;
    414 	case 4096:
    415 		shifthz = SHIFT_SCALE - 12;
    416 		break;
    417 	case 8192:
    418 		shifthz = SHIFT_SCALE - 13;
    419 		break;
    420 	case 16384:
    421 		shifthz = SHIFT_SCALE - 14;
    422 		break;
    423 	case 32768:
    424 		shifthz = SHIFT_SCALE - 15;
    425 		break;
    426 	case 65536:
    427 		shifthz = SHIFT_SCALE - 16;
    428 		break;
    429 	default:
    430 		panic("weird hz");
    431 	}
    432 	if (fixtick == 0) {
    433 		/*
    434 		 * Give MD code a chance to set this to a better
    435 		 * value; but, if it doesn't, we should.
    436 		 */
    437 		fixtick = (1000000 - (hz*tick));
    438 	}
    439 #endif
    440 }
    441 
    442 /*
    443  * The real-time timer, interrupting hz times per second.
    444  */
    445 void
    446 hardclock(struct clockframe *frame)
    447 {
    448 	struct lwp *l;
    449 	struct proc *p;
    450 	int delta;
    451 	extern int tickdelta;
    452 	extern long timedelta;
    453 	struct cpu_info *ci = curcpu();
    454 	struct ptimer *pt;
    455 #ifdef NTP
    456 	int time_update;
    457 	int ltemp;
    458 #endif
    459 
    460 	l = curlwp;
    461 	if (l) {
    462 		p = l->l_proc;
    463 		/*
    464 		 * Run current process's virtual and profile time, as needed.
    465 		 */
    466 		if (CLKF_USERMODE(frame) && p->p_timers &&
    467 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    468 			if (itimerdecr(pt, tick) == 0)
    469 				itimerfire(pt);
    470 		if (p->p_timers &&
    471 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    472 			if (itimerdecr(pt, tick) == 0)
    473 				itimerfire(pt);
    474 	}
    475 
    476 	/*
    477 	 * If no separate statistics clock is available, run it from here.
    478 	 */
    479 	if (stathz == 0)
    480 		statclock(frame);
    481 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    482 		roundrobin(ci);
    483 
    484 #if defined(MULTIPROCESSOR)
    485 	/*
    486 	 * If we are not the primary CPU, we're not allowed to do
    487 	 * any more work.
    488 	 */
    489 	if (CPU_IS_PRIMARY(ci) == 0)
    490 		return;
    491 #endif
    492 
    493 	/*
    494 	 * Increment the time-of-day.  The increment is normally just
    495 	 * ``tick''.  If the machine is one which has a clock frequency
    496 	 * such that ``hz'' would not divide the second evenly into
    497 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    498 	 * if we are still adjusting the time (see adjtime()),
    499 	 * ``tickdelta'' may also be added in.
    500 	 */
    501 	hardclock_ticks++;
    502 	delta = tick;
    503 
    504 #ifndef NTP
    505 	if (tickfix) {
    506 		tickfixcnt += tickfix;
    507 		if (tickfixcnt >= tickfixinterval) {
    508 			delta++;
    509 			tickfixcnt -= tickfixinterval;
    510 		}
    511 	}
    512 #endif /* !NTP */
    513 	/* Imprecise 4bsd adjtime() handling */
    514 	if (timedelta != 0) {
    515 		delta += tickdelta;
    516 		timedelta -= tickdelta;
    517 	}
    518 
    519 #ifdef notyet
    520 	microset();
    521 #endif
    522 
    523 #ifndef NTP
    524 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    525 #endif
    526 	BUMPTIME(&mono_time, delta);
    527 
    528 #ifdef NTP
    529 	time_update = delta;
    530 
    531 	/*
    532 	 * Compute the phase adjustment. If the low-order bits
    533 	 * (time_phase) of the update overflow, bump the high-order bits
    534 	 * (time_update).
    535 	 */
    536 	time_phase += time_adj;
    537 	if (time_phase <= -FINEUSEC) {
    538 		ltemp = -time_phase >> SHIFT_SCALE;
    539 		time_phase += ltemp << SHIFT_SCALE;
    540 		time_update -= ltemp;
    541 	} else if (time_phase >= FINEUSEC) {
    542 		ltemp = time_phase >> SHIFT_SCALE;
    543 		time_phase -= ltemp << SHIFT_SCALE;
    544 		time_update += ltemp;
    545 	}
    546 
    547 #ifdef HIGHBALL
    548 	/*
    549 	 * If the HIGHBALL board is installed, we need to adjust the
    550 	 * external clock offset in order to close the hardware feedback
    551 	 * loop. This will adjust the external clock phase and frequency
    552 	 * in small amounts. The additional phase noise and frequency
    553 	 * wander this causes should be minimal. We also need to
    554 	 * discipline the kernel time variable, since the PLL is used to
    555 	 * discipline the external clock. If the Highball board is not
    556 	 * present, we discipline kernel time with the PLL as usual. We
    557 	 * assume that the external clock phase adjustment (time_update)
    558 	 * and kernel phase adjustment (clock_cpu) are less than the
    559 	 * value of tick.
    560 	 */
    561 	clock_offset.tv_usec += time_update;
    562 	if (clock_offset.tv_usec >= 1000000) {
    563 		clock_offset.tv_sec++;
    564 		clock_offset.tv_usec -= 1000000;
    565 	}
    566 	if (clock_offset.tv_usec < 0) {
    567 		clock_offset.tv_sec--;
    568 		clock_offset.tv_usec += 1000000;
    569 	}
    570 	time.tv_usec += clock_cpu;
    571 	clock_cpu = 0;
    572 #else
    573 	time.tv_usec += time_update;
    574 #endif /* HIGHBALL */
    575 
    576 	/*
    577 	 * On rollover of the second the phase adjustment to be used for
    578 	 * the next second is calculated. Also, the maximum error is
    579 	 * increased by the tolerance. If the PPS frequency discipline
    580 	 * code is present, the phase is increased to compensate for the
    581 	 * CPU clock oscillator frequency error.
    582 	 *
    583  	 * On a 32-bit machine and given parameters in the timex.h
    584 	 * header file, the maximum phase adjustment is +-512 ms and
    585 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    586 	 * 64-bit machine, you shouldn't need to ask.
    587 	 */
    588 	if (time.tv_usec >= 1000000) {
    589 		time.tv_usec -= 1000000;
    590 		time.tv_sec++;
    591 		time_maxerror += time_tolerance >> SHIFT_USEC;
    592 
    593 		/*
    594 		 * Leap second processing. If in leap-insert state at
    595 		 * the end of the day, the system clock is set back one
    596 		 * second; if in leap-delete state, the system clock is
    597 		 * set ahead one second. The microtime() routine or
    598 		 * external clock driver will insure that reported time
    599 		 * is always monotonic. The ugly divides should be
    600 		 * replaced.
    601 		 */
    602 		switch (time_state) {
    603 		case TIME_OK:
    604 			if (time_status & STA_INS)
    605 				time_state = TIME_INS;
    606 			else if (time_status & STA_DEL)
    607 				time_state = TIME_DEL;
    608 			break;
    609 
    610 		case TIME_INS:
    611 			if (time.tv_sec % 86400 == 0) {
    612 				time.tv_sec--;
    613 				time_state = TIME_OOP;
    614 			}
    615 			break;
    616 
    617 		case TIME_DEL:
    618 			if ((time.tv_sec + 1) % 86400 == 0) {
    619 				time.tv_sec++;
    620 				time_state = TIME_WAIT;
    621 			}
    622 			break;
    623 
    624 		case TIME_OOP:
    625 			time_state = TIME_WAIT;
    626 			break;
    627 
    628 		case TIME_WAIT:
    629 			if (!(time_status & (STA_INS | STA_DEL)))
    630 				time_state = TIME_OK;
    631 			break;
    632 		}
    633 
    634 		/*
    635 		 * Compute the phase adjustment for the next second. In
    636 		 * PLL mode, the offset is reduced by a fixed factor
    637 		 * times the time constant. In FLL mode the offset is
    638 		 * used directly. In either mode, the maximum phase
    639 		 * adjustment for each second is clamped so as to spread
    640 		 * the adjustment over not more than the number of
    641 		 * seconds between updates.
    642 		 */
    643 		if (time_offset < 0) {
    644 			ltemp = -time_offset;
    645 			if (!(time_status & STA_FLL))
    646 				ltemp >>= SHIFT_KG + time_constant;
    647 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    648 				ltemp = (MAXPHASE / MINSEC) <<
    649 				    SHIFT_UPDATE;
    650 			time_offset += ltemp;
    651 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    652 		} else if (time_offset > 0) {
    653 			ltemp = time_offset;
    654 			if (!(time_status & STA_FLL))
    655 				ltemp >>= SHIFT_KG + time_constant;
    656 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    657 				ltemp = (MAXPHASE / MINSEC) <<
    658 				    SHIFT_UPDATE;
    659 			time_offset -= ltemp;
    660 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    661 		} else
    662 			time_adj = 0;
    663 
    664 		/*
    665 		 * Compute the frequency estimate and additional phase
    666 		 * adjustment due to frequency error for the next
    667 		 * second. When the PPS signal is engaged, gnaw on the
    668 		 * watchdog counter and update the frequency computed by
    669 		 * the pll and the PPS signal.
    670 		 */
    671 #ifdef PPS_SYNC
    672 		pps_valid++;
    673 		if (pps_valid == PPS_VALID) {
    674 			pps_jitter = MAXTIME;
    675 			pps_stabil = MAXFREQ;
    676 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    677 			    STA_PPSWANDER | STA_PPSERROR);
    678 		}
    679 		ltemp = time_freq + pps_freq;
    680 #else
    681 		ltemp = time_freq;
    682 #endif /* PPS_SYNC */
    683 
    684 		if (ltemp < 0)
    685 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    686 		else
    687 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    688 		time_adj += (long)fixtick << shifthz;
    689 
    690 		/*
    691 		 * When the CPU clock oscillator frequency is not a
    692 		 * power of 2 in Hz, shifthz is only an approximate
    693 		 * scale factor.
    694 		 *
    695 		 * To determine the adjustment, you can do the following:
    696 		 *   bc -q
    697 		 *   scale=24
    698 		 *   obase=2
    699 		 *   idealhz/realhz
    700 		 * where `idealhz' is the next higher power of 2, and `realhz'
    701 		 * is the actual value.  You may need to factor this result
    702 		 * into a sequence of 2 multipliers to get better precision.
    703 		 *
    704 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    705 		 *   bc -q
    706 		 *   scale=24
    707 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    708 		 * (and then multiply by 1000000 to get ppm).
    709 		 */
    710 		switch (hz) {
    711 		case 60:
    712 			/* A factor of 1.000100010001 gives about 15ppm
    713 			   error. */
    714 			if (time_adj < 0) {
    715 				time_adj -= (-time_adj >> 4);
    716 				time_adj -= (-time_adj >> 8);
    717 			} else {
    718 				time_adj += (time_adj >> 4);
    719 				time_adj += (time_adj >> 8);
    720 			}
    721 			break;
    722 
    723 		case 96:
    724 			/* A factor of 1.0101010101 gives about 244ppm error. */
    725 			if (time_adj < 0) {
    726 				time_adj -= (-time_adj >> 2);
    727 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    728 			} else {
    729 				time_adj += (time_adj >> 2);
    730 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    731 			}
    732 			break;
    733 
    734 		case 100:
    735 			/* A factor of 1.010001111010111 gives about 1ppm
    736 			   error. */
    737 			if (time_adj < 0) {
    738 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    739 				time_adj += (-time_adj >> 10);
    740 			} else {
    741 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    742 				time_adj -= (time_adj >> 10);
    743 			}
    744 			break;
    745 
    746 		case 1000:
    747 			/* A factor of 1.000001100010100001 gives about 50ppm
    748 			   error. */
    749 			if (time_adj < 0) {
    750 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    751 				time_adj -= (-time_adj >> 7);
    752 			} else {
    753 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    754 				time_adj += (time_adj >> 7);
    755 			}
    756 			break;
    757 
    758 		case 1200:
    759 			/* A factor of 1.1011010011100001 gives about 64ppm
    760 			   error. */
    761 			if (time_adj < 0) {
    762 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    763 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    764 			} else {
    765 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    766 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    767 			}
    768 			break;
    769 		}
    770 
    771 #ifdef EXT_CLOCK
    772 		/*
    773 		 * If an external clock is present, it is necessary to
    774 		 * discipline the kernel time variable anyway, since not
    775 		 * all system components use the microtime() interface.
    776 		 * Here, the time offset between the external clock and
    777 		 * kernel time variable is computed every so often.
    778 		 */
    779 		clock_count++;
    780 		if (clock_count > CLOCK_INTERVAL) {
    781 			clock_count = 0;
    782 			microtime(&clock_ext);
    783 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    784 			delta.tv_usec = clock_ext.tv_usec -
    785 			    time.tv_usec;
    786 			if (delta.tv_usec < 0)
    787 				delta.tv_sec--;
    788 			if (delta.tv_usec >= 500000) {
    789 				delta.tv_usec -= 1000000;
    790 				delta.tv_sec++;
    791 			}
    792 			if (delta.tv_usec < -500000) {
    793 				delta.tv_usec += 1000000;
    794 				delta.tv_sec--;
    795 			}
    796 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    797 			    delta.tv_usec > MAXPHASE) ||
    798 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    799 			    delta.tv_usec < -MAXPHASE)) {
    800 				time = clock_ext;
    801 				delta.tv_sec = 0;
    802 				delta.tv_usec = 0;
    803 			}
    804 #ifdef HIGHBALL
    805 			clock_cpu = delta.tv_usec;
    806 #else /* HIGHBALL */
    807 			hardupdate(delta.tv_usec);
    808 #endif /* HIGHBALL */
    809 		}
    810 #endif /* EXT_CLOCK */
    811 	}
    812 
    813 #endif /* NTP */
    814 
    815 	/*
    816 	 * Update real-time timeout queue.
    817 	 * Process callouts at a very low cpu priority, so we don't keep the
    818 	 * relatively high clock interrupt priority any longer than necessary.
    819 	 */
    820 	if (callout_hardclock()) {
    821 		if (CLKF_BASEPRI(frame)) {
    822 			/*
    823 			 * Save the overhead of a software interrupt;
    824 			 * it will happen as soon as we return, so do
    825 			 * it now.
    826 			 */
    827 			spllowersoftclock();
    828 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    829 			softclock(NULL);
    830 			KERNEL_UNLOCK();
    831 		} else {
    832 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    833 			softintr_schedule(softclock_si);
    834 #else
    835 			setsoftclock();
    836 #endif
    837 		}
    838 	}
    839 }
    840 
    841 /*
    842  * Compute number of hz until specified time.  Used to compute second
    843  * argument to callout_reset() from an absolute time.
    844  */
    845 int
    846 hzto(struct timeval *tv)
    847 {
    848 	unsigned long ticks;
    849 	long sec, usec;
    850 	int s;
    851 
    852 	/*
    853 	 * If the number of usecs in the whole seconds part of the time
    854 	 * difference fits in a long, then the total number of usecs will
    855 	 * fit in an unsigned long.  Compute the total and convert it to
    856 	 * ticks, rounding up and adding 1 to allow for the current tick
    857 	 * to expire.  Rounding also depends on unsigned long arithmetic
    858 	 * to avoid overflow.
    859 	 *
    860 	 * Otherwise, if the number of ticks in the whole seconds part of
    861 	 * the time difference fits in a long, then convert the parts to
    862 	 * ticks separately and add, using similar rounding methods and
    863 	 * overflow avoidance.  This method would work in the previous
    864 	 * case, but it is slightly slower and assume that hz is integral.
    865 	 *
    866 	 * Otherwise, round the time difference down to the maximum
    867 	 * representable value.
    868 	 *
    869 	 * If ints are 32-bit, then the maximum value for any timeout in
    870 	 * 10ms ticks is 248 days.
    871 	 */
    872 	s = splclock();
    873 	sec = tv->tv_sec - time.tv_sec;
    874 	usec = tv->tv_usec - time.tv_usec;
    875 	splx(s);
    876 
    877 	if (usec < 0) {
    878 		sec--;
    879 		usec += 1000000;
    880 	}
    881 
    882 	if (sec < 0 || (sec == 0 && usec <= 0)) {
    883 		/*
    884 		 * Would expire now or in the past.  Return 0 ticks.
    885 		 * This is different from the legacy hzto() interface,
    886 		 * and callers need to check for it.
    887 		 */
    888 		ticks = 0;
    889 	} else if (sec <= (LONG_MAX / 1000000))
    890 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    891 		    / tick) + 1;
    892 	else if (sec <= (LONG_MAX / hz))
    893 		ticks = (sec * hz) +
    894 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    895 	else
    896 		ticks = LONG_MAX;
    897 
    898 	if (ticks > INT_MAX)
    899 		ticks = INT_MAX;
    900 
    901 	return ((int)ticks);
    902 }
    903 
    904 /*
    905  * Start profiling on a process.
    906  *
    907  * Kernel profiling passes proc0 which never exits and hence
    908  * keeps the profile clock running constantly.
    909  */
    910 void
    911 startprofclock(struct proc *p)
    912 {
    913 
    914 	if ((p->p_flag & P_PROFIL) == 0) {
    915 		p->p_flag |= P_PROFIL;
    916 		/*
    917 		 * This is only necessary if using the clock as the
    918 		 * profiling source.
    919 		 */
    920 		if (++profprocs == 1 && stathz != 0)
    921 			psdiv = psratio;
    922 	}
    923 }
    924 
    925 /*
    926  * Stop profiling on a process.
    927  */
    928 void
    929 stopprofclock(struct proc *p)
    930 {
    931 
    932 	if (p->p_flag & P_PROFIL) {
    933 		p->p_flag &= ~P_PROFIL;
    934 		/*
    935 		 * This is only necessary if using the clock as the
    936 		 * profiling source.
    937 		 */
    938 		if (--profprocs == 0 && stathz != 0)
    939 			psdiv = 1;
    940 	}
    941 }
    942 
    943 #if defined(PERFCTRS)
    944 /*
    945  * Independent profiling "tick" in case we're using a separate
    946  * clock or profiling event source.  Currently, that's just
    947  * performance counters--hence the wrapper.
    948  */
    949 void
    950 proftick(struct clockframe *frame)
    951 {
    952 #ifdef GPROF
    953         struct gmonparam *g;
    954         intptr_t i;
    955 #endif
    956 	struct proc *p;
    957 
    958 	p = curproc;
    959 	if (CLKF_USERMODE(frame)) {
    960 		if (p->p_flag & P_PROFIL)
    961 			addupc_intr(p, CLKF_PC(frame));
    962 	} else {
    963 #ifdef GPROF
    964 		g = &_gmonparam;
    965 		if (g->state == GMON_PROF_ON) {
    966 			i = CLKF_PC(frame) - g->lowpc;
    967 			if (i < g->textsize) {
    968 				i /= HISTFRACTION * sizeof(*g->kcount);
    969 				g->kcount[i]++;
    970 			}
    971 		}
    972 #endif
    973 #ifdef PROC_PC
    974                 if (p && p->p_flag & P_PROFIL)
    975                         addupc_intr(p, PROC_PC(p));
    976 #endif
    977 	}
    978 }
    979 #endif
    980 
    981 /*
    982  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    983  * do process and kernel statistics.
    984  */
    985 void
    986 statclock(struct clockframe *frame)
    987 {
    988 #ifdef GPROF
    989 	struct gmonparam *g;
    990 	intptr_t i;
    991 #endif
    992 	struct cpu_info *ci = curcpu();
    993 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    994 	struct lwp *l;
    995 	struct proc *p;
    996 
    997 	/*
    998 	 * Notice changes in divisor frequency, and adjust clock
    999 	 * frequency accordingly.
   1000 	 */
   1001 	if (spc->spc_psdiv != psdiv) {
   1002 		spc->spc_psdiv = psdiv;
   1003 		spc->spc_pscnt = psdiv;
   1004 		if (psdiv == 1) {
   1005 			setstatclockrate(stathz);
   1006 		} else {
   1007 			setstatclockrate(profhz);
   1008 		}
   1009 	}
   1010 	l = curlwp;
   1011 	p = (l ? l->l_proc : 0);
   1012 	if (CLKF_USERMODE(frame)) {
   1013 		if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
   1014 			addupc_intr(p, CLKF_PC(frame));
   1015 		if (--spc->spc_pscnt > 0)
   1016 			return;
   1017 		/*
   1018 		 * Came from user mode; CPU was in user state.
   1019 		 * If this process is being profiled record the tick.
   1020 		 */
   1021 		p->p_uticks++;
   1022 		if (p->p_nice > NZERO)
   1023 			spc->spc_cp_time[CP_NICE]++;
   1024 		else
   1025 			spc->spc_cp_time[CP_USER]++;
   1026 	} else {
   1027 #ifdef GPROF
   1028 		/*
   1029 		 * Kernel statistics are just like addupc_intr, only easier.
   1030 		 */
   1031 		g = &_gmonparam;
   1032 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1033 			i = CLKF_PC(frame) - g->lowpc;
   1034 			if (i < g->textsize) {
   1035 				i /= HISTFRACTION * sizeof(*g->kcount);
   1036 				g->kcount[i]++;
   1037 			}
   1038 		}
   1039 #endif
   1040 #ifdef LWP_PC
   1041 		if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
   1042 			addupc_intr(p, LWP_PC(l));
   1043 #endif
   1044 		if (--spc->spc_pscnt > 0)
   1045 			return;
   1046 		/*
   1047 		 * Came from kernel mode, so we were:
   1048 		 * - handling an interrupt,
   1049 		 * - doing syscall or trap work on behalf of the current
   1050 		 *   user process, or
   1051 		 * - spinning in the idle loop.
   1052 		 * Whichever it is, charge the time as appropriate.
   1053 		 * Note that we charge interrupts to the current process,
   1054 		 * regardless of whether they are ``for'' that process,
   1055 		 * so that we know how much of its real time was spent
   1056 		 * in ``non-process'' (i.e., interrupt) work.
   1057 		 */
   1058 		if (CLKF_INTR(frame)) {
   1059 			if (p != NULL)
   1060 				p->p_iticks++;
   1061 			spc->spc_cp_time[CP_INTR]++;
   1062 		} else if (p != NULL) {
   1063 			p->p_sticks++;
   1064 			spc->spc_cp_time[CP_SYS]++;
   1065 		} else
   1066 			spc->spc_cp_time[CP_IDLE]++;
   1067 	}
   1068 	spc->spc_pscnt = psdiv;
   1069 
   1070 	if (l != NULL) {
   1071 		++p->p_cpticks;
   1072 		/*
   1073 		 * If no separate schedclock is provided, call it here
   1074 		 * at ~~12-25 Hz, ~~16 Hz is best
   1075 		 */
   1076 		if (schedhz == 0)
   1077 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1078 				schedclock(l);
   1079 	}
   1080 }
   1081 
   1082 
   1083 #ifdef NTP	/* NTP phase-locked loop in kernel */
   1084 
   1085 /*
   1086  * hardupdate() - local clock update
   1087  *
   1088  * This routine is called by ntp_adjtime() to update the local clock
   1089  * phase and frequency. The implementation is of an adaptive-parameter,
   1090  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1091  * time and frequency offset estimates for each call. If the kernel PPS
   1092  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1093  * determines the new time offset, instead of the calling argument.
   1094  * Presumably, calls to ntp_adjtime() occur only when the caller
   1095  * believes the local clock is valid within some bound (+-128 ms with
   1096  * NTP). If the caller's time is far different than the PPS time, an
   1097  * argument will ensue, and it's not clear who will lose.
   1098  *
   1099  * For uncompensated quartz crystal oscillatores and nominal update
   1100  * intervals less than 1024 s, operation should be in phase-lock mode
   1101  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1102  * intervals greater than thiss, operation should be in frequency-lock
   1103  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1104  *
   1105  * Note: splclock() is in effect.
   1106  */
   1107 void
   1108 hardupdate(long offset)
   1109 {
   1110 	long ltemp, mtemp;
   1111 
   1112 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1113 		return;
   1114 	ltemp = offset;
   1115 #ifdef PPS_SYNC
   1116 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1117 		ltemp = pps_offset;
   1118 #endif /* PPS_SYNC */
   1119 
   1120 	/*
   1121 	 * Scale the phase adjustment and clamp to the operating range.
   1122 	 */
   1123 	if (ltemp > MAXPHASE)
   1124 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1125 	else if (ltemp < -MAXPHASE)
   1126 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1127 	else
   1128 		time_offset = ltemp << SHIFT_UPDATE;
   1129 
   1130 	/*
   1131 	 * Select whether the frequency is to be controlled and in which
   1132 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1133 	 * multiply/divide should be replaced someday.
   1134 	 */
   1135 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1136 		time_reftime = time.tv_sec;
   1137 	mtemp = time.tv_sec - time_reftime;
   1138 	time_reftime = time.tv_sec;
   1139 	if (time_status & STA_FLL) {
   1140 		if (mtemp >= MINSEC) {
   1141 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1142 			    SHIFT_UPDATE));
   1143 			if (ltemp < 0)
   1144 				time_freq -= -ltemp >> SHIFT_KH;
   1145 			else
   1146 				time_freq += ltemp >> SHIFT_KH;
   1147 		}
   1148 	} else {
   1149 		if (mtemp < MAXSEC) {
   1150 			ltemp *= mtemp;
   1151 			if (ltemp < 0)
   1152 				time_freq -= -ltemp >> (time_constant +
   1153 				    time_constant + SHIFT_KF -
   1154 				    SHIFT_USEC);
   1155 			else
   1156 				time_freq += ltemp >> (time_constant +
   1157 				    time_constant + SHIFT_KF -
   1158 				    SHIFT_USEC);
   1159 		}
   1160 	}
   1161 	if (time_freq > time_tolerance)
   1162 		time_freq = time_tolerance;
   1163 	else if (time_freq < -time_tolerance)
   1164 		time_freq = -time_tolerance;
   1165 }
   1166 
   1167 #ifdef PPS_SYNC
   1168 /*
   1169  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1170  *
   1171  * This routine is called at each PPS interrupt in order to discipline
   1172  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1173  * and leaves it in a handy spot for the hardclock() routine. It
   1174  * integrates successive PPS phase differences and calculates the
   1175  * frequency offset. This is used in hardclock() to discipline the CPU
   1176  * clock oscillator so that intrinsic frequency error is cancelled out.
   1177  * The code requires the caller to capture the time and hardware counter
   1178  * value at the on-time PPS signal transition.
   1179  *
   1180  * Note that, on some Unix systems, this routine runs at an interrupt
   1181  * priority level higher than the timer interrupt routine hardclock().
   1182  * Therefore, the variables used are distinct from the hardclock()
   1183  * variables, except for certain exceptions: The PPS frequency pps_freq
   1184  * and phase pps_offset variables are determined by this routine and
   1185  * updated atomically. The time_tolerance variable can be considered a
   1186  * constant, since it is infrequently changed, and then only when the
   1187  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1188  * once per second by hardclock() and is atomically cleared in this
   1189  * routine.
   1190  */
   1191 void
   1192 hardpps(struct timeval *tvp,		/* time at PPS */
   1193 	long usec			/* hardware counter at PPS */)
   1194 {
   1195 	long u_usec, v_usec, bigtick;
   1196 	long cal_sec, cal_usec;
   1197 
   1198 	/*
   1199 	 * An occasional glitch can be produced when the PPS interrupt
   1200 	 * occurs in the hardclock() routine before the time variable is
   1201 	 * updated. Here the offset is discarded when the difference
   1202 	 * between it and the last one is greater than tick/2, but not
   1203 	 * if the interval since the first discard exceeds 30 s.
   1204 	 */
   1205 	time_status |= STA_PPSSIGNAL;
   1206 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1207 	pps_valid = 0;
   1208 	u_usec = -tvp->tv_usec;
   1209 	if (u_usec < -500000)
   1210 		u_usec += 1000000;
   1211 	v_usec = pps_offset - u_usec;
   1212 	if (v_usec < 0)
   1213 		v_usec = -v_usec;
   1214 	if (v_usec > (tick >> 1)) {
   1215 		if (pps_glitch > MAXGLITCH) {
   1216 			pps_glitch = 0;
   1217 			pps_tf[2] = u_usec;
   1218 			pps_tf[1] = u_usec;
   1219 		} else {
   1220 			pps_glitch++;
   1221 			u_usec = pps_offset;
   1222 		}
   1223 	} else
   1224 		pps_glitch = 0;
   1225 
   1226 	/*
   1227 	 * A three-stage median filter is used to help deglitch the pps
   1228 	 * time. The median sample becomes the time offset estimate; the
   1229 	 * difference between the other two samples becomes the time
   1230 	 * dispersion (jitter) estimate.
   1231 	 */
   1232 	pps_tf[2] = pps_tf[1];
   1233 	pps_tf[1] = pps_tf[0];
   1234 	pps_tf[0] = u_usec;
   1235 	if (pps_tf[0] > pps_tf[1]) {
   1236 		if (pps_tf[1] > pps_tf[2]) {
   1237 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1238 			v_usec = pps_tf[0] - pps_tf[2];
   1239 		} else if (pps_tf[2] > pps_tf[0]) {
   1240 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1241 			v_usec = pps_tf[2] - pps_tf[1];
   1242 		} else {
   1243 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1244 			v_usec = pps_tf[0] - pps_tf[1];
   1245 		}
   1246 	} else {
   1247 		if (pps_tf[1] < pps_tf[2]) {
   1248 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1249 			v_usec = pps_tf[2] - pps_tf[0];
   1250 		} else  if (pps_tf[2] < pps_tf[0]) {
   1251 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1252 			v_usec = pps_tf[1] - pps_tf[2];
   1253 		} else {
   1254 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1255 			v_usec = pps_tf[1] - pps_tf[0];
   1256 		}
   1257 	}
   1258 	if (v_usec > MAXTIME)
   1259 		pps_jitcnt++;
   1260 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1261 	if (v_usec < 0)
   1262 		pps_jitter -= -v_usec >> PPS_AVG;
   1263 	else
   1264 		pps_jitter += v_usec >> PPS_AVG;
   1265 	if (pps_jitter > (MAXTIME >> 1))
   1266 		time_status |= STA_PPSJITTER;
   1267 
   1268 	/*
   1269 	 * During the calibration interval adjust the starting time when
   1270 	 * the tick overflows. At the end of the interval compute the
   1271 	 * duration of the interval and the difference of the hardware
   1272 	 * counters at the beginning and end of the interval. This code
   1273 	 * is deliciously complicated by the fact valid differences may
   1274 	 * exceed the value of tick when using long calibration
   1275 	 * intervals and small ticks. Note that the counter can be
   1276 	 * greater than tick if caught at just the wrong instant, but
   1277 	 * the values returned and used here are correct.
   1278 	 */
   1279 	bigtick = (long)tick << SHIFT_USEC;
   1280 	pps_usec -= pps_freq;
   1281 	if (pps_usec >= bigtick)
   1282 		pps_usec -= bigtick;
   1283 	if (pps_usec < 0)
   1284 		pps_usec += bigtick;
   1285 	pps_time.tv_sec++;
   1286 	pps_count++;
   1287 	if (pps_count < (1 << pps_shift))
   1288 		return;
   1289 	pps_count = 0;
   1290 	pps_calcnt++;
   1291 	u_usec = usec << SHIFT_USEC;
   1292 	v_usec = pps_usec - u_usec;
   1293 	if (v_usec >= bigtick >> 1)
   1294 		v_usec -= bigtick;
   1295 	if (v_usec < -(bigtick >> 1))
   1296 		v_usec += bigtick;
   1297 	if (v_usec < 0)
   1298 		v_usec = -(-v_usec >> pps_shift);
   1299 	else
   1300 		v_usec = v_usec >> pps_shift;
   1301 	pps_usec = u_usec;
   1302 	cal_sec = tvp->tv_sec;
   1303 	cal_usec = tvp->tv_usec;
   1304 	cal_sec -= pps_time.tv_sec;
   1305 	cal_usec -= pps_time.tv_usec;
   1306 	if (cal_usec < 0) {
   1307 		cal_usec += 1000000;
   1308 		cal_sec--;
   1309 	}
   1310 	pps_time = *tvp;
   1311 
   1312 	/*
   1313 	 * Check for lost interrupts, noise, excessive jitter and
   1314 	 * excessive frequency error. The number of timer ticks during
   1315 	 * the interval may vary +-1 tick. Add to this a margin of one
   1316 	 * tick for the PPS signal jitter and maximum frequency
   1317 	 * deviation. If the limits are exceeded, the calibration
   1318 	 * interval is reset to the minimum and we start over.
   1319 	 */
   1320 	u_usec = (long)tick << 1;
   1321 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1322 	    || (cal_sec == 0 && cal_usec < u_usec))
   1323 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1324 		pps_errcnt++;
   1325 		pps_shift = PPS_SHIFT;
   1326 		pps_intcnt = 0;
   1327 		time_status |= STA_PPSERROR;
   1328 		return;
   1329 	}
   1330 
   1331 	/*
   1332 	 * A three-stage median filter is used to help deglitch the pps
   1333 	 * frequency. The median sample becomes the frequency offset
   1334 	 * estimate; the difference between the other two samples
   1335 	 * becomes the frequency dispersion (stability) estimate.
   1336 	 */
   1337 	pps_ff[2] = pps_ff[1];
   1338 	pps_ff[1] = pps_ff[0];
   1339 	pps_ff[0] = v_usec;
   1340 	if (pps_ff[0] > pps_ff[1]) {
   1341 		if (pps_ff[1] > pps_ff[2]) {
   1342 			u_usec = pps_ff[1];		/* 0 1 2 */
   1343 			v_usec = pps_ff[0] - pps_ff[2];
   1344 		} else if (pps_ff[2] > pps_ff[0]) {
   1345 			u_usec = pps_ff[0];		/* 2 0 1 */
   1346 			v_usec = pps_ff[2] - pps_ff[1];
   1347 		} else {
   1348 			u_usec = pps_ff[2];		/* 0 2 1 */
   1349 			v_usec = pps_ff[0] - pps_ff[1];
   1350 		}
   1351 	} else {
   1352 		if (pps_ff[1] < pps_ff[2]) {
   1353 			u_usec = pps_ff[1];		/* 2 1 0 */
   1354 			v_usec = pps_ff[2] - pps_ff[0];
   1355 		} else  if (pps_ff[2] < pps_ff[0]) {
   1356 			u_usec = pps_ff[0];		/* 1 0 2 */
   1357 			v_usec = pps_ff[1] - pps_ff[2];
   1358 		} else {
   1359 			u_usec = pps_ff[2];		/* 1 2 0 */
   1360 			v_usec = pps_ff[1] - pps_ff[0];
   1361 		}
   1362 	}
   1363 
   1364 	/*
   1365 	 * Here the frequency dispersion (stability) is updated. If it
   1366 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1367 	 * offset is updated as well, but clamped to the tolerance. It
   1368 	 * will be processed later by the hardclock() routine.
   1369 	 */
   1370 	v_usec = (v_usec >> 1) - pps_stabil;
   1371 	if (v_usec < 0)
   1372 		pps_stabil -= -v_usec >> PPS_AVG;
   1373 	else
   1374 		pps_stabil += v_usec >> PPS_AVG;
   1375 	if (pps_stabil > MAXFREQ >> 2) {
   1376 		pps_stbcnt++;
   1377 		time_status |= STA_PPSWANDER;
   1378 		return;
   1379 	}
   1380 	if (time_status & STA_PPSFREQ) {
   1381 		if (u_usec < 0) {
   1382 			pps_freq -= -u_usec >> PPS_AVG;
   1383 			if (pps_freq < -time_tolerance)
   1384 				pps_freq = -time_tolerance;
   1385 			u_usec = -u_usec;
   1386 		} else {
   1387 			pps_freq += u_usec >> PPS_AVG;
   1388 			if (pps_freq > time_tolerance)
   1389 				pps_freq = time_tolerance;
   1390 		}
   1391 	}
   1392 
   1393 	/*
   1394 	 * Here the calibration interval is adjusted. If the maximum
   1395 	 * time difference is greater than tick / 4, reduce the interval
   1396 	 * by half. If this is not the case for four consecutive
   1397 	 * intervals, double the interval.
   1398 	 */
   1399 	if (u_usec << pps_shift > bigtick >> 2) {
   1400 		pps_intcnt = 0;
   1401 		if (pps_shift > PPS_SHIFT)
   1402 			pps_shift--;
   1403 	} else if (pps_intcnt >= 4) {
   1404 		pps_intcnt = 0;
   1405 		if (pps_shift < PPS_SHIFTMAX)
   1406 			pps_shift++;
   1407 	} else
   1408 		pps_intcnt++;
   1409 }
   1410 #endif /* PPS_SYNC */
   1411 #endif /* NTP  */
   1412 
   1413 /*
   1414  * Return information about system clocks.
   1415  */
   1416 int
   1417 sysctl_clockrate(void *where, size_t *sizep)
   1418 {
   1419 	struct clockinfo clkinfo;
   1420 
   1421 	/*
   1422 	 * Construct clockinfo structure.
   1423 	 */
   1424 	clkinfo.tick = tick;
   1425 	clkinfo.tickadj = tickadj;
   1426 	clkinfo.hz = hz;
   1427 	clkinfo.profhz = profhz;
   1428 	clkinfo.stathz = stathz ? stathz : hz;
   1429 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1430 }
   1431