kern_clock.c revision 1.91 1 /* $NetBSD: kern_clock.c,v 1.91 2004/07/01 12:36:57 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.91 2004/07/01 12:36:57 yamt Exp $");
78
79 #include "opt_ntp.h"
80 #include "opt_multiprocessor.h"
81 #include "opt_perfctrs.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/sysctl.h>
91 #include <sys/timex.h>
92 #include <sys/sched.h>
93 #include <sys/time.h>
94
95 #include <machine/cpu.h>
96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 #include <machine/intr.h>
98 #endif
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the CPU
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * CPU ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifdef NTP /* NTP phase-locked loop in kernel */
129 /*
130 * Phase/frequency-lock loop (PLL/FLL) definitions
131 *
132 * The following variables are read and set by the ntp_adjtime() system
133 * call.
134 *
135 * time_state shows the state of the system clock, with values defined
136 * in the timex.h header file.
137 *
138 * time_status shows the status of the system clock, with bits defined
139 * in the timex.h header file.
140 *
141 * time_offset is used by the PLL/FLL to adjust the system time in small
142 * increments.
143 *
144 * time_constant determines the bandwidth or "stiffness" of the PLL.
145 *
146 * time_tolerance determines maximum frequency error or tolerance of the
147 * CPU clock oscillator and is a property of the architecture; however,
148 * in principle it could change as result of the presence of external
149 * discipline signals, for instance.
150 *
151 * time_precision is usually equal to the kernel tick variable; however,
152 * in cases where a precision clock counter or external clock is
153 * available, the resolution can be much less than this and depend on
154 * whether the external clock is working or not.
155 *
156 * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 * the kernel once each second to reflect the maximum error bound
158 * growth.
159 *
160 * time_esterror is set and read by the ntp_adjtime() call, but
161 * otherwise not used by the kernel.
162 */
163 int time_state = TIME_OK; /* clock state */
164 int time_status = STA_UNSYNC; /* clock status bits */
165 long time_offset = 0; /* time offset (us) */
166 long time_constant = 0; /* pll time constant */
167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 long time_precision = 1; /* clock precision (us) */
169 long time_maxerror = MAXPHASE; /* maximum error (us) */
170 long time_esterror = MAXPHASE; /* estimated error (us) */
171
172 /*
173 * The following variables establish the state of the PLL/FLL and the
174 * residual time and frequency offset of the local clock. The scale
175 * factors are defined in the timex.h header file.
176 *
177 * time_phase and time_freq are the phase increment and the frequency
178 * increment, respectively, of the kernel time variable.
179 *
180 * time_freq is set via ntp_adjtime() from a value stored in a file when
181 * the synchronization daemon is first started. Its value is retrieved
182 * via ntp_adjtime() and written to the file about once per hour by the
183 * daemon.
184 *
185 * time_adj is the adjustment added to the value of tick at each timer
186 * interrupt and is recomputed from time_phase and time_freq at each
187 * seconds rollover.
188 *
189 * time_reftime is the second's portion of the system time at the last
190 * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 * and to increase the time_maxerror as the time since last update
192 * increases.
193 */
194 long time_phase = 0; /* phase offset (scaled us) */
195 long time_freq = 0; /* frequency offset (scaled ppm) */
196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0; /* time at last adjustment (s) */
198
199 #ifdef PPS_SYNC
200 /*
201 * The following variables are used only if the kernel PPS discipline
202 * code is configured (PPS_SYNC). The scale factors are defined in the
203 * timex.h header file.
204 *
205 * pps_time contains the time at each calibration interval, as read by
206 * microtime(). pps_count counts the seconds of the calibration
207 * interval, the duration of which is nominally pps_shift in powers of
208 * two.
209 *
210 * pps_offset is the time offset produced by the time median filter
211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 * this filter.
213 *
214 * pps_freq is the frequency offset produced by the frequency median
215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 * by this filter.
217 *
218 * pps_usec is latched from a high resolution counter or external clock
219 * at pps_time. Here we want the hardware counter contents only, not the
220 * contents plus the time_tv.usec as usual.
221 *
222 * pps_valid counts the number of seconds since the last PPS update. It
223 * is used as a watchdog timer to disable the PPS discipline should the
224 * PPS signal be lost.
225 *
226 * pps_glitch counts the number of seconds since the beginning of an
227 * offset burst more than tick/2 from current nominal offset. It is used
228 * mainly to suppress error bursts due to priority conflicts between the
229 * PPS interrupt and timer interrupt.
230 *
231 * pps_intcnt counts the calibration intervals for use in the interval-
232 * adaptation algorithm. It's just too complicated for words.
233 *
234 * pps_kc_hardpps_source contains an arbitrary value that uniquely
235 * identifies the currently bound source of the PPS signal, or NULL
236 * if no source is bound.
237 *
238 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
239 * signal should be reported.
240 */
241 struct timeval pps_time; /* kernel time at last interval */
242 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
243 long pps_offset = 0; /* pps time offset (us) */
244 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
245 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
246 long pps_freq = 0; /* frequency offset (scaled ppm) */
247 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
248 long pps_usec = 0; /* microsec counter at last interval */
249 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
250 int pps_glitch = 0; /* pps signal glitch counter */
251 int pps_count = 0; /* calibration interval counter (s) */
252 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
253 int pps_intcnt = 0; /* intervals at current duration */
254 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
255 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
256
257 /*
258 * PPS signal quality monitors
259 *
260 * pps_jitcnt counts the seconds that have been discarded because the
261 * jitter measured by the time median filter exceeds the limit MAXTIME
262 * (100 us).
263 *
264 * pps_calcnt counts the frequency calibration intervals, which are
265 * variable from 4 s to 256 s.
266 *
267 * pps_errcnt counts the calibration intervals which have been discarded
268 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
269 * calibration interval jitter exceeds two ticks.
270 *
271 * pps_stbcnt counts the calibration intervals that have been discarded
272 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
273 */
274 long pps_jitcnt = 0; /* jitter limit exceeded */
275 long pps_calcnt = 0; /* calibration intervals */
276 long pps_errcnt = 0; /* calibration errors */
277 long pps_stbcnt = 0; /* stability limit exceeded */
278 #endif /* PPS_SYNC */
279
280 #ifdef EXT_CLOCK
281 /*
282 * External clock definitions
283 *
284 * The following definitions and declarations are used only if an
285 * external clock is configured on the system.
286 */
287 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
288
289 /*
290 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
291 * interrupt and decremented once each second.
292 */
293 int clock_count = 0; /* CPU clock counter */
294
295 #ifdef HIGHBALL
296 /*
297 * The clock_offset and clock_cpu variables are used by the HIGHBALL
298 * interface. The clock_offset variable defines the offset between
299 * system time and the HIGBALL counters. The clock_cpu variable contains
300 * the offset between the system clock and the HIGHBALL clock for use in
301 * disciplining the kernel time variable.
302 */
303 extern struct timeval clock_offset; /* Highball clock offset */
304 long clock_cpu = 0; /* CPU clock adjust */
305 #endif /* HIGHBALL */
306 #endif /* EXT_CLOCK */
307 #endif /* NTP */
308
309
310 /*
311 * Bump a timeval by a small number of usec's.
312 */
313 #define BUMPTIME(t, usec) { \
314 volatile struct timeval *tp = (t); \
315 long us; \
316 \
317 tp->tv_usec = us = tp->tv_usec + (usec); \
318 if (us >= 1000000) { \
319 tp->tv_usec = us - 1000000; \
320 tp->tv_sec++; \
321 } \
322 }
323
324 int stathz;
325 int profhz;
326 int profsrc;
327 int schedhz;
328 int profprocs;
329 int hardclock_ticks;
330 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
331 static int psdiv; /* prof => stat divider */
332 int psratio; /* ratio: prof / stat */
333 int tickfix, tickfixinterval; /* used if tick not really integral */
334 #ifndef NTP
335 static int tickfixcnt; /* accumulated fractional error */
336 #else
337 int fixtick; /* used by NTP for same */
338 int shifthz;
339 #endif
340
341 /*
342 * We might want ldd to load the both words from time at once.
343 * To succeed we need to be quadword aligned.
344 * The sparc already does that, and that it has worked so far is a fluke.
345 */
346 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
347 volatile struct timeval mono_time;
348
349 void *softclock_si;
350
351 /*
352 * Initialize clock frequencies and start both clocks running.
353 */
354 void
355 initclocks(void)
356 {
357 int i;
358
359 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
360 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
361 if (softclock_si == NULL)
362 panic("initclocks: unable to register softclock intr");
363 #endif
364
365 /*
366 * Set divisors to 1 (normal case) and let the machine-specific
367 * code do its bit.
368 */
369 psdiv = 1;
370 cpu_initclocks();
371
372 /*
373 * Compute profhz/stathz/rrticks, and fix profhz if needed.
374 */
375 i = stathz ? stathz : hz;
376 if (profhz == 0)
377 profhz = i;
378 psratio = profhz / i;
379 rrticks = hz / 10;
380 if (schedhz == 0) {
381 /* 16Hz is best */
382 statscheddiv = i / 16;
383 if (statscheddiv <= 0)
384 panic("statscheddiv");
385 }
386
387 #ifdef NTP
388 switch (hz) {
389 case 1:
390 shifthz = SHIFT_SCALE - 0;
391 break;
392 case 2:
393 shifthz = SHIFT_SCALE - 1;
394 break;
395 case 4:
396 shifthz = SHIFT_SCALE - 2;
397 break;
398 case 8:
399 shifthz = SHIFT_SCALE - 3;
400 break;
401 case 16:
402 shifthz = SHIFT_SCALE - 4;
403 break;
404 case 32:
405 shifthz = SHIFT_SCALE - 5;
406 break;
407 case 60:
408 case 64:
409 shifthz = SHIFT_SCALE - 6;
410 break;
411 case 96:
412 case 100:
413 case 128:
414 shifthz = SHIFT_SCALE - 7;
415 break;
416 case 256:
417 shifthz = SHIFT_SCALE - 8;
418 break;
419 case 512:
420 shifthz = SHIFT_SCALE - 9;
421 break;
422 case 1000:
423 case 1024:
424 shifthz = SHIFT_SCALE - 10;
425 break;
426 case 1200:
427 case 2048:
428 shifthz = SHIFT_SCALE - 11;
429 break;
430 case 4096:
431 shifthz = SHIFT_SCALE - 12;
432 break;
433 case 8192:
434 shifthz = SHIFT_SCALE - 13;
435 break;
436 case 16384:
437 shifthz = SHIFT_SCALE - 14;
438 break;
439 case 32768:
440 shifthz = SHIFT_SCALE - 15;
441 break;
442 case 65536:
443 shifthz = SHIFT_SCALE - 16;
444 break;
445 default:
446 panic("weird hz");
447 }
448 if (fixtick == 0) {
449 /*
450 * Give MD code a chance to set this to a better
451 * value; but, if it doesn't, we should.
452 */
453 fixtick = (1000000 - (hz*tick));
454 }
455 #endif
456 }
457
458 /*
459 * The real-time timer, interrupting hz times per second.
460 */
461 void
462 hardclock(struct clockframe *frame)
463 {
464 struct lwp *l;
465 struct proc *p;
466 int delta;
467 extern int tickdelta;
468 extern long timedelta;
469 struct cpu_info *ci = curcpu();
470 struct ptimer *pt;
471 #ifdef NTP
472 int time_update;
473 int ltemp;
474 #endif
475
476 l = curlwp;
477 if (l) {
478 p = l->l_proc;
479 /*
480 * Run current process's virtual and profile time, as needed.
481 */
482 if (CLKF_USERMODE(frame) && p->p_timers &&
483 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
484 if (itimerdecr(pt, tick) == 0)
485 itimerfire(pt);
486 if (p->p_timers &&
487 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
488 if (itimerdecr(pt, tick) == 0)
489 itimerfire(pt);
490 }
491
492 /*
493 * If no separate statistics clock is available, run it from here.
494 */
495 if (stathz == 0)
496 statclock(frame);
497 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
498 roundrobin(ci);
499
500 #if defined(MULTIPROCESSOR)
501 /*
502 * If we are not the primary CPU, we're not allowed to do
503 * any more work.
504 */
505 if (CPU_IS_PRIMARY(ci) == 0)
506 return;
507 #endif
508
509 /*
510 * Increment the time-of-day. The increment is normally just
511 * ``tick''. If the machine is one which has a clock frequency
512 * such that ``hz'' would not divide the second evenly into
513 * milliseconds, a periodic adjustment must be applied. Finally,
514 * if we are still adjusting the time (see adjtime()),
515 * ``tickdelta'' may also be added in.
516 */
517 hardclock_ticks++;
518 delta = tick;
519
520 #ifndef NTP
521 if (tickfix) {
522 tickfixcnt += tickfix;
523 if (tickfixcnt >= tickfixinterval) {
524 delta++;
525 tickfixcnt -= tickfixinterval;
526 }
527 }
528 #endif /* !NTP */
529 /* Imprecise 4bsd adjtime() handling */
530 if (timedelta != 0) {
531 delta += tickdelta;
532 timedelta -= tickdelta;
533 }
534
535 #ifdef notyet
536 microset();
537 #endif
538
539 #ifndef NTP
540 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
541 #endif
542 BUMPTIME(&mono_time, delta);
543
544 #ifdef NTP
545 time_update = delta;
546
547 /*
548 * Compute the phase adjustment. If the low-order bits
549 * (time_phase) of the update overflow, bump the high-order bits
550 * (time_update).
551 */
552 time_phase += time_adj;
553 if (time_phase <= -FINEUSEC) {
554 ltemp = -time_phase >> SHIFT_SCALE;
555 time_phase += ltemp << SHIFT_SCALE;
556 time_update -= ltemp;
557 } else if (time_phase >= FINEUSEC) {
558 ltemp = time_phase >> SHIFT_SCALE;
559 time_phase -= ltemp << SHIFT_SCALE;
560 time_update += ltemp;
561 }
562
563 #ifdef HIGHBALL
564 /*
565 * If the HIGHBALL board is installed, we need to adjust the
566 * external clock offset in order to close the hardware feedback
567 * loop. This will adjust the external clock phase and frequency
568 * in small amounts. The additional phase noise and frequency
569 * wander this causes should be minimal. We also need to
570 * discipline the kernel time variable, since the PLL is used to
571 * discipline the external clock. If the Highball board is not
572 * present, we discipline kernel time with the PLL as usual. We
573 * assume that the external clock phase adjustment (time_update)
574 * and kernel phase adjustment (clock_cpu) are less than the
575 * value of tick.
576 */
577 clock_offset.tv_usec += time_update;
578 if (clock_offset.tv_usec >= 1000000) {
579 clock_offset.tv_sec++;
580 clock_offset.tv_usec -= 1000000;
581 }
582 if (clock_offset.tv_usec < 0) {
583 clock_offset.tv_sec--;
584 clock_offset.tv_usec += 1000000;
585 }
586 time.tv_usec += clock_cpu;
587 clock_cpu = 0;
588 #else
589 time.tv_usec += time_update;
590 #endif /* HIGHBALL */
591
592 /*
593 * On rollover of the second the phase adjustment to be used for
594 * the next second is calculated. Also, the maximum error is
595 * increased by the tolerance. If the PPS frequency discipline
596 * code is present, the phase is increased to compensate for the
597 * CPU clock oscillator frequency error.
598 *
599 * On a 32-bit machine and given parameters in the timex.h
600 * header file, the maximum phase adjustment is +-512 ms and
601 * maximum frequency offset is a tad less than) +-512 ppm. On a
602 * 64-bit machine, you shouldn't need to ask.
603 */
604 if (time.tv_usec >= 1000000) {
605 time.tv_usec -= 1000000;
606 time.tv_sec++;
607 time_maxerror += time_tolerance >> SHIFT_USEC;
608
609 /*
610 * Leap second processing. If in leap-insert state at
611 * the end of the day, the system clock is set back one
612 * second; if in leap-delete state, the system clock is
613 * set ahead one second. The microtime() routine or
614 * external clock driver will insure that reported time
615 * is always monotonic. The ugly divides should be
616 * replaced.
617 */
618 switch (time_state) {
619 case TIME_OK:
620 if (time_status & STA_INS)
621 time_state = TIME_INS;
622 else if (time_status & STA_DEL)
623 time_state = TIME_DEL;
624 break;
625
626 case TIME_INS:
627 if (time.tv_sec % 86400 == 0) {
628 time.tv_sec--;
629 time_state = TIME_OOP;
630 }
631 break;
632
633 case TIME_DEL:
634 if ((time.tv_sec + 1) % 86400 == 0) {
635 time.tv_sec++;
636 time_state = TIME_WAIT;
637 }
638 break;
639
640 case TIME_OOP:
641 time_state = TIME_WAIT;
642 break;
643
644 case TIME_WAIT:
645 if (!(time_status & (STA_INS | STA_DEL)))
646 time_state = TIME_OK;
647 break;
648 }
649
650 /*
651 * Compute the phase adjustment for the next second. In
652 * PLL mode, the offset is reduced by a fixed factor
653 * times the time constant. In FLL mode the offset is
654 * used directly. In either mode, the maximum phase
655 * adjustment for each second is clamped so as to spread
656 * the adjustment over not more than the number of
657 * seconds between updates.
658 */
659 if (time_offset < 0) {
660 ltemp = -time_offset;
661 if (!(time_status & STA_FLL))
662 ltemp >>= SHIFT_KG + time_constant;
663 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
664 ltemp = (MAXPHASE / MINSEC) <<
665 SHIFT_UPDATE;
666 time_offset += ltemp;
667 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
668 } else if (time_offset > 0) {
669 ltemp = time_offset;
670 if (!(time_status & STA_FLL))
671 ltemp >>= SHIFT_KG + time_constant;
672 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
673 ltemp = (MAXPHASE / MINSEC) <<
674 SHIFT_UPDATE;
675 time_offset -= ltemp;
676 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
677 } else
678 time_adj = 0;
679
680 /*
681 * Compute the frequency estimate and additional phase
682 * adjustment due to frequency error for the next
683 * second. When the PPS signal is engaged, gnaw on the
684 * watchdog counter and update the frequency computed by
685 * the pll and the PPS signal.
686 */
687 #ifdef PPS_SYNC
688 pps_valid++;
689 if (pps_valid == PPS_VALID) {
690 pps_jitter = MAXTIME;
691 pps_stabil = MAXFREQ;
692 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
693 STA_PPSWANDER | STA_PPSERROR);
694 }
695 ltemp = time_freq + pps_freq;
696 #else
697 ltemp = time_freq;
698 #endif /* PPS_SYNC */
699
700 if (ltemp < 0)
701 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
702 else
703 time_adj += ltemp >> (SHIFT_USEC - shifthz);
704 time_adj += (long)fixtick << shifthz;
705
706 /*
707 * When the CPU clock oscillator frequency is not a
708 * power of 2 in Hz, shifthz is only an approximate
709 * scale factor.
710 *
711 * To determine the adjustment, you can do the following:
712 * bc -q
713 * scale=24
714 * obase=2
715 * idealhz/realhz
716 * where `idealhz' is the next higher power of 2, and `realhz'
717 * is the actual value. You may need to factor this result
718 * into a sequence of 2 multipliers to get better precision.
719 *
720 * Likewise, the error can be calculated with (e.g. for 100Hz):
721 * bc -q
722 * scale=24
723 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
724 * (and then multiply by 1000000 to get ppm).
725 */
726 switch (hz) {
727 case 60:
728 /* A factor of 1.000100010001 gives about 15ppm
729 error. */
730 if (time_adj < 0) {
731 time_adj -= (-time_adj >> 4);
732 time_adj -= (-time_adj >> 8);
733 } else {
734 time_adj += (time_adj >> 4);
735 time_adj += (time_adj >> 8);
736 }
737 break;
738
739 case 96:
740 /* A factor of 1.0101010101 gives about 244ppm error. */
741 if (time_adj < 0) {
742 time_adj -= (-time_adj >> 2);
743 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
744 } else {
745 time_adj += (time_adj >> 2);
746 time_adj += (time_adj >> 4) + (time_adj >> 8);
747 }
748 break;
749
750 case 100:
751 /* A factor of 1.010001111010111 gives about 1ppm
752 error. */
753 if (time_adj < 0) {
754 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
755 time_adj += (-time_adj >> 10);
756 } else {
757 time_adj += (time_adj >> 2) + (time_adj >> 5);
758 time_adj -= (time_adj >> 10);
759 }
760 break;
761
762 case 1000:
763 /* A factor of 1.000001100010100001 gives about 50ppm
764 error. */
765 if (time_adj < 0) {
766 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
767 time_adj -= (-time_adj >> 7);
768 } else {
769 time_adj += (time_adj >> 6) + (time_adj >> 11);
770 time_adj += (time_adj >> 7);
771 }
772 break;
773
774 case 1200:
775 /* A factor of 1.1011010011100001 gives about 64ppm
776 error. */
777 if (time_adj < 0) {
778 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
779 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
780 } else {
781 time_adj += (time_adj >> 1) + (time_adj >> 6);
782 time_adj += (time_adj >> 3) + (time_adj >> 10);
783 }
784 break;
785 }
786
787 #ifdef EXT_CLOCK
788 /*
789 * If an external clock is present, it is necessary to
790 * discipline the kernel time variable anyway, since not
791 * all system components use the microtime() interface.
792 * Here, the time offset between the external clock and
793 * kernel time variable is computed every so often.
794 */
795 clock_count++;
796 if (clock_count > CLOCK_INTERVAL) {
797 clock_count = 0;
798 microtime(&clock_ext);
799 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
800 delta.tv_usec = clock_ext.tv_usec -
801 time.tv_usec;
802 if (delta.tv_usec < 0)
803 delta.tv_sec--;
804 if (delta.tv_usec >= 500000) {
805 delta.tv_usec -= 1000000;
806 delta.tv_sec++;
807 }
808 if (delta.tv_usec < -500000) {
809 delta.tv_usec += 1000000;
810 delta.tv_sec--;
811 }
812 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
813 delta.tv_usec > MAXPHASE) ||
814 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
815 delta.tv_usec < -MAXPHASE)) {
816 time = clock_ext;
817 delta.tv_sec = 0;
818 delta.tv_usec = 0;
819 }
820 #ifdef HIGHBALL
821 clock_cpu = delta.tv_usec;
822 #else /* HIGHBALL */
823 hardupdate(delta.tv_usec);
824 #endif /* HIGHBALL */
825 }
826 #endif /* EXT_CLOCK */
827 }
828
829 #endif /* NTP */
830
831 /*
832 * Update real-time timeout queue.
833 * Process callouts at a very low CPU priority, so we don't keep the
834 * relatively high clock interrupt priority any longer than necessary.
835 */
836 if (callout_hardclock()) {
837 if (CLKF_BASEPRI(frame)) {
838 /*
839 * Save the overhead of a software interrupt;
840 * it will happen as soon as we return, so do
841 * it now.
842 */
843 spllowersoftclock();
844 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
845 softclock(NULL);
846 KERNEL_UNLOCK();
847 } else {
848 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
849 softintr_schedule(softclock_si);
850 #else
851 setsoftclock();
852 #endif
853 }
854 }
855 }
856
857 /*
858 * Compute number of hz until specified time. Used to compute second
859 * argument to callout_reset() from an absolute time.
860 */
861 int
862 hzto(struct timeval *tv)
863 {
864 unsigned long ticks;
865 long sec, usec;
866 int s;
867
868 /*
869 * If the number of usecs in the whole seconds part of the time
870 * difference fits in a long, then the total number of usecs will
871 * fit in an unsigned long. Compute the total and convert it to
872 * ticks, rounding up and adding 1 to allow for the current tick
873 * to expire. Rounding also depends on unsigned long arithmetic
874 * to avoid overflow.
875 *
876 * Otherwise, if the number of ticks in the whole seconds part of
877 * the time difference fits in a long, then convert the parts to
878 * ticks separately and add, using similar rounding methods and
879 * overflow avoidance. This method would work in the previous
880 * case, but it is slightly slower and assume that hz is integral.
881 *
882 * Otherwise, round the time difference down to the maximum
883 * representable value.
884 *
885 * If ints are 32-bit, then the maximum value for any timeout in
886 * 10ms ticks is 248 days.
887 */
888 s = splclock();
889 sec = tv->tv_sec - time.tv_sec;
890 usec = tv->tv_usec - time.tv_usec;
891 splx(s);
892
893 if (usec < 0) {
894 sec--;
895 usec += 1000000;
896 }
897
898 if (sec < 0 || (sec == 0 && usec <= 0)) {
899 /*
900 * Would expire now or in the past. Return 0 ticks.
901 * This is different from the legacy hzto() interface,
902 * and callers need to check for it.
903 */
904 ticks = 0;
905 } else if (sec <= (LONG_MAX / 1000000))
906 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
907 / tick) + 1;
908 else if (sec <= (LONG_MAX / hz))
909 ticks = (sec * hz) +
910 (((unsigned long)usec + (tick - 1)) / tick) + 1;
911 else
912 ticks = LONG_MAX;
913
914 if (ticks > INT_MAX)
915 ticks = INT_MAX;
916
917 return ((int)ticks);
918 }
919
920 /*
921 * Start profiling on a process.
922 *
923 * Kernel profiling passes proc0 which never exits and hence
924 * keeps the profile clock running constantly.
925 */
926 void
927 startprofclock(struct proc *p)
928 {
929
930 if ((p->p_flag & P_PROFIL) == 0) {
931 p->p_flag |= P_PROFIL;
932 /*
933 * This is only necessary if using the clock as the
934 * profiling source.
935 */
936 if (++profprocs == 1 && stathz != 0)
937 psdiv = psratio;
938 }
939 }
940
941 /*
942 * Stop profiling on a process.
943 */
944 void
945 stopprofclock(struct proc *p)
946 {
947
948 if (p->p_flag & P_PROFIL) {
949 p->p_flag &= ~P_PROFIL;
950 /*
951 * This is only necessary if using the clock as the
952 * profiling source.
953 */
954 if (--profprocs == 0 && stathz != 0)
955 psdiv = 1;
956 }
957 }
958
959 #if defined(PERFCTRS)
960 /*
961 * Independent profiling "tick" in case we're using a separate
962 * clock or profiling event source. Currently, that's just
963 * performance counters--hence the wrapper.
964 */
965 void
966 proftick(struct clockframe *frame)
967 {
968 #ifdef GPROF
969 struct gmonparam *g;
970 intptr_t i;
971 #endif
972 struct proc *p;
973
974 p = curproc;
975 if (CLKF_USERMODE(frame)) {
976 if (p->p_flag & P_PROFIL)
977 addupc_intr(p, CLKF_PC(frame));
978 } else {
979 #ifdef GPROF
980 g = &_gmonparam;
981 if (g->state == GMON_PROF_ON) {
982 i = CLKF_PC(frame) - g->lowpc;
983 if (i < g->textsize) {
984 i /= HISTFRACTION * sizeof(*g->kcount);
985 g->kcount[i]++;
986 }
987 }
988 #endif
989 #ifdef PROC_PC
990 if (p && p->p_flag & P_PROFIL)
991 addupc_intr(p, PROC_PC(p));
992 #endif
993 }
994 }
995 #endif
996
997 /*
998 * Statistics clock. Grab profile sample, and if divider reaches 0,
999 * do process and kernel statistics.
1000 */
1001 void
1002 statclock(struct clockframe *frame)
1003 {
1004 #ifdef GPROF
1005 struct gmonparam *g;
1006 intptr_t i;
1007 #endif
1008 struct cpu_info *ci = curcpu();
1009 struct schedstate_percpu *spc = &ci->ci_schedstate;
1010 struct lwp *l;
1011 struct proc *p;
1012
1013 /*
1014 * Notice changes in divisor frequency, and adjust clock
1015 * frequency accordingly.
1016 */
1017 if (spc->spc_psdiv != psdiv) {
1018 spc->spc_psdiv = psdiv;
1019 spc->spc_pscnt = psdiv;
1020 if (psdiv == 1) {
1021 setstatclockrate(stathz);
1022 } else {
1023 setstatclockrate(profhz);
1024 }
1025 }
1026 l = curlwp;
1027 p = (l ? l->l_proc : 0);
1028 if (CLKF_USERMODE(frame)) {
1029 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1030 addupc_intr(p, CLKF_PC(frame));
1031 if (--spc->spc_pscnt > 0)
1032 return;
1033 /*
1034 * Came from user mode; CPU was in user state.
1035 * If this process is being profiled record the tick.
1036 */
1037 p->p_uticks++;
1038 if (p->p_nice > NZERO)
1039 spc->spc_cp_time[CP_NICE]++;
1040 else
1041 spc->spc_cp_time[CP_USER]++;
1042 } else {
1043 #ifdef GPROF
1044 /*
1045 * Kernel statistics are just like addupc_intr, only easier.
1046 */
1047 g = &_gmonparam;
1048 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1049 i = CLKF_PC(frame) - g->lowpc;
1050 if (i < g->textsize) {
1051 i /= HISTFRACTION * sizeof(*g->kcount);
1052 g->kcount[i]++;
1053 }
1054 }
1055 #endif
1056 #ifdef LWP_PC
1057 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1058 addupc_intr(p, LWP_PC(l));
1059 #endif
1060 if (--spc->spc_pscnt > 0)
1061 return;
1062 /*
1063 * Came from kernel mode, so we were:
1064 * - handling an interrupt,
1065 * - doing syscall or trap work on behalf of the current
1066 * user process, or
1067 * - spinning in the idle loop.
1068 * Whichever it is, charge the time as appropriate.
1069 * Note that we charge interrupts to the current process,
1070 * regardless of whether they are ``for'' that process,
1071 * so that we know how much of its real time was spent
1072 * in ``non-process'' (i.e., interrupt) work.
1073 */
1074 if (CLKF_INTR(frame)) {
1075 if (p != NULL)
1076 p->p_iticks++;
1077 spc->spc_cp_time[CP_INTR]++;
1078 } else if (p != NULL) {
1079 p->p_sticks++;
1080 spc->spc_cp_time[CP_SYS]++;
1081 } else
1082 spc->spc_cp_time[CP_IDLE]++;
1083 }
1084 spc->spc_pscnt = psdiv;
1085
1086 if (l != NULL) {
1087 ++p->p_cpticks;
1088 /*
1089 * If no separate schedclock is provided, call it here
1090 * at about 16 Hz.
1091 */
1092 if (schedhz == 0)
1093 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1094 schedclock(l);
1095 ci->ci_schedstate.spc_schedticks = statscheddiv;
1096 }
1097 }
1098 }
1099
1100
1101 #ifdef NTP /* NTP phase-locked loop in kernel */
1102
1103 /*
1104 * hardupdate() - local clock update
1105 *
1106 * This routine is called by ntp_adjtime() to update the local clock
1107 * phase and frequency. The implementation is of an adaptive-parameter,
1108 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1109 * time and frequency offset estimates for each call. If the kernel PPS
1110 * discipline code is configured (PPS_SYNC), the PPS signal itself
1111 * determines the new time offset, instead of the calling argument.
1112 * Presumably, calls to ntp_adjtime() occur only when the caller
1113 * believes the local clock is valid within some bound (+-128 ms with
1114 * NTP). If the caller's time is far different than the PPS time, an
1115 * argument will ensue, and it's not clear who will lose.
1116 *
1117 * For uncompensated quartz crystal oscillatores and nominal update
1118 * intervals less than 1024 s, operation should be in phase-lock mode
1119 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1120 * intervals greater than thiss, operation should be in frequency-lock
1121 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1122 *
1123 * Note: splclock() is in effect.
1124 */
1125 void
1126 hardupdate(long offset)
1127 {
1128 long ltemp, mtemp;
1129
1130 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1131 return;
1132 ltemp = offset;
1133 #ifdef PPS_SYNC
1134 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1135 ltemp = pps_offset;
1136 #endif /* PPS_SYNC */
1137
1138 /*
1139 * Scale the phase adjustment and clamp to the operating range.
1140 */
1141 if (ltemp > MAXPHASE)
1142 time_offset = MAXPHASE << SHIFT_UPDATE;
1143 else if (ltemp < -MAXPHASE)
1144 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1145 else
1146 time_offset = ltemp << SHIFT_UPDATE;
1147
1148 /*
1149 * Select whether the frequency is to be controlled and in which
1150 * mode (PLL or FLL). Clamp to the operating range. Ugly
1151 * multiply/divide should be replaced someday.
1152 */
1153 if (time_status & STA_FREQHOLD || time_reftime == 0)
1154 time_reftime = time.tv_sec;
1155 mtemp = time.tv_sec - time_reftime;
1156 time_reftime = time.tv_sec;
1157 if (time_status & STA_FLL) {
1158 if (mtemp >= MINSEC) {
1159 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1160 SHIFT_UPDATE));
1161 if (ltemp < 0)
1162 time_freq -= -ltemp >> SHIFT_KH;
1163 else
1164 time_freq += ltemp >> SHIFT_KH;
1165 }
1166 } else {
1167 if (mtemp < MAXSEC) {
1168 ltemp *= mtemp;
1169 if (ltemp < 0)
1170 time_freq -= -ltemp >> (time_constant +
1171 time_constant + SHIFT_KF -
1172 SHIFT_USEC);
1173 else
1174 time_freq += ltemp >> (time_constant +
1175 time_constant + SHIFT_KF -
1176 SHIFT_USEC);
1177 }
1178 }
1179 if (time_freq > time_tolerance)
1180 time_freq = time_tolerance;
1181 else if (time_freq < -time_tolerance)
1182 time_freq = -time_tolerance;
1183 }
1184
1185 #ifdef PPS_SYNC
1186 /*
1187 * hardpps() - discipline CPU clock oscillator to external PPS signal
1188 *
1189 * This routine is called at each PPS interrupt in order to discipline
1190 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1191 * and leaves it in a handy spot for the hardclock() routine. It
1192 * integrates successive PPS phase differences and calculates the
1193 * frequency offset. This is used in hardclock() to discipline the CPU
1194 * clock oscillator so that intrinsic frequency error is cancelled out.
1195 * The code requires the caller to capture the time and hardware counter
1196 * value at the on-time PPS signal transition.
1197 *
1198 * Note that, on some Unix systems, this routine runs at an interrupt
1199 * priority level higher than the timer interrupt routine hardclock().
1200 * Therefore, the variables used are distinct from the hardclock()
1201 * variables, except for certain exceptions: The PPS frequency pps_freq
1202 * and phase pps_offset variables are determined by this routine and
1203 * updated atomically. The time_tolerance variable can be considered a
1204 * constant, since it is infrequently changed, and then only when the
1205 * PPS signal is disabled. The watchdog counter pps_valid is updated
1206 * once per second by hardclock() and is atomically cleared in this
1207 * routine.
1208 */
1209 void
1210 hardpps(struct timeval *tvp, /* time at PPS */
1211 long usec /* hardware counter at PPS */)
1212 {
1213 long u_usec, v_usec, bigtick;
1214 long cal_sec, cal_usec;
1215
1216 /*
1217 * An occasional glitch can be produced when the PPS interrupt
1218 * occurs in the hardclock() routine before the time variable is
1219 * updated. Here the offset is discarded when the difference
1220 * between it and the last one is greater than tick/2, but not
1221 * if the interval since the first discard exceeds 30 s.
1222 */
1223 time_status |= STA_PPSSIGNAL;
1224 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1225 pps_valid = 0;
1226 u_usec = -tvp->tv_usec;
1227 if (u_usec < -500000)
1228 u_usec += 1000000;
1229 v_usec = pps_offset - u_usec;
1230 if (v_usec < 0)
1231 v_usec = -v_usec;
1232 if (v_usec > (tick >> 1)) {
1233 if (pps_glitch > MAXGLITCH) {
1234 pps_glitch = 0;
1235 pps_tf[2] = u_usec;
1236 pps_tf[1] = u_usec;
1237 } else {
1238 pps_glitch++;
1239 u_usec = pps_offset;
1240 }
1241 } else
1242 pps_glitch = 0;
1243
1244 /*
1245 * A three-stage median filter is used to help deglitch the pps
1246 * time. The median sample becomes the time offset estimate; the
1247 * difference between the other two samples becomes the time
1248 * dispersion (jitter) estimate.
1249 */
1250 pps_tf[2] = pps_tf[1];
1251 pps_tf[1] = pps_tf[0];
1252 pps_tf[0] = u_usec;
1253 if (pps_tf[0] > pps_tf[1]) {
1254 if (pps_tf[1] > pps_tf[2]) {
1255 pps_offset = pps_tf[1]; /* 0 1 2 */
1256 v_usec = pps_tf[0] - pps_tf[2];
1257 } else if (pps_tf[2] > pps_tf[0]) {
1258 pps_offset = pps_tf[0]; /* 2 0 1 */
1259 v_usec = pps_tf[2] - pps_tf[1];
1260 } else {
1261 pps_offset = pps_tf[2]; /* 0 2 1 */
1262 v_usec = pps_tf[0] - pps_tf[1];
1263 }
1264 } else {
1265 if (pps_tf[1] < pps_tf[2]) {
1266 pps_offset = pps_tf[1]; /* 2 1 0 */
1267 v_usec = pps_tf[2] - pps_tf[0];
1268 } else if (pps_tf[2] < pps_tf[0]) {
1269 pps_offset = pps_tf[0]; /* 1 0 2 */
1270 v_usec = pps_tf[1] - pps_tf[2];
1271 } else {
1272 pps_offset = pps_tf[2]; /* 1 2 0 */
1273 v_usec = pps_tf[1] - pps_tf[0];
1274 }
1275 }
1276 if (v_usec > MAXTIME)
1277 pps_jitcnt++;
1278 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1279 if (v_usec < 0)
1280 pps_jitter -= -v_usec >> PPS_AVG;
1281 else
1282 pps_jitter += v_usec >> PPS_AVG;
1283 if (pps_jitter > (MAXTIME >> 1))
1284 time_status |= STA_PPSJITTER;
1285
1286 /*
1287 * During the calibration interval adjust the starting time when
1288 * the tick overflows. At the end of the interval compute the
1289 * duration of the interval and the difference of the hardware
1290 * counters at the beginning and end of the interval. This code
1291 * is deliciously complicated by the fact valid differences may
1292 * exceed the value of tick when using long calibration
1293 * intervals and small ticks. Note that the counter can be
1294 * greater than tick if caught at just the wrong instant, but
1295 * the values returned and used here are correct.
1296 */
1297 bigtick = (long)tick << SHIFT_USEC;
1298 pps_usec -= pps_freq;
1299 if (pps_usec >= bigtick)
1300 pps_usec -= bigtick;
1301 if (pps_usec < 0)
1302 pps_usec += bigtick;
1303 pps_time.tv_sec++;
1304 pps_count++;
1305 if (pps_count < (1 << pps_shift))
1306 return;
1307 pps_count = 0;
1308 pps_calcnt++;
1309 u_usec = usec << SHIFT_USEC;
1310 v_usec = pps_usec - u_usec;
1311 if (v_usec >= bigtick >> 1)
1312 v_usec -= bigtick;
1313 if (v_usec < -(bigtick >> 1))
1314 v_usec += bigtick;
1315 if (v_usec < 0)
1316 v_usec = -(-v_usec >> pps_shift);
1317 else
1318 v_usec = v_usec >> pps_shift;
1319 pps_usec = u_usec;
1320 cal_sec = tvp->tv_sec;
1321 cal_usec = tvp->tv_usec;
1322 cal_sec -= pps_time.tv_sec;
1323 cal_usec -= pps_time.tv_usec;
1324 if (cal_usec < 0) {
1325 cal_usec += 1000000;
1326 cal_sec--;
1327 }
1328 pps_time = *tvp;
1329
1330 /*
1331 * Check for lost interrupts, noise, excessive jitter and
1332 * excessive frequency error. The number of timer ticks during
1333 * the interval may vary +-1 tick. Add to this a margin of one
1334 * tick for the PPS signal jitter and maximum frequency
1335 * deviation. If the limits are exceeded, the calibration
1336 * interval is reset to the minimum and we start over.
1337 */
1338 u_usec = (long)tick << 1;
1339 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1340 || (cal_sec == 0 && cal_usec < u_usec))
1341 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1342 pps_errcnt++;
1343 pps_shift = PPS_SHIFT;
1344 pps_intcnt = 0;
1345 time_status |= STA_PPSERROR;
1346 return;
1347 }
1348
1349 /*
1350 * A three-stage median filter is used to help deglitch the pps
1351 * frequency. The median sample becomes the frequency offset
1352 * estimate; the difference between the other two samples
1353 * becomes the frequency dispersion (stability) estimate.
1354 */
1355 pps_ff[2] = pps_ff[1];
1356 pps_ff[1] = pps_ff[0];
1357 pps_ff[0] = v_usec;
1358 if (pps_ff[0] > pps_ff[1]) {
1359 if (pps_ff[1] > pps_ff[2]) {
1360 u_usec = pps_ff[1]; /* 0 1 2 */
1361 v_usec = pps_ff[0] - pps_ff[2];
1362 } else if (pps_ff[2] > pps_ff[0]) {
1363 u_usec = pps_ff[0]; /* 2 0 1 */
1364 v_usec = pps_ff[2] - pps_ff[1];
1365 } else {
1366 u_usec = pps_ff[2]; /* 0 2 1 */
1367 v_usec = pps_ff[0] - pps_ff[1];
1368 }
1369 } else {
1370 if (pps_ff[1] < pps_ff[2]) {
1371 u_usec = pps_ff[1]; /* 2 1 0 */
1372 v_usec = pps_ff[2] - pps_ff[0];
1373 } else if (pps_ff[2] < pps_ff[0]) {
1374 u_usec = pps_ff[0]; /* 1 0 2 */
1375 v_usec = pps_ff[1] - pps_ff[2];
1376 } else {
1377 u_usec = pps_ff[2]; /* 1 2 0 */
1378 v_usec = pps_ff[1] - pps_ff[0];
1379 }
1380 }
1381
1382 /*
1383 * Here the frequency dispersion (stability) is updated. If it
1384 * is less than one-fourth the maximum (MAXFREQ), the frequency
1385 * offset is updated as well, but clamped to the tolerance. It
1386 * will be processed later by the hardclock() routine.
1387 */
1388 v_usec = (v_usec >> 1) - pps_stabil;
1389 if (v_usec < 0)
1390 pps_stabil -= -v_usec >> PPS_AVG;
1391 else
1392 pps_stabil += v_usec >> PPS_AVG;
1393 if (pps_stabil > MAXFREQ >> 2) {
1394 pps_stbcnt++;
1395 time_status |= STA_PPSWANDER;
1396 return;
1397 }
1398 if (time_status & STA_PPSFREQ) {
1399 if (u_usec < 0) {
1400 pps_freq -= -u_usec >> PPS_AVG;
1401 if (pps_freq < -time_tolerance)
1402 pps_freq = -time_tolerance;
1403 u_usec = -u_usec;
1404 } else {
1405 pps_freq += u_usec >> PPS_AVG;
1406 if (pps_freq > time_tolerance)
1407 pps_freq = time_tolerance;
1408 }
1409 }
1410
1411 /*
1412 * Here the calibration interval is adjusted. If the maximum
1413 * time difference is greater than tick / 4, reduce the interval
1414 * by half. If this is not the case for four consecutive
1415 * intervals, double the interval.
1416 */
1417 if (u_usec << pps_shift > bigtick >> 2) {
1418 pps_intcnt = 0;
1419 if (pps_shift > PPS_SHIFT)
1420 pps_shift--;
1421 } else if (pps_intcnt >= 4) {
1422 pps_intcnt = 0;
1423 if (pps_shift < PPS_SHIFTMAX)
1424 pps_shift++;
1425 } else
1426 pps_intcnt++;
1427 }
1428 #endif /* PPS_SYNC */
1429 #endif /* NTP */
1430