kern_clock.c revision 1.87 1 /* $NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $");
78
79 #include "opt_ntp.h"
80 #include "opt_multiprocessor.h"
81 #include "opt_perfctrs.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/sysctl.h>
91 #include <sys/timex.h>
92 #include <sys/sched.h>
93 #include <sys/time.h>
94
95 #include <machine/cpu.h>
96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 #include <machine/intr.h>
98 #endif
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the cpu
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * cpu ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifdef NTP /* NTP phase-locked loop in kernel */
129 /*
130 * Phase/frequency-lock loop (PLL/FLL) definitions
131 *
132 * The following variables are read and set by the ntp_adjtime() system
133 * call.
134 *
135 * time_state shows the state of the system clock, with values defined
136 * in the timex.h header file.
137 *
138 * time_status shows the status of the system clock, with bits defined
139 * in the timex.h header file.
140 *
141 * time_offset is used by the PLL/FLL to adjust the system time in small
142 * increments.
143 *
144 * time_constant determines the bandwidth or "stiffness" of the PLL.
145 *
146 * time_tolerance determines maximum frequency error or tolerance of the
147 * CPU clock oscillator and is a property of the architecture; however,
148 * in principle it could change as result of the presence of external
149 * discipline signals, for instance.
150 *
151 * time_precision is usually equal to the kernel tick variable; however,
152 * in cases where a precision clock counter or external clock is
153 * available, the resolution can be much less than this and depend on
154 * whether the external clock is working or not.
155 *
156 * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 * the kernel once each second to reflect the maximum error bound
158 * growth.
159 *
160 * time_esterror is set and read by the ntp_adjtime() call, but
161 * otherwise not used by the kernel.
162 */
163 int time_state = TIME_OK; /* clock state */
164 int time_status = STA_UNSYNC; /* clock status bits */
165 long time_offset = 0; /* time offset (us) */
166 long time_constant = 0; /* pll time constant */
167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 long time_precision = 1; /* clock precision (us) */
169 long time_maxerror = MAXPHASE; /* maximum error (us) */
170 long time_esterror = MAXPHASE; /* estimated error (us) */
171
172 /*
173 * The following variables establish the state of the PLL/FLL and the
174 * residual time and frequency offset of the local clock. The scale
175 * factors are defined in the timex.h header file.
176 *
177 * time_phase and time_freq are the phase increment and the frequency
178 * increment, respectively, of the kernel time variable.
179 *
180 * time_freq is set via ntp_adjtime() from a value stored in a file when
181 * the synchronization daemon is first started. Its value is retrieved
182 * via ntp_adjtime() and written to the file about once per hour by the
183 * daemon.
184 *
185 * time_adj is the adjustment added to the value of tick at each timer
186 * interrupt and is recomputed from time_phase and time_freq at each
187 * seconds rollover.
188 *
189 * time_reftime is the second's portion of the system time at the last
190 * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 * and to increase the time_maxerror as the time since last update
192 * increases.
193 */
194 long time_phase = 0; /* phase offset (scaled us) */
195 long time_freq = 0; /* frequency offset (scaled ppm) */
196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0; /* time at last adjustment (s) */
198
199 #ifdef PPS_SYNC
200 /*
201 * The following variables are used only if the kernel PPS discipline
202 * code is configured (PPS_SYNC). The scale factors are defined in the
203 * timex.h header file.
204 *
205 * pps_time contains the time at each calibration interval, as read by
206 * microtime(). pps_count counts the seconds of the calibration
207 * interval, the duration of which is nominally pps_shift in powers of
208 * two.
209 *
210 * pps_offset is the time offset produced by the time median filter
211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 * this filter.
213 *
214 * pps_freq is the frequency offset produced by the frequency median
215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 * by this filter.
217 *
218 * pps_usec is latched from a high resolution counter or external clock
219 * at pps_time. Here we want the hardware counter contents only, not the
220 * contents plus the time_tv.usec as usual.
221 *
222 * pps_valid counts the number of seconds since the last PPS update. It
223 * is used as a watchdog timer to disable the PPS discipline should the
224 * PPS signal be lost.
225 *
226 * pps_glitch counts the number of seconds since the beginning of an
227 * offset burst more than tick/2 from current nominal offset. It is used
228 * mainly to suppress error bursts due to priority conflicts between the
229 * PPS interrupt and timer interrupt.
230 *
231 * pps_intcnt counts the calibration intervals for use in the interval-
232 * adaptation algorithm. It's just too complicated for words.
233 */
234 struct timeval pps_time; /* kernel time at last interval */
235 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
236 long pps_offset = 0; /* pps time offset (us) */
237 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
238 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
239 long pps_freq = 0; /* frequency offset (scaled ppm) */
240 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
241 long pps_usec = 0; /* microsec counter at last interval */
242 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
243 int pps_glitch = 0; /* pps signal glitch counter */
244 int pps_count = 0; /* calibration interval counter (s) */
245 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
246 int pps_intcnt = 0; /* intervals at current duration */
247
248 /*
249 * PPS signal quality monitors
250 *
251 * pps_jitcnt counts the seconds that have been discarded because the
252 * jitter measured by the time median filter exceeds the limit MAXTIME
253 * (100 us).
254 *
255 * pps_calcnt counts the frequency calibration intervals, which are
256 * variable from 4 s to 256 s.
257 *
258 * pps_errcnt counts the calibration intervals which have been discarded
259 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
260 * calibration interval jitter exceeds two ticks.
261 *
262 * pps_stbcnt counts the calibration intervals that have been discarded
263 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
264 */
265 long pps_jitcnt = 0; /* jitter limit exceeded */
266 long pps_calcnt = 0; /* calibration intervals */
267 long pps_errcnt = 0; /* calibration errors */
268 long pps_stbcnt = 0; /* stability limit exceeded */
269 #endif /* PPS_SYNC */
270
271 #ifdef EXT_CLOCK
272 /*
273 * External clock definitions
274 *
275 * The following definitions and declarations are used only if an
276 * external clock is configured on the system.
277 */
278 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
279
280 /*
281 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
282 * interrupt and decremented once each second.
283 */
284 int clock_count = 0; /* CPU clock counter */
285
286 #ifdef HIGHBALL
287 /*
288 * The clock_offset and clock_cpu variables are used by the HIGHBALL
289 * interface. The clock_offset variable defines the offset between
290 * system time and the HIGBALL counters. The clock_cpu variable contains
291 * the offset between the system clock and the HIGHBALL clock for use in
292 * disciplining the kernel time variable.
293 */
294 extern struct timeval clock_offset; /* Highball clock offset */
295 long clock_cpu = 0; /* CPU clock adjust */
296 #endif /* HIGHBALL */
297 #endif /* EXT_CLOCK */
298 #endif /* NTP */
299
300
301 /*
302 * Bump a timeval by a small number of usec's.
303 */
304 #define BUMPTIME(t, usec) { \
305 volatile struct timeval *tp = (t); \
306 long us; \
307 \
308 tp->tv_usec = us = tp->tv_usec + (usec); \
309 if (us >= 1000000) { \
310 tp->tv_usec = us - 1000000; \
311 tp->tv_sec++; \
312 } \
313 }
314
315 int stathz;
316 int profhz;
317 int profsrc;
318 int schedhz;
319 int profprocs;
320 int hardclock_ticks;
321 static int psdiv; /* prof => stat divider */
322 int psratio; /* ratio: prof / stat */
323 int tickfix, tickfixinterval; /* used if tick not really integral */
324 #ifndef NTP
325 static int tickfixcnt; /* accumulated fractional error */
326 #else
327 int fixtick; /* used by NTP for same */
328 int shifthz;
329 #endif
330
331 /*
332 * We might want ldd to load the both words from time at once.
333 * To succeed we need to be quadword aligned.
334 * The sparc already does that, and that it has worked so far is a fluke.
335 */
336 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
337 volatile struct timeval mono_time;
338
339 void *softclock_si;
340
341 /*
342 * Initialize clock frequencies and start both clocks running.
343 */
344 void
345 initclocks(void)
346 {
347 int i;
348
349 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
350 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
351 if (softclock_si == NULL)
352 panic("initclocks: unable to register softclock intr");
353 #endif
354
355 /*
356 * Set divisors to 1 (normal case) and let the machine-specific
357 * code do its bit.
358 */
359 psdiv = 1;
360 cpu_initclocks();
361
362 /*
363 * Compute profhz/stathz/rrticks, and fix profhz if needed.
364 */
365 i = stathz ? stathz : hz;
366 if (profhz == 0)
367 profhz = i;
368 psratio = profhz / i;
369 rrticks = hz / 10;
370
371 #ifdef NTP
372 switch (hz) {
373 case 1:
374 shifthz = SHIFT_SCALE - 0;
375 break;
376 case 2:
377 shifthz = SHIFT_SCALE - 1;
378 break;
379 case 4:
380 shifthz = SHIFT_SCALE - 2;
381 break;
382 case 8:
383 shifthz = SHIFT_SCALE - 3;
384 break;
385 case 16:
386 shifthz = SHIFT_SCALE - 4;
387 break;
388 case 32:
389 shifthz = SHIFT_SCALE - 5;
390 break;
391 case 60:
392 case 64:
393 shifthz = SHIFT_SCALE - 6;
394 break;
395 case 96:
396 case 100:
397 case 128:
398 shifthz = SHIFT_SCALE - 7;
399 break;
400 case 256:
401 shifthz = SHIFT_SCALE - 8;
402 break;
403 case 512:
404 shifthz = SHIFT_SCALE - 9;
405 break;
406 case 1000:
407 case 1024:
408 shifthz = SHIFT_SCALE - 10;
409 break;
410 case 1200:
411 case 2048:
412 shifthz = SHIFT_SCALE - 11;
413 break;
414 case 4096:
415 shifthz = SHIFT_SCALE - 12;
416 break;
417 case 8192:
418 shifthz = SHIFT_SCALE - 13;
419 break;
420 case 16384:
421 shifthz = SHIFT_SCALE - 14;
422 break;
423 case 32768:
424 shifthz = SHIFT_SCALE - 15;
425 break;
426 case 65536:
427 shifthz = SHIFT_SCALE - 16;
428 break;
429 default:
430 panic("weird hz");
431 }
432 if (fixtick == 0) {
433 /*
434 * Give MD code a chance to set this to a better
435 * value; but, if it doesn't, we should.
436 */
437 fixtick = (1000000 - (hz*tick));
438 }
439 #endif
440 }
441
442 /*
443 * The real-time timer, interrupting hz times per second.
444 */
445 void
446 hardclock(struct clockframe *frame)
447 {
448 struct lwp *l;
449 struct proc *p;
450 int delta;
451 extern int tickdelta;
452 extern long timedelta;
453 struct cpu_info *ci = curcpu();
454 struct ptimer *pt;
455 #ifdef NTP
456 int time_update;
457 int ltemp;
458 #endif
459
460 l = curlwp;
461 if (l) {
462 p = l->l_proc;
463 /*
464 * Run current process's virtual and profile time, as needed.
465 */
466 if (CLKF_USERMODE(frame) && p->p_timers &&
467 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
468 if (itimerdecr(pt, tick) == 0)
469 itimerfire(pt);
470 if (p->p_timers &&
471 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
472 if (itimerdecr(pt, tick) == 0)
473 itimerfire(pt);
474 }
475
476 /*
477 * If no separate statistics clock is available, run it from here.
478 */
479 if (stathz == 0)
480 statclock(frame);
481 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
482 roundrobin(ci);
483
484 #if defined(MULTIPROCESSOR)
485 /*
486 * If we are not the primary CPU, we're not allowed to do
487 * any more work.
488 */
489 if (CPU_IS_PRIMARY(ci) == 0)
490 return;
491 #endif
492
493 /*
494 * Increment the time-of-day. The increment is normally just
495 * ``tick''. If the machine is one which has a clock frequency
496 * such that ``hz'' would not divide the second evenly into
497 * milliseconds, a periodic adjustment must be applied. Finally,
498 * if we are still adjusting the time (see adjtime()),
499 * ``tickdelta'' may also be added in.
500 */
501 hardclock_ticks++;
502 delta = tick;
503
504 #ifndef NTP
505 if (tickfix) {
506 tickfixcnt += tickfix;
507 if (tickfixcnt >= tickfixinterval) {
508 delta++;
509 tickfixcnt -= tickfixinterval;
510 }
511 }
512 #endif /* !NTP */
513 /* Imprecise 4bsd adjtime() handling */
514 if (timedelta != 0) {
515 delta += tickdelta;
516 timedelta -= tickdelta;
517 }
518
519 #ifdef notyet
520 microset();
521 #endif
522
523 #ifndef NTP
524 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
525 #endif
526 BUMPTIME(&mono_time, delta);
527
528 #ifdef NTP
529 time_update = delta;
530
531 /*
532 * Compute the phase adjustment. If the low-order bits
533 * (time_phase) of the update overflow, bump the high-order bits
534 * (time_update).
535 */
536 time_phase += time_adj;
537 if (time_phase <= -FINEUSEC) {
538 ltemp = -time_phase >> SHIFT_SCALE;
539 time_phase += ltemp << SHIFT_SCALE;
540 time_update -= ltemp;
541 } else if (time_phase >= FINEUSEC) {
542 ltemp = time_phase >> SHIFT_SCALE;
543 time_phase -= ltemp << SHIFT_SCALE;
544 time_update += ltemp;
545 }
546
547 #ifdef HIGHBALL
548 /*
549 * If the HIGHBALL board is installed, we need to adjust the
550 * external clock offset in order to close the hardware feedback
551 * loop. This will adjust the external clock phase and frequency
552 * in small amounts. The additional phase noise and frequency
553 * wander this causes should be minimal. We also need to
554 * discipline the kernel time variable, since the PLL is used to
555 * discipline the external clock. If the Highball board is not
556 * present, we discipline kernel time with the PLL as usual. We
557 * assume that the external clock phase adjustment (time_update)
558 * and kernel phase adjustment (clock_cpu) are less than the
559 * value of tick.
560 */
561 clock_offset.tv_usec += time_update;
562 if (clock_offset.tv_usec >= 1000000) {
563 clock_offset.tv_sec++;
564 clock_offset.tv_usec -= 1000000;
565 }
566 if (clock_offset.tv_usec < 0) {
567 clock_offset.tv_sec--;
568 clock_offset.tv_usec += 1000000;
569 }
570 time.tv_usec += clock_cpu;
571 clock_cpu = 0;
572 #else
573 time.tv_usec += time_update;
574 #endif /* HIGHBALL */
575
576 /*
577 * On rollover of the second the phase adjustment to be used for
578 * the next second is calculated. Also, the maximum error is
579 * increased by the tolerance. If the PPS frequency discipline
580 * code is present, the phase is increased to compensate for the
581 * CPU clock oscillator frequency error.
582 *
583 * On a 32-bit machine and given parameters in the timex.h
584 * header file, the maximum phase adjustment is +-512 ms and
585 * maximum frequency offset is a tad less than) +-512 ppm. On a
586 * 64-bit machine, you shouldn't need to ask.
587 */
588 if (time.tv_usec >= 1000000) {
589 time.tv_usec -= 1000000;
590 time.tv_sec++;
591 time_maxerror += time_tolerance >> SHIFT_USEC;
592
593 /*
594 * Leap second processing. If in leap-insert state at
595 * the end of the day, the system clock is set back one
596 * second; if in leap-delete state, the system clock is
597 * set ahead one second. The microtime() routine or
598 * external clock driver will insure that reported time
599 * is always monotonic. The ugly divides should be
600 * replaced.
601 */
602 switch (time_state) {
603 case TIME_OK:
604 if (time_status & STA_INS)
605 time_state = TIME_INS;
606 else if (time_status & STA_DEL)
607 time_state = TIME_DEL;
608 break;
609
610 case TIME_INS:
611 if (time.tv_sec % 86400 == 0) {
612 time.tv_sec--;
613 time_state = TIME_OOP;
614 }
615 break;
616
617 case TIME_DEL:
618 if ((time.tv_sec + 1) % 86400 == 0) {
619 time.tv_sec++;
620 time_state = TIME_WAIT;
621 }
622 break;
623
624 case TIME_OOP:
625 time_state = TIME_WAIT;
626 break;
627
628 case TIME_WAIT:
629 if (!(time_status & (STA_INS | STA_DEL)))
630 time_state = TIME_OK;
631 break;
632 }
633
634 /*
635 * Compute the phase adjustment for the next second. In
636 * PLL mode, the offset is reduced by a fixed factor
637 * times the time constant. In FLL mode the offset is
638 * used directly. In either mode, the maximum phase
639 * adjustment for each second is clamped so as to spread
640 * the adjustment over not more than the number of
641 * seconds between updates.
642 */
643 if (time_offset < 0) {
644 ltemp = -time_offset;
645 if (!(time_status & STA_FLL))
646 ltemp >>= SHIFT_KG + time_constant;
647 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
648 ltemp = (MAXPHASE / MINSEC) <<
649 SHIFT_UPDATE;
650 time_offset += ltemp;
651 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
652 } else if (time_offset > 0) {
653 ltemp = time_offset;
654 if (!(time_status & STA_FLL))
655 ltemp >>= SHIFT_KG + time_constant;
656 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
657 ltemp = (MAXPHASE / MINSEC) <<
658 SHIFT_UPDATE;
659 time_offset -= ltemp;
660 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
661 } else
662 time_adj = 0;
663
664 /*
665 * Compute the frequency estimate and additional phase
666 * adjustment due to frequency error for the next
667 * second. When the PPS signal is engaged, gnaw on the
668 * watchdog counter and update the frequency computed by
669 * the pll and the PPS signal.
670 */
671 #ifdef PPS_SYNC
672 pps_valid++;
673 if (pps_valid == PPS_VALID) {
674 pps_jitter = MAXTIME;
675 pps_stabil = MAXFREQ;
676 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
677 STA_PPSWANDER | STA_PPSERROR);
678 }
679 ltemp = time_freq + pps_freq;
680 #else
681 ltemp = time_freq;
682 #endif /* PPS_SYNC */
683
684 if (ltemp < 0)
685 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
686 else
687 time_adj += ltemp >> (SHIFT_USEC - shifthz);
688 time_adj += (long)fixtick << shifthz;
689
690 /*
691 * When the CPU clock oscillator frequency is not a
692 * power of 2 in Hz, shifthz is only an approximate
693 * scale factor.
694 *
695 * To determine the adjustment, you can do the following:
696 * bc -q
697 * scale=24
698 * obase=2
699 * idealhz/realhz
700 * where `idealhz' is the next higher power of 2, and `realhz'
701 * is the actual value. You may need to factor this result
702 * into a sequence of 2 multipliers to get better precision.
703 *
704 * Likewise, the error can be calculated with (e.g. for 100Hz):
705 * bc -q
706 * scale=24
707 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
708 * (and then multiply by 1000000 to get ppm).
709 */
710 switch (hz) {
711 case 60:
712 /* A factor of 1.000100010001 gives about 15ppm
713 error. */
714 if (time_adj < 0) {
715 time_adj -= (-time_adj >> 4);
716 time_adj -= (-time_adj >> 8);
717 } else {
718 time_adj += (time_adj >> 4);
719 time_adj += (time_adj >> 8);
720 }
721 break;
722
723 case 96:
724 /* A factor of 1.0101010101 gives about 244ppm error. */
725 if (time_adj < 0) {
726 time_adj -= (-time_adj >> 2);
727 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
728 } else {
729 time_adj += (time_adj >> 2);
730 time_adj += (time_adj >> 4) + (time_adj >> 8);
731 }
732 break;
733
734 case 100:
735 /* A factor of 1.010001111010111 gives about 1ppm
736 error. */
737 if (time_adj < 0) {
738 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
739 time_adj += (-time_adj >> 10);
740 } else {
741 time_adj += (time_adj >> 2) + (time_adj >> 5);
742 time_adj -= (time_adj >> 10);
743 }
744 break;
745
746 case 1000:
747 /* A factor of 1.000001100010100001 gives about 50ppm
748 error. */
749 if (time_adj < 0) {
750 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
751 time_adj -= (-time_adj >> 7);
752 } else {
753 time_adj += (time_adj >> 6) + (time_adj >> 11);
754 time_adj += (time_adj >> 7);
755 }
756 break;
757
758 case 1200:
759 /* A factor of 1.1011010011100001 gives about 64ppm
760 error. */
761 if (time_adj < 0) {
762 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
763 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
764 } else {
765 time_adj += (time_adj >> 1) + (time_adj >> 6);
766 time_adj += (time_adj >> 3) + (time_adj >> 10);
767 }
768 break;
769 }
770
771 #ifdef EXT_CLOCK
772 /*
773 * If an external clock is present, it is necessary to
774 * discipline the kernel time variable anyway, since not
775 * all system components use the microtime() interface.
776 * Here, the time offset between the external clock and
777 * kernel time variable is computed every so often.
778 */
779 clock_count++;
780 if (clock_count > CLOCK_INTERVAL) {
781 clock_count = 0;
782 microtime(&clock_ext);
783 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
784 delta.tv_usec = clock_ext.tv_usec -
785 time.tv_usec;
786 if (delta.tv_usec < 0)
787 delta.tv_sec--;
788 if (delta.tv_usec >= 500000) {
789 delta.tv_usec -= 1000000;
790 delta.tv_sec++;
791 }
792 if (delta.tv_usec < -500000) {
793 delta.tv_usec += 1000000;
794 delta.tv_sec--;
795 }
796 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
797 delta.tv_usec > MAXPHASE) ||
798 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
799 delta.tv_usec < -MAXPHASE)) {
800 time = clock_ext;
801 delta.tv_sec = 0;
802 delta.tv_usec = 0;
803 }
804 #ifdef HIGHBALL
805 clock_cpu = delta.tv_usec;
806 #else /* HIGHBALL */
807 hardupdate(delta.tv_usec);
808 #endif /* HIGHBALL */
809 }
810 #endif /* EXT_CLOCK */
811 }
812
813 #endif /* NTP */
814
815 /*
816 * Update real-time timeout queue.
817 * Process callouts at a very low cpu priority, so we don't keep the
818 * relatively high clock interrupt priority any longer than necessary.
819 */
820 if (callout_hardclock()) {
821 if (CLKF_BASEPRI(frame)) {
822 /*
823 * Save the overhead of a software interrupt;
824 * it will happen as soon as we return, so do
825 * it now.
826 */
827 spllowersoftclock();
828 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
829 softclock(NULL);
830 KERNEL_UNLOCK();
831 } else {
832 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
833 softintr_schedule(softclock_si);
834 #else
835 setsoftclock();
836 #endif
837 }
838 }
839 }
840
841 /*
842 * Compute number of hz until specified time. Used to compute second
843 * argument to callout_reset() from an absolute time.
844 */
845 int
846 hzto(struct timeval *tv)
847 {
848 unsigned long ticks;
849 long sec, usec;
850 int s;
851
852 /*
853 * If the number of usecs in the whole seconds part of the time
854 * difference fits in a long, then the total number of usecs will
855 * fit in an unsigned long. Compute the total and convert it to
856 * ticks, rounding up and adding 1 to allow for the current tick
857 * to expire. Rounding also depends on unsigned long arithmetic
858 * to avoid overflow.
859 *
860 * Otherwise, if the number of ticks in the whole seconds part of
861 * the time difference fits in a long, then convert the parts to
862 * ticks separately and add, using similar rounding methods and
863 * overflow avoidance. This method would work in the previous
864 * case, but it is slightly slower and assume that hz is integral.
865 *
866 * Otherwise, round the time difference down to the maximum
867 * representable value.
868 *
869 * If ints are 32-bit, then the maximum value for any timeout in
870 * 10ms ticks is 248 days.
871 */
872 s = splclock();
873 sec = tv->tv_sec - time.tv_sec;
874 usec = tv->tv_usec - time.tv_usec;
875 splx(s);
876
877 if (usec < 0) {
878 sec--;
879 usec += 1000000;
880 }
881
882 if (sec < 0 || (sec == 0 && usec <= 0)) {
883 /*
884 * Would expire now or in the past. Return 0 ticks.
885 * This is different from the legacy hzto() interface,
886 * and callers need to check for it.
887 */
888 ticks = 0;
889 } else if (sec <= (LONG_MAX / 1000000))
890 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
891 / tick) + 1;
892 else if (sec <= (LONG_MAX / hz))
893 ticks = (sec * hz) +
894 (((unsigned long)usec + (tick - 1)) / tick) + 1;
895 else
896 ticks = LONG_MAX;
897
898 if (ticks > INT_MAX)
899 ticks = INT_MAX;
900
901 return ((int)ticks);
902 }
903
904 /*
905 * Start profiling on a process.
906 *
907 * Kernel profiling passes proc0 which never exits and hence
908 * keeps the profile clock running constantly.
909 */
910 void
911 startprofclock(struct proc *p)
912 {
913
914 if ((p->p_flag & P_PROFIL) == 0) {
915 p->p_flag |= P_PROFIL;
916 /*
917 * This is only necessary if using the clock as the
918 * profiling source.
919 */
920 if (++profprocs == 1 && stathz != 0)
921 psdiv = psratio;
922 }
923 }
924
925 /*
926 * Stop profiling on a process.
927 */
928 void
929 stopprofclock(struct proc *p)
930 {
931
932 if (p->p_flag & P_PROFIL) {
933 p->p_flag &= ~P_PROFIL;
934 /*
935 * This is only necessary if using the clock as the
936 * profiling source.
937 */
938 if (--profprocs == 0 && stathz != 0)
939 psdiv = 1;
940 }
941 }
942
943 #if defined(PERFCTRS)
944 /*
945 * Independent profiling "tick" in case we're using a separate
946 * clock or profiling event source. Currently, that's just
947 * performance counters--hence the wrapper.
948 */
949 void
950 proftick(struct clockframe *frame)
951 {
952 #ifdef GPROF
953 struct gmonparam *g;
954 intptr_t i;
955 #endif
956 struct proc *p;
957
958 p = curproc;
959 if (CLKF_USERMODE(frame)) {
960 if (p->p_flag & P_PROFIL)
961 addupc_intr(p, CLKF_PC(frame));
962 } else {
963 #ifdef GPROF
964 g = &_gmonparam;
965 if (g->state == GMON_PROF_ON) {
966 i = CLKF_PC(frame) - g->lowpc;
967 if (i < g->textsize) {
968 i /= HISTFRACTION * sizeof(*g->kcount);
969 g->kcount[i]++;
970 }
971 }
972 #endif
973 #ifdef PROC_PC
974 if (p && p->p_flag & P_PROFIL)
975 addupc_intr(p, PROC_PC(p));
976 #endif
977 }
978 }
979 #endif
980
981 /*
982 * Statistics clock. Grab profile sample, and if divider reaches 0,
983 * do process and kernel statistics.
984 */
985 void
986 statclock(struct clockframe *frame)
987 {
988 #ifdef GPROF
989 struct gmonparam *g;
990 intptr_t i;
991 #endif
992 struct cpu_info *ci = curcpu();
993 struct schedstate_percpu *spc = &ci->ci_schedstate;
994 struct lwp *l;
995 struct proc *p;
996
997 /*
998 * Notice changes in divisor frequency, and adjust clock
999 * frequency accordingly.
1000 */
1001 if (spc->spc_psdiv != psdiv) {
1002 spc->spc_psdiv = psdiv;
1003 spc->spc_pscnt = psdiv;
1004 if (psdiv == 1) {
1005 setstatclockrate(stathz);
1006 } else {
1007 setstatclockrate(profhz);
1008 }
1009 }
1010 l = curlwp;
1011 p = (l ? l->l_proc : 0);
1012 if (CLKF_USERMODE(frame)) {
1013 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1014 addupc_intr(p, CLKF_PC(frame));
1015 if (--spc->spc_pscnt > 0)
1016 return;
1017 /*
1018 * Came from user mode; CPU was in user state.
1019 * If this process is being profiled record the tick.
1020 */
1021 p->p_uticks++;
1022 if (p->p_nice > NZERO)
1023 spc->spc_cp_time[CP_NICE]++;
1024 else
1025 spc->spc_cp_time[CP_USER]++;
1026 } else {
1027 #ifdef GPROF
1028 /*
1029 * Kernel statistics are just like addupc_intr, only easier.
1030 */
1031 g = &_gmonparam;
1032 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1033 i = CLKF_PC(frame) - g->lowpc;
1034 if (i < g->textsize) {
1035 i /= HISTFRACTION * sizeof(*g->kcount);
1036 g->kcount[i]++;
1037 }
1038 }
1039 #endif
1040 #ifdef LWP_PC
1041 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1042 addupc_intr(p, LWP_PC(l));
1043 #endif
1044 if (--spc->spc_pscnt > 0)
1045 return;
1046 /*
1047 * Came from kernel mode, so we were:
1048 * - handling an interrupt,
1049 * - doing syscall or trap work on behalf of the current
1050 * user process, or
1051 * - spinning in the idle loop.
1052 * Whichever it is, charge the time as appropriate.
1053 * Note that we charge interrupts to the current process,
1054 * regardless of whether they are ``for'' that process,
1055 * so that we know how much of its real time was spent
1056 * in ``non-process'' (i.e., interrupt) work.
1057 */
1058 if (CLKF_INTR(frame)) {
1059 if (p != NULL)
1060 p->p_iticks++;
1061 spc->spc_cp_time[CP_INTR]++;
1062 } else if (p != NULL) {
1063 p->p_sticks++;
1064 spc->spc_cp_time[CP_SYS]++;
1065 } else
1066 spc->spc_cp_time[CP_IDLE]++;
1067 }
1068 spc->spc_pscnt = psdiv;
1069
1070 if (l != NULL) {
1071 ++p->p_cpticks;
1072 /*
1073 * If no separate schedclock is provided, call it here
1074 * at ~~12-25 Hz, ~~16 Hz is best
1075 */
1076 if (schedhz == 0)
1077 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1078 schedclock(l);
1079 }
1080 }
1081
1082
1083 #ifdef NTP /* NTP phase-locked loop in kernel */
1084
1085 /*
1086 * hardupdate() - local clock update
1087 *
1088 * This routine is called by ntp_adjtime() to update the local clock
1089 * phase and frequency. The implementation is of an adaptive-parameter,
1090 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1091 * time and frequency offset estimates for each call. If the kernel PPS
1092 * discipline code is configured (PPS_SYNC), the PPS signal itself
1093 * determines the new time offset, instead of the calling argument.
1094 * Presumably, calls to ntp_adjtime() occur only when the caller
1095 * believes the local clock is valid within some bound (+-128 ms with
1096 * NTP). If the caller's time is far different than the PPS time, an
1097 * argument will ensue, and it's not clear who will lose.
1098 *
1099 * For uncompensated quartz crystal oscillatores and nominal update
1100 * intervals less than 1024 s, operation should be in phase-lock mode
1101 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1102 * intervals greater than thiss, operation should be in frequency-lock
1103 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1104 *
1105 * Note: splclock() is in effect.
1106 */
1107 void
1108 hardupdate(long offset)
1109 {
1110 long ltemp, mtemp;
1111
1112 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1113 return;
1114 ltemp = offset;
1115 #ifdef PPS_SYNC
1116 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1117 ltemp = pps_offset;
1118 #endif /* PPS_SYNC */
1119
1120 /*
1121 * Scale the phase adjustment and clamp to the operating range.
1122 */
1123 if (ltemp > MAXPHASE)
1124 time_offset = MAXPHASE << SHIFT_UPDATE;
1125 else if (ltemp < -MAXPHASE)
1126 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1127 else
1128 time_offset = ltemp << SHIFT_UPDATE;
1129
1130 /*
1131 * Select whether the frequency is to be controlled and in which
1132 * mode (PLL or FLL). Clamp to the operating range. Ugly
1133 * multiply/divide should be replaced someday.
1134 */
1135 if (time_status & STA_FREQHOLD || time_reftime == 0)
1136 time_reftime = time.tv_sec;
1137 mtemp = time.tv_sec - time_reftime;
1138 time_reftime = time.tv_sec;
1139 if (time_status & STA_FLL) {
1140 if (mtemp >= MINSEC) {
1141 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1142 SHIFT_UPDATE));
1143 if (ltemp < 0)
1144 time_freq -= -ltemp >> SHIFT_KH;
1145 else
1146 time_freq += ltemp >> SHIFT_KH;
1147 }
1148 } else {
1149 if (mtemp < MAXSEC) {
1150 ltemp *= mtemp;
1151 if (ltemp < 0)
1152 time_freq -= -ltemp >> (time_constant +
1153 time_constant + SHIFT_KF -
1154 SHIFT_USEC);
1155 else
1156 time_freq += ltemp >> (time_constant +
1157 time_constant + SHIFT_KF -
1158 SHIFT_USEC);
1159 }
1160 }
1161 if (time_freq > time_tolerance)
1162 time_freq = time_tolerance;
1163 else if (time_freq < -time_tolerance)
1164 time_freq = -time_tolerance;
1165 }
1166
1167 #ifdef PPS_SYNC
1168 /*
1169 * hardpps() - discipline CPU clock oscillator to external PPS signal
1170 *
1171 * This routine is called at each PPS interrupt in order to discipline
1172 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1173 * and leaves it in a handy spot for the hardclock() routine. It
1174 * integrates successive PPS phase differences and calculates the
1175 * frequency offset. This is used in hardclock() to discipline the CPU
1176 * clock oscillator so that intrinsic frequency error is cancelled out.
1177 * The code requires the caller to capture the time and hardware counter
1178 * value at the on-time PPS signal transition.
1179 *
1180 * Note that, on some Unix systems, this routine runs at an interrupt
1181 * priority level higher than the timer interrupt routine hardclock().
1182 * Therefore, the variables used are distinct from the hardclock()
1183 * variables, except for certain exceptions: The PPS frequency pps_freq
1184 * and phase pps_offset variables are determined by this routine and
1185 * updated atomically. The time_tolerance variable can be considered a
1186 * constant, since it is infrequently changed, and then only when the
1187 * PPS signal is disabled. The watchdog counter pps_valid is updated
1188 * once per second by hardclock() and is atomically cleared in this
1189 * routine.
1190 */
1191 void
1192 hardpps(struct timeval *tvp, /* time at PPS */
1193 long usec /* hardware counter at PPS */)
1194 {
1195 long u_usec, v_usec, bigtick;
1196 long cal_sec, cal_usec;
1197
1198 /*
1199 * An occasional glitch can be produced when the PPS interrupt
1200 * occurs in the hardclock() routine before the time variable is
1201 * updated. Here the offset is discarded when the difference
1202 * between it and the last one is greater than tick/2, but not
1203 * if the interval since the first discard exceeds 30 s.
1204 */
1205 time_status |= STA_PPSSIGNAL;
1206 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1207 pps_valid = 0;
1208 u_usec = -tvp->tv_usec;
1209 if (u_usec < -500000)
1210 u_usec += 1000000;
1211 v_usec = pps_offset - u_usec;
1212 if (v_usec < 0)
1213 v_usec = -v_usec;
1214 if (v_usec > (tick >> 1)) {
1215 if (pps_glitch > MAXGLITCH) {
1216 pps_glitch = 0;
1217 pps_tf[2] = u_usec;
1218 pps_tf[1] = u_usec;
1219 } else {
1220 pps_glitch++;
1221 u_usec = pps_offset;
1222 }
1223 } else
1224 pps_glitch = 0;
1225
1226 /*
1227 * A three-stage median filter is used to help deglitch the pps
1228 * time. The median sample becomes the time offset estimate; the
1229 * difference between the other two samples becomes the time
1230 * dispersion (jitter) estimate.
1231 */
1232 pps_tf[2] = pps_tf[1];
1233 pps_tf[1] = pps_tf[0];
1234 pps_tf[0] = u_usec;
1235 if (pps_tf[0] > pps_tf[1]) {
1236 if (pps_tf[1] > pps_tf[2]) {
1237 pps_offset = pps_tf[1]; /* 0 1 2 */
1238 v_usec = pps_tf[0] - pps_tf[2];
1239 } else if (pps_tf[2] > pps_tf[0]) {
1240 pps_offset = pps_tf[0]; /* 2 0 1 */
1241 v_usec = pps_tf[2] - pps_tf[1];
1242 } else {
1243 pps_offset = pps_tf[2]; /* 0 2 1 */
1244 v_usec = pps_tf[0] - pps_tf[1];
1245 }
1246 } else {
1247 if (pps_tf[1] < pps_tf[2]) {
1248 pps_offset = pps_tf[1]; /* 2 1 0 */
1249 v_usec = pps_tf[2] - pps_tf[0];
1250 } else if (pps_tf[2] < pps_tf[0]) {
1251 pps_offset = pps_tf[0]; /* 1 0 2 */
1252 v_usec = pps_tf[1] - pps_tf[2];
1253 } else {
1254 pps_offset = pps_tf[2]; /* 1 2 0 */
1255 v_usec = pps_tf[1] - pps_tf[0];
1256 }
1257 }
1258 if (v_usec > MAXTIME)
1259 pps_jitcnt++;
1260 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1261 if (v_usec < 0)
1262 pps_jitter -= -v_usec >> PPS_AVG;
1263 else
1264 pps_jitter += v_usec >> PPS_AVG;
1265 if (pps_jitter > (MAXTIME >> 1))
1266 time_status |= STA_PPSJITTER;
1267
1268 /*
1269 * During the calibration interval adjust the starting time when
1270 * the tick overflows. At the end of the interval compute the
1271 * duration of the interval and the difference of the hardware
1272 * counters at the beginning and end of the interval. This code
1273 * is deliciously complicated by the fact valid differences may
1274 * exceed the value of tick when using long calibration
1275 * intervals and small ticks. Note that the counter can be
1276 * greater than tick if caught at just the wrong instant, but
1277 * the values returned and used here are correct.
1278 */
1279 bigtick = (long)tick << SHIFT_USEC;
1280 pps_usec -= pps_freq;
1281 if (pps_usec >= bigtick)
1282 pps_usec -= bigtick;
1283 if (pps_usec < 0)
1284 pps_usec += bigtick;
1285 pps_time.tv_sec++;
1286 pps_count++;
1287 if (pps_count < (1 << pps_shift))
1288 return;
1289 pps_count = 0;
1290 pps_calcnt++;
1291 u_usec = usec << SHIFT_USEC;
1292 v_usec = pps_usec - u_usec;
1293 if (v_usec >= bigtick >> 1)
1294 v_usec -= bigtick;
1295 if (v_usec < -(bigtick >> 1))
1296 v_usec += bigtick;
1297 if (v_usec < 0)
1298 v_usec = -(-v_usec >> pps_shift);
1299 else
1300 v_usec = v_usec >> pps_shift;
1301 pps_usec = u_usec;
1302 cal_sec = tvp->tv_sec;
1303 cal_usec = tvp->tv_usec;
1304 cal_sec -= pps_time.tv_sec;
1305 cal_usec -= pps_time.tv_usec;
1306 if (cal_usec < 0) {
1307 cal_usec += 1000000;
1308 cal_sec--;
1309 }
1310 pps_time = *tvp;
1311
1312 /*
1313 * Check for lost interrupts, noise, excessive jitter and
1314 * excessive frequency error. The number of timer ticks during
1315 * the interval may vary +-1 tick. Add to this a margin of one
1316 * tick for the PPS signal jitter and maximum frequency
1317 * deviation. If the limits are exceeded, the calibration
1318 * interval is reset to the minimum and we start over.
1319 */
1320 u_usec = (long)tick << 1;
1321 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1322 || (cal_sec == 0 && cal_usec < u_usec))
1323 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1324 pps_errcnt++;
1325 pps_shift = PPS_SHIFT;
1326 pps_intcnt = 0;
1327 time_status |= STA_PPSERROR;
1328 return;
1329 }
1330
1331 /*
1332 * A three-stage median filter is used to help deglitch the pps
1333 * frequency. The median sample becomes the frequency offset
1334 * estimate; the difference between the other two samples
1335 * becomes the frequency dispersion (stability) estimate.
1336 */
1337 pps_ff[2] = pps_ff[1];
1338 pps_ff[1] = pps_ff[0];
1339 pps_ff[0] = v_usec;
1340 if (pps_ff[0] > pps_ff[1]) {
1341 if (pps_ff[1] > pps_ff[2]) {
1342 u_usec = pps_ff[1]; /* 0 1 2 */
1343 v_usec = pps_ff[0] - pps_ff[2];
1344 } else if (pps_ff[2] > pps_ff[0]) {
1345 u_usec = pps_ff[0]; /* 2 0 1 */
1346 v_usec = pps_ff[2] - pps_ff[1];
1347 } else {
1348 u_usec = pps_ff[2]; /* 0 2 1 */
1349 v_usec = pps_ff[0] - pps_ff[1];
1350 }
1351 } else {
1352 if (pps_ff[1] < pps_ff[2]) {
1353 u_usec = pps_ff[1]; /* 2 1 0 */
1354 v_usec = pps_ff[2] - pps_ff[0];
1355 } else if (pps_ff[2] < pps_ff[0]) {
1356 u_usec = pps_ff[0]; /* 1 0 2 */
1357 v_usec = pps_ff[1] - pps_ff[2];
1358 } else {
1359 u_usec = pps_ff[2]; /* 1 2 0 */
1360 v_usec = pps_ff[1] - pps_ff[0];
1361 }
1362 }
1363
1364 /*
1365 * Here the frequency dispersion (stability) is updated. If it
1366 * is less than one-fourth the maximum (MAXFREQ), the frequency
1367 * offset is updated as well, but clamped to the tolerance. It
1368 * will be processed later by the hardclock() routine.
1369 */
1370 v_usec = (v_usec >> 1) - pps_stabil;
1371 if (v_usec < 0)
1372 pps_stabil -= -v_usec >> PPS_AVG;
1373 else
1374 pps_stabil += v_usec >> PPS_AVG;
1375 if (pps_stabil > MAXFREQ >> 2) {
1376 pps_stbcnt++;
1377 time_status |= STA_PPSWANDER;
1378 return;
1379 }
1380 if (time_status & STA_PPSFREQ) {
1381 if (u_usec < 0) {
1382 pps_freq -= -u_usec >> PPS_AVG;
1383 if (pps_freq < -time_tolerance)
1384 pps_freq = -time_tolerance;
1385 u_usec = -u_usec;
1386 } else {
1387 pps_freq += u_usec >> PPS_AVG;
1388 if (pps_freq > time_tolerance)
1389 pps_freq = time_tolerance;
1390 }
1391 }
1392
1393 /*
1394 * Here the calibration interval is adjusted. If the maximum
1395 * time difference is greater than tick / 4, reduce the interval
1396 * by half. If this is not the case for four consecutive
1397 * intervals, double the interval.
1398 */
1399 if (u_usec << pps_shift > bigtick >> 2) {
1400 pps_intcnt = 0;
1401 if (pps_shift > PPS_SHIFT)
1402 pps_shift--;
1403 } else if (pps_intcnt >= 4) {
1404 pps_intcnt = 0;
1405 if (pps_shift < PPS_SHIFTMAX)
1406 pps_shift++;
1407 } else
1408 pps_intcnt++;
1409 }
1410 #endif /* PPS_SYNC */
1411 #endif /* NTP */
1412
1413 /*
1414 * Return information about system clocks.
1415 */
1416 int
1417 sysctl_clockrate(void *where, size_t *sizep)
1418 {
1419 struct clockinfo clkinfo;
1420
1421 /*
1422 * Construct clockinfo structure.
1423 */
1424 clkinfo.tick = tick;
1425 clkinfo.tickadj = tickadj;
1426 clkinfo.hz = hz;
1427 clkinfo.profhz = profhz;
1428 clkinfo.stathz = stathz ? stathz : hz;
1429 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1430 }
1431