kern_clock.c revision 1.89 1 /* $NetBSD: kern_clock.c,v 1.89 2004/01/23 05:01:19 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.89 2004/01/23 05:01:19 simonb Exp $");
78
79 #include "opt_ntp.h"
80 #include "opt_multiprocessor.h"
81 #include "opt_perfctrs.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/sysctl.h>
91 #include <sys/timex.h>
92 #include <sys/sched.h>
93 #include <sys/time.h>
94
95 #include <machine/cpu.h>
96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 #include <machine/intr.h>
98 #endif
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the cpu
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * cpu ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifdef NTP /* NTP phase-locked loop in kernel */
129 /*
130 * Phase/frequency-lock loop (PLL/FLL) definitions
131 *
132 * The following variables are read and set by the ntp_adjtime() system
133 * call.
134 *
135 * time_state shows the state of the system clock, with values defined
136 * in the timex.h header file.
137 *
138 * time_status shows the status of the system clock, with bits defined
139 * in the timex.h header file.
140 *
141 * time_offset is used by the PLL/FLL to adjust the system time in small
142 * increments.
143 *
144 * time_constant determines the bandwidth or "stiffness" of the PLL.
145 *
146 * time_tolerance determines maximum frequency error or tolerance of the
147 * CPU clock oscillator and is a property of the architecture; however,
148 * in principle it could change as result of the presence of external
149 * discipline signals, for instance.
150 *
151 * time_precision is usually equal to the kernel tick variable; however,
152 * in cases where a precision clock counter or external clock is
153 * available, the resolution can be much less than this and depend on
154 * whether the external clock is working or not.
155 *
156 * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 * the kernel once each second to reflect the maximum error bound
158 * growth.
159 *
160 * time_esterror is set and read by the ntp_adjtime() call, but
161 * otherwise not used by the kernel.
162 */
163 int time_state = TIME_OK; /* clock state */
164 int time_status = STA_UNSYNC; /* clock status bits */
165 long time_offset = 0; /* time offset (us) */
166 long time_constant = 0; /* pll time constant */
167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 long time_precision = 1; /* clock precision (us) */
169 long time_maxerror = MAXPHASE; /* maximum error (us) */
170 long time_esterror = MAXPHASE; /* estimated error (us) */
171
172 /*
173 * The following variables establish the state of the PLL/FLL and the
174 * residual time and frequency offset of the local clock. The scale
175 * factors are defined in the timex.h header file.
176 *
177 * time_phase and time_freq are the phase increment and the frequency
178 * increment, respectively, of the kernel time variable.
179 *
180 * time_freq is set via ntp_adjtime() from a value stored in a file when
181 * the synchronization daemon is first started. Its value is retrieved
182 * via ntp_adjtime() and written to the file about once per hour by the
183 * daemon.
184 *
185 * time_adj is the adjustment added to the value of tick at each timer
186 * interrupt and is recomputed from time_phase and time_freq at each
187 * seconds rollover.
188 *
189 * time_reftime is the second's portion of the system time at the last
190 * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 * and to increase the time_maxerror as the time since last update
192 * increases.
193 */
194 long time_phase = 0; /* phase offset (scaled us) */
195 long time_freq = 0; /* frequency offset (scaled ppm) */
196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0; /* time at last adjustment (s) */
198
199 #ifdef PPS_SYNC
200 /*
201 * The following variables are used only if the kernel PPS discipline
202 * code is configured (PPS_SYNC). The scale factors are defined in the
203 * timex.h header file.
204 *
205 * pps_time contains the time at each calibration interval, as read by
206 * microtime(). pps_count counts the seconds of the calibration
207 * interval, the duration of which is nominally pps_shift in powers of
208 * two.
209 *
210 * pps_offset is the time offset produced by the time median filter
211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 * this filter.
213 *
214 * pps_freq is the frequency offset produced by the frequency median
215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 * by this filter.
217 *
218 * pps_usec is latched from a high resolution counter or external clock
219 * at pps_time. Here we want the hardware counter contents only, not the
220 * contents plus the time_tv.usec as usual.
221 *
222 * pps_valid counts the number of seconds since the last PPS update. It
223 * is used as a watchdog timer to disable the PPS discipline should the
224 * PPS signal be lost.
225 *
226 * pps_glitch counts the number of seconds since the beginning of an
227 * offset burst more than tick/2 from current nominal offset. It is used
228 * mainly to suppress error bursts due to priority conflicts between the
229 * PPS interrupt and timer interrupt.
230 *
231 * pps_intcnt counts the calibration intervals for use in the interval-
232 * adaptation algorithm. It's just too complicated for words.
233 *
234 * pps_kc_hardpps_source contains an arbitrary value that uniquely
235 * identifies the currently bound source of the PPS signal, or NULL
236 * if no source is bound.
237 *
238 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
239 * signal should be reported.
240 */
241 struct timeval pps_time; /* kernel time at last interval */
242 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
243 long pps_offset = 0; /* pps time offset (us) */
244 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
245 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
246 long pps_freq = 0; /* frequency offset (scaled ppm) */
247 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
248 long pps_usec = 0; /* microsec counter at last interval */
249 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
250 int pps_glitch = 0; /* pps signal glitch counter */
251 int pps_count = 0; /* calibration interval counter (s) */
252 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
253 int pps_intcnt = 0; /* intervals at current duration */
254 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
255 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
256
257 /*
258 * PPS signal quality monitors
259 *
260 * pps_jitcnt counts the seconds that have been discarded because the
261 * jitter measured by the time median filter exceeds the limit MAXTIME
262 * (100 us).
263 *
264 * pps_calcnt counts the frequency calibration intervals, which are
265 * variable from 4 s to 256 s.
266 *
267 * pps_errcnt counts the calibration intervals which have been discarded
268 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
269 * calibration interval jitter exceeds two ticks.
270 *
271 * pps_stbcnt counts the calibration intervals that have been discarded
272 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
273 */
274 long pps_jitcnt = 0; /* jitter limit exceeded */
275 long pps_calcnt = 0; /* calibration intervals */
276 long pps_errcnt = 0; /* calibration errors */
277 long pps_stbcnt = 0; /* stability limit exceeded */
278 #endif /* PPS_SYNC */
279
280 #ifdef EXT_CLOCK
281 /*
282 * External clock definitions
283 *
284 * The following definitions and declarations are used only if an
285 * external clock is configured on the system.
286 */
287 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
288
289 /*
290 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
291 * interrupt and decremented once each second.
292 */
293 int clock_count = 0; /* CPU clock counter */
294
295 #ifdef HIGHBALL
296 /*
297 * The clock_offset and clock_cpu variables are used by the HIGHBALL
298 * interface. The clock_offset variable defines the offset between
299 * system time and the HIGBALL counters. The clock_cpu variable contains
300 * the offset between the system clock and the HIGHBALL clock for use in
301 * disciplining the kernel time variable.
302 */
303 extern struct timeval clock_offset; /* Highball clock offset */
304 long clock_cpu = 0; /* CPU clock adjust */
305 #endif /* HIGHBALL */
306 #endif /* EXT_CLOCK */
307 #endif /* NTP */
308
309
310 /*
311 * Bump a timeval by a small number of usec's.
312 */
313 #define BUMPTIME(t, usec) { \
314 volatile struct timeval *tp = (t); \
315 long us; \
316 \
317 tp->tv_usec = us = tp->tv_usec + (usec); \
318 if (us >= 1000000) { \
319 tp->tv_usec = us - 1000000; \
320 tp->tv_sec++; \
321 } \
322 }
323
324 int stathz;
325 int profhz;
326 int profsrc;
327 int schedhz;
328 int profprocs;
329 int hardclock_ticks;
330 static int psdiv; /* prof => stat divider */
331 int psratio; /* ratio: prof / stat */
332 int tickfix, tickfixinterval; /* used if tick not really integral */
333 #ifndef NTP
334 static int tickfixcnt; /* accumulated fractional error */
335 #else
336 int fixtick; /* used by NTP for same */
337 int shifthz;
338 #endif
339
340 /*
341 * We might want ldd to load the both words from time at once.
342 * To succeed we need to be quadword aligned.
343 * The sparc already does that, and that it has worked so far is a fluke.
344 */
345 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
346 volatile struct timeval mono_time;
347
348 void *softclock_si;
349
350 /*
351 * Initialize clock frequencies and start both clocks running.
352 */
353 void
354 initclocks(void)
355 {
356 int i;
357
358 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
359 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
360 if (softclock_si == NULL)
361 panic("initclocks: unable to register softclock intr");
362 #endif
363
364 /*
365 * Set divisors to 1 (normal case) and let the machine-specific
366 * code do its bit.
367 */
368 psdiv = 1;
369 cpu_initclocks();
370
371 /*
372 * Compute profhz/stathz/rrticks, and fix profhz if needed.
373 */
374 i = stathz ? stathz : hz;
375 if (profhz == 0)
376 profhz = i;
377 psratio = profhz / i;
378 rrticks = hz / 10;
379
380 #ifdef NTP
381 switch (hz) {
382 case 1:
383 shifthz = SHIFT_SCALE - 0;
384 break;
385 case 2:
386 shifthz = SHIFT_SCALE - 1;
387 break;
388 case 4:
389 shifthz = SHIFT_SCALE - 2;
390 break;
391 case 8:
392 shifthz = SHIFT_SCALE - 3;
393 break;
394 case 16:
395 shifthz = SHIFT_SCALE - 4;
396 break;
397 case 32:
398 shifthz = SHIFT_SCALE - 5;
399 break;
400 case 60:
401 case 64:
402 shifthz = SHIFT_SCALE - 6;
403 break;
404 case 96:
405 case 100:
406 case 128:
407 shifthz = SHIFT_SCALE - 7;
408 break;
409 case 256:
410 shifthz = SHIFT_SCALE - 8;
411 break;
412 case 512:
413 shifthz = SHIFT_SCALE - 9;
414 break;
415 case 1000:
416 case 1024:
417 shifthz = SHIFT_SCALE - 10;
418 break;
419 case 1200:
420 case 2048:
421 shifthz = SHIFT_SCALE - 11;
422 break;
423 case 4096:
424 shifthz = SHIFT_SCALE - 12;
425 break;
426 case 8192:
427 shifthz = SHIFT_SCALE - 13;
428 break;
429 case 16384:
430 shifthz = SHIFT_SCALE - 14;
431 break;
432 case 32768:
433 shifthz = SHIFT_SCALE - 15;
434 break;
435 case 65536:
436 shifthz = SHIFT_SCALE - 16;
437 break;
438 default:
439 panic("weird hz");
440 }
441 if (fixtick == 0) {
442 /*
443 * Give MD code a chance to set this to a better
444 * value; but, if it doesn't, we should.
445 */
446 fixtick = (1000000 - (hz*tick));
447 }
448 #endif
449 }
450
451 /*
452 * The real-time timer, interrupting hz times per second.
453 */
454 void
455 hardclock(struct clockframe *frame)
456 {
457 struct lwp *l;
458 struct proc *p;
459 int delta;
460 extern int tickdelta;
461 extern long timedelta;
462 struct cpu_info *ci = curcpu();
463 struct ptimer *pt;
464 #ifdef NTP
465 int time_update;
466 int ltemp;
467 #endif
468
469 l = curlwp;
470 if (l) {
471 p = l->l_proc;
472 /*
473 * Run current process's virtual and profile time, as needed.
474 */
475 if (CLKF_USERMODE(frame) && p->p_timers &&
476 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
477 if (itimerdecr(pt, tick) == 0)
478 itimerfire(pt);
479 if (p->p_timers &&
480 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
481 if (itimerdecr(pt, tick) == 0)
482 itimerfire(pt);
483 }
484
485 /*
486 * If no separate statistics clock is available, run it from here.
487 */
488 if (stathz == 0)
489 statclock(frame);
490 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
491 roundrobin(ci);
492
493 #if defined(MULTIPROCESSOR)
494 /*
495 * If we are not the primary CPU, we're not allowed to do
496 * any more work.
497 */
498 if (CPU_IS_PRIMARY(ci) == 0)
499 return;
500 #endif
501
502 /*
503 * Increment the time-of-day. The increment is normally just
504 * ``tick''. If the machine is one which has a clock frequency
505 * such that ``hz'' would not divide the second evenly into
506 * milliseconds, a periodic adjustment must be applied. Finally,
507 * if we are still adjusting the time (see adjtime()),
508 * ``tickdelta'' may also be added in.
509 */
510 hardclock_ticks++;
511 delta = tick;
512
513 #ifndef NTP
514 if (tickfix) {
515 tickfixcnt += tickfix;
516 if (tickfixcnt >= tickfixinterval) {
517 delta++;
518 tickfixcnt -= tickfixinterval;
519 }
520 }
521 #endif /* !NTP */
522 /* Imprecise 4bsd adjtime() handling */
523 if (timedelta != 0) {
524 delta += tickdelta;
525 timedelta -= tickdelta;
526 }
527
528 #ifdef notyet
529 microset();
530 #endif
531
532 #ifndef NTP
533 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
534 #endif
535 BUMPTIME(&mono_time, delta);
536
537 #ifdef NTP
538 time_update = delta;
539
540 /*
541 * Compute the phase adjustment. If the low-order bits
542 * (time_phase) of the update overflow, bump the high-order bits
543 * (time_update).
544 */
545 time_phase += time_adj;
546 if (time_phase <= -FINEUSEC) {
547 ltemp = -time_phase >> SHIFT_SCALE;
548 time_phase += ltemp << SHIFT_SCALE;
549 time_update -= ltemp;
550 } else if (time_phase >= FINEUSEC) {
551 ltemp = time_phase >> SHIFT_SCALE;
552 time_phase -= ltemp << SHIFT_SCALE;
553 time_update += ltemp;
554 }
555
556 #ifdef HIGHBALL
557 /*
558 * If the HIGHBALL board is installed, we need to adjust the
559 * external clock offset in order to close the hardware feedback
560 * loop. This will adjust the external clock phase and frequency
561 * in small amounts. The additional phase noise and frequency
562 * wander this causes should be minimal. We also need to
563 * discipline the kernel time variable, since the PLL is used to
564 * discipline the external clock. If the Highball board is not
565 * present, we discipline kernel time with the PLL as usual. We
566 * assume that the external clock phase adjustment (time_update)
567 * and kernel phase adjustment (clock_cpu) are less than the
568 * value of tick.
569 */
570 clock_offset.tv_usec += time_update;
571 if (clock_offset.tv_usec >= 1000000) {
572 clock_offset.tv_sec++;
573 clock_offset.tv_usec -= 1000000;
574 }
575 if (clock_offset.tv_usec < 0) {
576 clock_offset.tv_sec--;
577 clock_offset.tv_usec += 1000000;
578 }
579 time.tv_usec += clock_cpu;
580 clock_cpu = 0;
581 #else
582 time.tv_usec += time_update;
583 #endif /* HIGHBALL */
584
585 /*
586 * On rollover of the second the phase adjustment to be used for
587 * the next second is calculated. Also, the maximum error is
588 * increased by the tolerance. If the PPS frequency discipline
589 * code is present, the phase is increased to compensate for the
590 * CPU clock oscillator frequency error.
591 *
592 * On a 32-bit machine and given parameters in the timex.h
593 * header file, the maximum phase adjustment is +-512 ms and
594 * maximum frequency offset is a tad less than) +-512 ppm. On a
595 * 64-bit machine, you shouldn't need to ask.
596 */
597 if (time.tv_usec >= 1000000) {
598 time.tv_usec -= 1000000;
599 time.tv_sec++;
600 time_maxerror += time_tolerance >> SHIFT_USEC;
601
602 /*
603 * Leap second processing. If in leap-insert state at
604 * the end of the day, the system clock is set back one
605 * second; if in leap-delete state, the system clock is
606 * set ahead one second. The microtime() routine or
607 * external clock driver will insure that reported time
608 * is always monotonic. The ugly divides should be
609 * replaced.
610 */
611 switch (time_state) {
612 case TIME_OK:
613 if (time_status & STA_INS)
614 time_state = TIME_INS;
615 else if (time_status & STA_DEL)
616 time_state = TIME_DEL;
617 break;
618
619 case TIME_INS:
620 if (time.tv_sec % 86400 == 0) {
621 time.tv_sec--;
622 time_state = TIME_OOP;
623 }
624 break;
625
626 case TIME_DEL:
627 if ((time.tv_sec + 1) % 86400 == 0) {
628 time.tv_sec++;
629 time_state = TIME_WAIT;
630 }
631 break;
632
633 case TIME_OOP:
634 time_state = TIME_WAIT;
635 break;
636
637 case TIME_WAIT:
638 if (!(time_status & (STA_INS | STA_DEL)))
639 time_state = TIME_OK;
640 break;
641 }
642
643 /*
644 * Compute the phase adjustment for the next second. In
645 * PLL mode, the offset is reduced by a fixed factor
646 * times the time constant. In FLL mode the offset is
647 * used directly. In either mode, the maximum phase
648 * adjustment for each second is clamped so as to spread
649 * the adjustment over not more than the number of
650 * seconds between updates.
651 */
652 if (time_offset < 0) {
653 ltemp = -time_offset;
654 if (!(time_status & STA_FLL))
655 ltemp >>= SHIFT_KG + time_constant;
656 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
657 ltemp = (MAXPHASE / MINSEC) <<
658 SHIFT_UPDATE;
659 time_offset += ltemp;
660 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
661 } else if (time_offset > 0) {
662 ltemp = time_offset;
663 if (!(time_status & STA_FLL))
664 ltemp >>= SHIFT_KG + time_constant;
665 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
666 ltemp = (MAXPHASE / MINSEC) <<
667 SHIFT_UPDATE;
668 time_offset -= ltemp;
669 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
670 } else
671 time_adj = 0;
672
673 /*
674 * Compute the frequency estimate and additional phase
675 * adjustment due to frequency error for the next
676 * second. When the PPS signal is engaged, gnaw on the
677 * watchdog counter and update the frequency computed by
678 * the pll and the PPS signal.
679 */
680 #ifdef PPS_SYNC
681 pps_valid++;
682 if (pps_valid == PPS_VALID) {
683 pps_jitter = MAXTIME;
684 pps_stabil = MAXFREQ;
685 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
686 STA_PPSWANDER | STA_PPSERROR);
687 }
688 ltemp = time_freq + pps_freq;
689 #else
690 ltemp = time_freq;
691 #endif /* PPS_SYNC */
692
693 if (ltemp < 0)
694 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
695 else
696 time_adj += ltemp >> (SHIFT_USEC - shifthz);
697 time_adj += (long)fixtick << shifthz;
698
699 /*
700 * When the CPU clock oscillator frequency is not a
701 * power of 2 in Hz, shifthz is only an approximate
702 * scale factor.
703 *
704 * To determine the adjustment, you can do the following:
705 * bc -q
706 * scale=24
707 * obase=2
708 * idealhz/realhz
709 * where `idealhz' is the next higher power of 2, and `realhz'
710 * is the actual value. You may need to factor this result
711 * into a sequence of 2 multipliers to get better precision.
712 *
713 * Likewise, the error can be calculated with (e.g. for 100Hz):
714 * bc -q
715 * scale=24
716 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
717 * (and then multiply by 1000000 to get ppm).
718 */
719 switch (hz) {
720 case 60:
721 /* A factor of 1.000100010001 gives about 15ppm
722 error. */
723 if (time_adj < 0) {
724 time_adj -= (-time_adj >> 4);
725 time_adj -= (-time_adj >> 8);
726 } else {
727 time_adj += (time_adj >> 4);
728 time_adj += (time_adj >> 8);
729 }
730 break;
731
732 case 96:
733 /* A factor of 1.0101010101 gives about 244ppm error. */
734 if (time_adj < 0) {
735 time_adj -= (-time_adj >> 2);
736 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
737 } else {
738 time_adj += (time_adj >> 2);
739 time_adj += (time_adj >> 4) + (time_adj >> 8);
740 }
741 break;
742
743 case 100:
744 /* A factor of 1.010001111010111 gives about 1ppm
745 error. */
746 if (time_adj < 0) {
747 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
748 time_adj += (-time_adj >> 10);
749 } else {
750 time_adj += (time_adj >> 2) + (time_adj >> 5);
751 time_adj -= (time_adj >> 10);
752 }
753 break;
754
755 case 1000:
756 /* A factor of 1.000001100010100001 gives about 50ppm
757 error. */
758 if (time_adj < 0) {
759 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
760 time_adj -= (-time_adj >> 7);
761 } else {
762 time_adj += (time_adj >> 6) + (time_adj >> 11);
763 time_adj += (time_adj >> 7);
764 }
765 break;
766
767 case 1200:
768 /* A factor of 1.1011010011100001 gives about 64ppm
769 error. */
770 if (time_adj < 0) {
771 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
772 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
773 } else {
774 time_adj += (time_adj >> 1) + (time_adj >> 6);
775 time_adj += (time_adj >> 3) + (time_adj >> 10);
776 }
777 break;
778 }
779
780 #ifdef EXT_CLOCK
781 /*
782 * If an external clock is present, it is necessary to
783 * discipline the kernel time variable anyway, since not
784 * all system components use the microtime() interface.
785 * Here, the time offset between the external clock and
786 * kernel time variable is computed every so often.
787 */
788 clock_count++;
789 if (clock_count > CLOCK_INTERVAL) {
790 clock_count = 0;
791 microtime(&clock_ext);
792 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
793 delta.tv_usec = clock_ext.tv_usec -
794 time.tv_usec;
795 if (delta.tv_usec < 0)
796 delta.tv_sec--;
797 if (delta.tv_usec >= 500000) {
798 delta.tv_usec -= 1000000;
799 delta.tv_sec++;
800 }
801 if (delta.tv_usec < -500000) {
802 delta.tv_usec += 1000000;
803 delta.tv_sec--;
804 }
805 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
806 delta.tv_usec > MAXPHASE) ||
807 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
808 delta.tv_usec < -MAXPHASE)) {
809 time = clock_ext;
810 delta.tv_sec = 0;
811 delta.tv_usec = 0;
812 }
813 #ifdef HIGHBALL
814 clock_cpu = delta.tv_usec;
815 #else /* HIGHBALL */
816 hardupdate(delta.tv_usec);
817 #endif /* HIGHBALL */
818 }
819 #endif /* EXT_CLOCK */
820 }
821
822 #endif /* NTP */
823
824 /*
825 * Update real-time timeout queue.
826 * Process callouts at a very low cpu priority, so we don't keep the
827 * relatively high clock interrupt priority any longer than necessary.
828 */
829 if (callout_hardclock()) {
830 if (CLKF_BASEPRI(frame)) {
831 /*
832 * Save the overhead of a software interrupt;
833 * it will happen as soon as we return, so do
834 * it now.
835 */
836 spllowersoftclock();
837 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
838 softclock(NULL);
839 KERNEL_UNLOCK();
840 } else {
841 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
842 softintr_schedule(softclock_si);
843 #else
844 setsoftclock();
845 #endif
846 }
847 }
848 }
849
850 /*
851 * Compute number of hz until specified time. Used to compute second
852 * argument to callout_reset() from an absolute time.
853 */
854 int
855 hzto(struct timeval *tv)
856 {
857 unsigned long ticks;
858 long sec, usec;
859 int s;
860
861 /*
862 * If the number of usecs in the whole seconds part of the time
863 * difference fits in a long, then the total number of usecs will
864 * fit in an unsigned long. Compute the total and convert it to
865 * ticks, rounding up and adding 1 to allow for the current tick
866 * to expire. Rounding also depends on unsigned long arithmetic
867 * to avoid overflow.
868 *
869 * Otherwise, if the number of ticks in the whole seconds part of
870 * the time difference fits in a long, then convert the parts to
871 * ticks separately and add, using similar rounding methods and
872 * overflow avoidance. This method would work in the previous
873 * case, but it is slightly slower and assume that hz is integral.
874 *
875 * Otherwise, round the time difference down to the maximum
876 * representable value.
877 *
878 * If ints are 32-bit, then the maximum value for any timeout in
879 * 10ms ticks is 248 days.
880 */
881 s = splclock();
882 sec = tv->tv_sec - time.tv_sec;
883 usec = tv->tv_usec - time.tv_usec;
884 splx(s);
885
886 if (usec < 0) {
887 sec--;
888 usec += 1000000;
889 }
890
891 if (sec < 0 || (sec == 0 && usec <= 0)) {
892 /*
893 * Would expire now or in the past. Return 0 ticks.
894 * This is different from the legacy hzto() interface,
895 * and callers need to check for it.
896 */
897 ticks = 0;
898 } else if (sec <= (LONG_MAX / 1000000))
899 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
900 / tick) + 1;
901 else if (sec <= (LONG_MAX / hz))
902 ticks = (sec * hz) +
903 (((unsigned long)usec + (tick - 1)) / tick) + 1;
904 else
905 ticks = LONG_MAX;
906
907 if (ticks > INT_MAX)
908 ticks = INT_MAX;
909
910 return ((int)ticks);
911 }
912
913 /*
914 * Start profiling on a process.
915 *
916 * Kernel profiling passes proc0 which never exits and hence
917 * keeps the profile clock running constantly.
918 */
919 void
920 startprofclock(struct proc *p)
921 {
922
923 if ((p->p_flag & P_PROFIL) == 0) {
924 p->p_flag |= P_PROFIL;
925 /*
926 * This is only necessary if using the clock as the
927 * profiling source.
928 */
929 if (++profprocs == 1 && stathz != 0)
930 psdiv = psratio;
931 }
932 }
933
934 /*
935 * Stop profiling on a process.
936 */
937 void
938 stopprofclock(struct proc *p)
939 {
940
941 if (p->p_flag & P_PROFIL) {
942 p->p_flag &= ~P_PROFIL;
943 /*
944 * This is only necessary if using the clock as the
945 * profiling source.
946 */
947 if (--profprocs == 0 && stathz != 0)
948 psdiv = 1;
949 }
950 }
951
952 #if defined(PERFCTRS)
953 /*
954 * Independent profiling "tick" in case we're using a separate
955 * clock or profiling event source. Currently, that's just
956 * performance counters--hence the wrapper.
957 */
958 void
959 proftick(struct clockframe *frame)
960 {
961 #ifdef GPROF
962 struct gmonparam *g;
963 intptr_t i;
964 #endif
965 struct proc *p;
966
967 p = curproc;
968 if (CLKF_USERMODE(frame)) {
969 if (p->p_flag & P_PROFIL)
970 addupc_intr(p, CLKF_PC(frame));
971 } else {
972 #ifdef GPROF
973 g = &_gmonparam;
974 if (g->state == GMON_PROF_ON) {
975 i = CLKF_PC(frame) - g->lowpc;
976 if (i < g->textsize) {
977 i /= HISTFRACTION * sizeof(*g->kcount);
978 g->kcount[i]++;
979 }
980 }
981 #endif
982 #ifdef PROC_PC
983 if (p && p->p_flag & P_PROFIL)
984 addupc_intr(p, PROC_PC(p));
985 #endif
986 }
987 }
988 #endif
989
990 /*
991 * Statistics clock. Grab profile sample, and if divider reaches 0,
992 * do process and kernel statistics.
993 */
994 void
995 statclock(struct clockframe *frame)
996 {
997 #ifdef GPROF
998 struct gmonparam *g;
999 intptr_t i;
1000 #endif
1001 struct cpu_info *ci = curcpu();
1002 struct schedstate_percpu *spc = &ci->ci_schedstate;
1003 struct lwp *l;
1004 struct proc *p;
1005
1006 /*
1007 * Notice changes in divisor frequency, and adjust clock
1008 * frequency accordingly.
1009 */
1010 if (spc->spc_psdiv != psdiv) {
1011 spc->spc_psdiv = psdiv;
1012 spc->spc_pscnt = psdiv;
1013 if (psdiv == 1) {
1014 setstatclockrate(stathz);
1015 } else {
1016 setstatclockrate(profhz);
1017 }
1018 }
1019 l = curlwp;
1020 p = (l ? l->l_proc : 0);
1021 if (CLKF_USERMODE(frame)) {
1022 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1023 addupc_intr(p, CLKF_PC(frame));
1024 if (--spc->spc_pscnt > 0)
1025 return;
1026 /*
1027 * Came from user mode; CPU was in user state.
1028 * If this process is being profiled record the tick.
1029 */
1030 p->p_uticks++;
1031 if (p->p_nice > NZERO)
1032 spc->spc_cp_time[CP_NICE]++;
1033 else
1034 spc->spc_cp_time[CP_USER]++;
1035 } else {
1036 #ifdef GPROF
1037 /*
1038 * Kernel statistics are just like addupc_intr, only easier.
1039 */
1040 g = &_gmonparam;
1041 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1042 i = CLKF_PC(frame) - g->lowpc;
1043 if (i < g->textsize) {
1044 i /= HISTFRACTION * sizeof(*g->kcount);
1045 g->kcount[i]++;
1046 }
1047 }
1048 #endif
1049 #ifdef LWP_PC
1050 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1051 addupc_intr(p, LWP_PC(l));
1052 #endif
1053 if (--spc->spc_pscnt > 0)
1054 return;
1055 /*
1056 * Came from kernel mode, so we were:
1057 * - handling an interrupt,
1058 * - doing syscall or trap work on behalf of the current
1059 * user process, or
1060 * - spinning in the idle loop.
1061 * Whichever it is, charge the time as appropriate.
1062 * Note that we charge interrupts to the current process,
1063 * regardless of whether they are ``for'' that process,
1064 * so that we know how much of its real time was spent
1065 * in ``non-process'' (i.e., interrupt) work.
1066 */
1067 if (CLKF_INTR(frame)) {
1068 if (p != NULL)
1069 p->p_iticks++;
1070 spc->spc_cp_time[CP_INTR]++;
1071 } else if (p != NULL) {
1072 p->p_sticks++;
1073 spc->spc_cp_time[CP_SYS]++;
1074 } else
1075 spc->spc_cp_time[CP_IDLE]++;
1076 }
1077 spc->spc_pscnt = psdiv;
1078
1079 if (l != NULL) {
1080 ++p->p_cpticks;
1081 /*
1082 * If no separate schedclock is provided, call it here
1083 * at ~~12-25 Hz, ~~16 Hz is best
1084 */
1085 if (schedhz == 0)
1086 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1087 schedclock(l);
1088 }
1089 }
1090
1091
1092 #ifdef NTP /* NTP phase-locked loop in kernel */
1093
1094 /*
1095 * hardupdate() - local clock update
1096 *
1097 * This routine is called by ntp_adjtime() to update the local clock
1098 * phase and frequency. The implementation is of an adaptive-parameter,
1099 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1100 * time and frequency offset estimates for each call. If the kernel PPS
1101 * discipline code is configured (PPS_SYNC), the PPS signal itself
1102 * determines the new time offset, instead of the calling argument.
1103 * Presumably, calls to ntp_adjtime() occur only when the caller
1104 * believes the local clock is valid within some bound (+-128 ms with
1105 * NTP). If the caller's time is far different than the PPS time, an
1106 * argument will ensue, and it's not clear who will lose.
1107 *
1108 * For uncompensated quartz crystal oscillatores and nominal update
1109 * intervals less than 1024 s, operation should be in phase-lock mode
1110 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1111 * intervals greater than thiss, operation should be in frequency-lock
1112 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1113 *
1114 * Note: splclock() is in effect.
1115 */
1116 void
1117 hardupdate(long offset)
1118 {
1119 long ltemp, mtemp;
1120
1121 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1122 return;
1123 ltemp = offset;
1124 #ifdef PPS_SYNC
1125 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1126 ltemp = pps_offset;
1127 #endif /* PPS_SYNC */
1128
1129 /*
1130 * Scale the phase adjustment and clamp to the operating range.
1131 */
1132 if (ltemp > MAXPHASE)
1133 time_offset = MAXPHASE << SHIFT_UPDATE;
1134 else if (ltemp < -MAXPHASE)
1135 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1136 else
1137 time_offset = ltemp << SHIFT_UPDATE;
1138
1139 /*
1140 * Select whether the frequency is to be controlled and in which
1141 * mode (PLL or FLL). Clamp to the operating range. Ugly
1142 * multiply/divide should be replaced someday.
1143 */
1144 if (time_status & STA_FREQHOLD || time_reftime == 0)
1145 time_reftime = time.tv_sec;
1146 mtemp = time.tv_sec - time_reftime;
1147 time_reftime = time.tv_sec;
1148 if (time_status & STA_FLL) {
1149 if (mtemp >= MINSEC) {
1150 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1151 SHIFT_UPDATE));
1152 if (ltemp < 0)
1153 time_freq -= -ltemp >> SHIFT_KH;
1154 else
1155 time_freq += ltemp >> SHIFT_KH;
1156 }
1157 } else {
1158 if (mtemp < MAXSEC) {
1159 ltemp *= mtemp;
1160 if (ltemp < 0)
1161 time_freq -= -ltemp >> (time_constant +
1162 time_constant + SHIFT_KF -
1163 SHIFT_USEC);
1164 else
1165 time_freq += ltemp >> (time_constant +
1166 time_constant + SHIFT_KF -
1167 SHIFT_USEC);
1168 }
1169 }
1170 if (time_freq > time_tolerance)
1171 time_freq = time_tolerance;
1172 else if (time_freq < -time_tolerance)
1173 time_freq = -time_tolerance;
1174 }
1175
1176 #ifdef PPS_SYNC
1177 /*
1178 * hardpps() - discipline CPU clock oscillator to external PPS signal
1179 *
1180 * This routine is called at each PPS interrupt in order to discipline
1181 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1182 * and leaves it in a handy spot for the hardclock() routine. It
1183 * integrates successive PPS phase differences and calculates the
1184 * frequency offset. This is used in hardclock() to discipline the CPU
1185 * clock oscillator so that intrinsic frequency error is cancelled out.
1186 * The code requires the caller to capture the time and hardware counter
1187 * value at the on-time PPS signal transition.
1188 *
1189 * Note that, on some Unix systems, this routine runs at an interrupt
1190 * priority level higher than the timer interrupt routine hardclock().
1191 * Therefore, the variables used are distinct from the hardclock()
1192 * variables, except for certain exceptions: The PPS frequency pps_freq
1193 * and phase pps_offset variables are determined by this routine and
1194 * updated atomically. The time_tolerance variable can be considered a
1195 * constant, since it is infrequently changed, and then only when the
1196 * PPS signal is disabled. The watchdog counter pps_valid is updated
1197 * once per second by hardclock() and is atomically cleared in this
1198 * routine.
1199 */
1200 void
1201 hardpps(struct timeval *tvp, /* time at PPS */
1202 long usec /* hardware counter at PPS */)
1203 {
1204 long u_usec, v_usec, bigtick;
1205 long cal_sec, cal_usec;
1206
1207 /*
1208 * An occasional glitch can be produced when the PPS interrupt
1209 * occurs in the hardclock() routine before the time variable is
1210 * updated. Here the offset is discarded when the difference
1211 * between it and the last one is greater than tick/2, but not
1212 * if the interval since the first discard exceeds 30 s.
1213 */
1214 time_status |= STA_PPSSIGNAL;
1215 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1216 pps_valid = 0;
1217 u_usec = -tvp->tv_usec;
1218 if (u_usec < -500000)
1219 u_usec += 1000000;
1220 v_usec = pps_offset - u_usec;
1221 if (v_usec < 0)
1222 v_usec = -v_usec;
1223 if (v_usec > (tick >> 1)) {
1224 if (pps_glitch > MAXGLITCH) {
1225 pps_glitch = 0;
1226 pps_tf[2] = u_usec;
1227 pps_tf[1] = u_usec;
1228 } else {
1229 pps_glitch++;
1230 u_usec = pps_offset;
1231 }
1232 } else
1233 pps_glitch = 0;
1234
1235 /*
1236 * A three-stage median filter is used to help deglitch the pps
1237 * time. The median sample becomes the time offset estimate; the
1238 * difference between the other two samples becomes the time
1239 * dispersion (jitter) estimate.
1240 */
1241 pps_tf[2] = pps_tf[1];
1242 pps_tf[1] = pps_tf[0];
1243 pps_tf[0] = u_usec;
1244 if (pps_tf[0] > pps_tf[1]) {
1245 if (pps_tf[1] > pps_tf[2]) {
1246 pps_offset = pps_tf[1]; /* 0 1 2 */
1247 v_usec = pps_tf[0] - pps_tf[2];
1248 } else if (pps_tf[2] > pps_tf[0]) {
1249 pps_offset = pps_tf[0]; /* 2 0 1 */
1250 v_usec = pps_tf[2] - pps_tf[1];
1251 } else {
1252 pps_offset = pps_tf[2]; /* 0 2 1 */
1253 v_usec = pps_tf[0] - pps_tf[1];
1254 }
1255 } else {
1256 if (pps_tf[1] < pps_tf[2]) {
1257 pps_offset = pps_tf[1]; /* 2 1 0 */
1258 v_usec = pps_tf[2] - pps_tf[0];
1259 } else if (pps_tf[2] < pps_tf[0]) {
1260 pps_offset = pps_tf[0]; /* 1 0 2 */
1261 v_usec = pps_tf[1] - pps_tf[2];
1262 } else {
1263 pps_offset = pps_tf[2]; /* 1 2 0 */
1264 v_usec = pps_tf[1] - pps_tf[0];
1265 }
1266 }
1267 if (v_usec > MAXTIME)
1268 pps_jitcnt++;
1269 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1270 if (v_usec < 0)
1271 pps_jitter -= -v_usec >> PPS_AVG;
1272 else
1273 pps_jitter += v_usec >> PPS_AVG;
1274 if (pps_jitter > (MAXTIME >> 1))
1275 time_status |= STA_PPSJITTER;
1276
1277 /*
1278 * During the calibration interval adjust the starting time when
1279 * the tick overflows. At the end of the interval compute the
1280 * duration of the interval and the difference of the hardware
1281 * counters at the beginning and end of the interval. This code
1282 * is deliciously complicated by the fact valid differences may
1283 * exceed the value of tick when using long calibration
1284 * intervals and small ticks. Note that the counter can be
1285 * greater than tick if caught at just the wrong instant, but
1286 * the values returned and used here are correct.
1287 */
1288 bigtick = (long)tick << SHIFT_USEC;
1289 pps_usec -= pps_freq;
1290 if (pps_usec >= bigtick)
1291 pps_usec -= bigtick;
1292 if (pps_usec < 0)
1293 pps_usec += bigtick;
1294 pps_time.tv_sec++;
1295 pps_count++;
1296 if (pps_count < (1 << pps_shift))
1297 return;
1298 pps_count = 0;
1299 pps_calcnt++;
1300 u_usec = usec << SHIFT_USEC;
1301 v_usec = pps_usec - u_usec;
1302 if (v_usec >= bigtick >> 1)
1303 v_usec -= bigtick;
1304 if (v_usec < -(bigtick >> 1))
1305 v_usec += bigtick;
1306 if (v_usec < 0)
1307 v_usec = -(-v_usec >> pps_shift);
1308 else
1309 v_usec = v_usec >> pps_shift;
1310 pps_usec = u_usec;
1311 cal_sec = tvp->tv_sec;
1312 cal_usec = tvp->tv_usec;
1313 cal_sec -= pps_time.tv_sec;
1314 cal_usec -= pps_time.tv_usec;
1315 if (cal_usec < 0) {
1316 cal_usec += 1000000;
1317 cal_sec--;
1318 }
1319 pps_time = *tvp;
1320
1321 /*
1322 * Check for lost interrupts, noise, excessive jitter and
1323 * excessive frequency error. The number of timer ticks during
1324 * the interval may vary +-1 tick. Add to this a margin of one
1325 * tick for the PPS signal jitter and maximum frequency
1326 * deviation. If the limits are exceeded, the calibration
1327 * interval is reset to the minimum and we start over.
1328 */
1329 u_usec = (long)tick << 1;
1330 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1331 || (cal_sec == 0 && cal_usec < u_usec))
1332 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1333 pps_errcnt++;
1334 pps_shift = PPS_SHIFT;
1335 pps_intcnt = 0;
1336 time_status |= STA_PPSERROR;
1337 return;
1338 }
1339
1340 /*
1341 * A three-stage median filter is used to help deglitch the pps
1342 * frequency. The median sample becomes the frequency offset
1343 * estimate; the difference between the other two samples
1344 * becomes the frequency dispersion (stability) estimate.
1345 */
1346 pps_ff[2] = pps_ff[1];
1347 pps_ff[1] = pps_ff[0];
1348 pps_ff[0] = v_usec;
1349 if (pps_ff[0] > pps_ff[1]) {
1350 if (pps_ff[1] > pps_ff[2]) {
1351 u_usec = pps_ff[1]; /* 0 1 2 */
1352 v_usec = pps_ff[0] - pps_ff[2];
1353 } else if (pps_ff[2] > pps_ff[0]) {
1354 u_usec = pps_ff[0]; /* 2 0 1 */
1355 v_usec = pps_ff[2] - pps_ff[1];
1356 } else {
1357 u_usec = pps_ff[2]; /* 0 2 1 */
1358 v_usec = pps_ff[0] - pps_ff[1];
1359 }
1360 } else {
1361 if (pps_ff[1] < pps_ff[2]) {
1362 u_usec = pps_ff[1]; /* 2 1 0 */
1363 v_usec = pps_ff[2] - pps_ff[0];
1364 } else if (pps_ff[2] < pps_ff[0]) {
1365 u_usec = pps_ff[0]; /* 1 0 2 */
1366 v_usec = pps_ff[1] - pps_ff[2];
1367 } else {
1368 u_usec = pps_ff[2]; /* 1 2 0 */
1369 v_usec = pps_ff[1] - pps_ff[0];
1370 }
1371 }
1372
1373 /*
1374 * Here the frequency dispersion (stability) is updated. If it
1375 * is less than one-fourth the maximum (MAXFREQ), the frequency
1376 * offset is updated as well, but clamped to the tolerance. It
1377 * will be processed later by the hardclock() routine.
1378 */
1379 v_usec = (v_usec >> 1) - pps_stabil;
1380 if (v_usec < 0)
1381 pps_stabil -= -v_usec >> PPS_AVG;
1382 else
1383 pps_stabil += v_usec >> PPS_AVG;
1384 if (pps_stabil > MAXFREQ >> 2) {
1385 pps_stbcnt++;
1386 time_status |= STA_PPSWANDER;
1387 return;
1388 }
1389 if (time_status & STA_PPSFREQ) {
1390 if (u_usec < 0) {
1391 pps_freq -= -u_usec >> PPS_AVG;
1392 if (pps_freq < -time_tolerance)
1393 pps_freq = -time_tolerance;
1394 u_usec = -u_usec;
1395 } else {
1396 pps_freq += u_usec >> PPS_AVG;
1397 if (pps_freq > time_tolerance)
1398 pps_freq = time_tolerance;
1399 }
1400 }
1401
1402 /*
1403 * Here the calibration interval is adjusted. If the maximum
1404 * time difference is greater than tick / 4, reduce the interval
1405 * by half. If this is not the case for four consecutive
1406 * intervals, double the interval.
1407 */
1408 if (u_usec << pps_shift > bigtick >> 2) {
1409 pps_intcnt = 0;
1410 if (pps_shift > PPS_SHIFT)
1411 pps_shift--;
1412 } else if (pps_intcnt >= 4) {
1413 pps_intcnt = 0;
1414 if (pps_shift < PPS_SHIFTMAX)
1415 pps_shift++;
1416 } else
1417 pps_intcnt++;
1418 }
1419 #endif /* PPS_SYNC */
1420 #endif /* NTP */
1421