kern_clock.c revision 1.94.4.3 1 /* $NetBSD: kern_clock.c,v 1.94.4.3 2007/02/26 09:11:04 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.94.4.3 2007/02/26 09:11:04 yamt Exp $");
80
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #ifdef __HAVE_TIMECOUNTER
97 #include <sys/timetc.h>
98 #endif
99
100 #include <machine/cpu.h>
101 #include <machine/intr.h>
102
103 #ifdef GPROF
104 #include <sys/gmon.h>
105 #endif
106
107 /*
108 * Clock handling routines.
109 *
110 * This code is written to operate with two timers that run independently of
111 * each other. The main clock, running hz times per second, is used to keep
112 * track of real time. The second timer handles kernel and user profiling,
113 * and does resource use estimation. If the second timer is programmable,
114 * it is randomized to avoid aliasing between the two clocks. For example,
115 * the randomization prevents an adversary from always giving up the CPU
116 * just before its quantum expires. Otherwise, it would never accumulate
117 * CPU ticks. The mean frequency of the second timer is stathz.
118 *
119 * If no second timer exists, stathz will be zero; in this case we drive
120 * profiling and statistics off the main clock. This WILL NOT be accurate;
121 * do not do it unless absolutely necessary.
122 *
123 * The statistics clock may (or may not) be run at a higher rate while
124 * profiling. This profile clock runs at profhz. We require that profhz
125 * be an integral multiple of stathz.
126 *
127 * If the statistics clock is running fast, it must be divided by the ratio
128 * profhz/stathz for statistics. (For profiling, every tick counts.)
129 */
130
131 #ifndef __HAVE_TIMECOUNTER
132 #ifdef NTP /* NTP phase-locked loop in kernel */
133 /*
134 * Phase/frequency-lock loop (PLL/FLL) definitions
135 *
136 * The following variables are read and set by the ntp_adjtime() system
137 * call.
138 *
139 * time_state shows the state of the system clock, with values defined
140 * in the timex.h header file.
141 *
142 * time_status shows the status of the system clock, with bits defined
143 * in the timex.h header file.
144 *
145 * time_offset is used by the PLL/FLL to adjust the system time in small
146 * increments.
147 *
148 * time_constant determines the bandwidth or "stiffness" of the PLL.
149 *
150 * time_tolerance determines maximum frequency error or tolerance of the
151 * CPU clock oscillator and is a property of the architecture; however,
152 * in principle it could change as result of the presence of external
153 * discipline signals, for instance.
154 *
155 * time_precision is usually equal to the kernel tick variable; however,
156 * in cases where a precision clock counter or external clock is
157 * available, the resolution can be much less than this and depend on
158 * whether the external clock is working or not.
159 *
160 * time_maxerror is initialized by a ntp_adjtime() call and increased by
161 * the kernel once each second to reflect the maximum error bound
162 * growth.
163 *
164 * time_esterror is set and read by the ntp_adjtime() call, but
165 * otherwise not used by the kernel.
166 */
167 int time_state = TIME_OK; /* clock state */
168 int time_status = STA_UNSYNC; /* clock status bits */
169 long time_offset = 0; /* time offset (us) */
170 long time_constant = 0; /* pll time constant */
171 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
172 long time_precision = 1; /* clock precision (us) */
173 long time_maxerror = MAXPHASE; /* maximum error (us) */
174 long time_esterror = MAXPHASE; /* estimated error (us) */
175
176 /*
177 * The following variables establish the state of the PLL/FLL and the
178 * residual time and frequency offset of the local clock. The scale
179 * factors are defined in the timex.h header file.
180 *
181 * time_phase and time_freq are the phase increment and the frequency
182 * increment, respectively, of the kernel time variable.
183 *
184 * time_freq is set via ntp_adjtime() from a value stored in a file when
185 * the synchronization daemon is first started. Its value is retrieved
186 * via ntp_adjtime() and written to the file about once per hour by the
187 * daemon.
188 *
189 * time_adj is the adjustment added to the value of tick at each timer
190 * interrupt and is recomputed from time_phase and time_freq at each
191 * seconds rollover.
192 *
193 * time_reftime is the second's portion of the system time at the last
194 * call to ntp_adjtime(). It is used to adjust the time_freq variable
195 * and to increase the time_maxerror as the time since last update
196 * increases.
197 */
198 long time_phase = 0; /* phase offset (scaled us) */
199 long time_freq = 0; /* frequency offset (scaled ppm) */
200 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
201 long time_reftime = 0; /* time at last adjustment (s) */
202
203 #ifdef PPS_SYNC
204 /*
205 * The following variables are used only if the kernel PPS discipline
206 * code is configured (PPS_SYNC). The scale factors are defined in the
207 * timex.h header file.
208 *
209 * pps_time contains the time at each calibration interval, as read by
210 * microtime(). pps_count counts the seconds of the calibration
211 * interval, the duration of which is nominally pps_shift in powers of
212 * two.
213 *
214 * pps_offset is the time offset produced by the time median filter
215 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
216 * this filter.
217 *
218 * pps_freq is the frequency offset produced by the frequency median
219 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
220 * by this filter.
221 *
222 * pps_usec is latched from a high resolution counter or external clock
223 * at pps_time. Here we want the hardware counter contents only, not the
224 * contents plus the time_tv.usec as usual.
225 *
226 * pps_valid counts the number of seconds since the last PPS update. It
227 * is used as a watchdog timer to disable the PPS discipline should the
228 * PPS signal be lost.
229 *
230 * pps_glitch counts the number of seconds since the beginning of an
231 * offset burst more than tick/2 from current nominal offset. It is used
232 * mainly to suppress error bursts due to priority conflicts between the
233 * PPS interrupt and timer interrupt.
234 *
235 * pps_intcnt counts the calibration intervals for use in the interval-
236 * adaptation algorithm. It's just too complicated for words.
237 *
238 * pps_kc_hardpps_source contains an arbitrary value that uniquely
239 * identifies the currently bound source of the PPS signal, or NULL
240 * if no source is bound.
241 *
242 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
243 * signal should be reported.
244 */
245 struct timeval pps_time; /* kernel time at last interval */
246 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
247 long pps_offset = 0; /* pps time offset (us) */
248 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
249 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
250 long pps_freq = 0; /* frequency offset (scaled ppm) */
251 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
252 long pps_usec = 0; /* microsec counter at last interval */
253 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
254 int pps_glitch = 0; /* pps signal glitch counter */
255 int pps_count = 0; /* calibration interval counter (s) */
256 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
257 int pps_intcnt = 0; /* intervals at current duration */
258 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
259 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
260
261 /*
262 * PPS signal quality monitors
263 *
264 * pps_jitcnt counts the seconds that have been discarded because the
265 * jitter measured by the time median filter exceeds the limit MAXTIME
266 * (100 us).
267 *
268 * pps_calcnt counts the frequency calibration intervals, which are
269 * variable from 4 s to 256 s.
270 *
271 * pps_errcnt counts the calibration intervals which have been discarded
272 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
273 * calibration interval jitter exceeds two ticks.
274 *
275 * pps_stbcnt counts the calibration intervals that have been discarded
276 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
277 */
278 long pps_jitcnt = 0; /* jitter limit exceeded */
279 long pps_calcnt = 0; /* calibration intervals */
280 long pps_errcnt = 0; /* calibration errors */
281 long pps_stbcnt = 0; /* stability limit exceeded */
282 #endif /* PPS_SYNC */
283
284 #ifdef EXT_CLOCK
285 /*
286 * External clock definitions
287 *
288 * The following definitions and declarations are used only if an
289 * external clock is configured on the system.
290 */
291 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
292
293 /*
294 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
295 * interrupt and decremented once each second.
296 */
297 int clock_count = 0; /* CPU clock counter */
298
299 #ifdef HIGHBALL
300 /*
301 * The clock_offset and clock_cpu variables are used by the HIGHBALL
302 * interface. The clock_offset variable defines the offset between
303 * system time and the HIGBALL counters. The clock_cpu variable contains
304 * the offset between the system clock and the HIGHBALL clock for use in
305 * disciplining the kernel time variable.
306 */
307 extern struct timeval clock_offset; /* Highball clock offset */
308 long clock_cpu = 0; /* CPU clock adjust */
309 #endif /* HIGHBALL */
310 #endif /* EXT_CLOCK */
311 #endif /* NTP */
312
313 /*
314 * Bump a timeval by a small number of usec's.
315 */
316 #define BUMPTIME(t, usec) { \
317 volatile struct timeval *tp = (t); \
318 long us; \
319 \
320 tp->tv_usec = us = tp->tv_usec + (usec); \
321 if (us >= 1000000) { \
322 tp->tv_usec = us - 1000000; \
323 tp->tv_sec++; \
324 } \
325 }
326 #endif /* !__HAVE_TIMECOUNTER */
327
328 int stathz;
329 int profhz;
330 int profsrc;
331 int schedhz;
332 int profprocs;
333 int hardclock_ticks;
334 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
335 static int psdiv; /* prof => stat divider */
336 int psratio; /* ratio: prof / stat */
337 #ifndef __HAVE_TIMECOUNTER
338 int tickfix, tickfixinterval; /* used if tick not really integral */
339 #ifndef NTP
340 static int tickfixcnt; /* accumulated fractional error */
341 #else
342 int fixtick; /* used by NTP for same */
343 int shifthz;
344 #endif
345
346 /*
347 * We might want ldd to load the both words from time at once.
348 * To succeed we need to be quadword aligned.
349 * The sparc already does that, and that it has worked so far is a fluke.
350 */
351 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
352 volatile struct timeval mono_time;
353 #endif /* !__HAVE_TIMECOUNTER */
354
355 void *softclock_si;
356
357 #ifdef __HAVE_TIMECOUNTER
358 static u_int get_intr_timecount(struct timecounter *);
359
360 static struct timecounter intr_timecounter = {
361 get_intr_timecount, /* get_timecount */
362 0, /* no poll_pps */
363 ~0u, /* counter_mask */
364 0, /* frequency */
365 "clockinterrupt", /* name */
366 0, /* quality - minimum implementation level for a clock */
367 NULL, /* prev */
368 NULL, /* next */
369 };
370
371 static u_int
372 get_intr_timecount(struct timecounter *tc)
373 {
374
375 return (u_int)hardclock_ticks;
376 }
377 #endif
378
379 /*
380 * Initialize clock frequencies and start both clocks running.
381 */
382 void
383 initclocks(void)
384 {
385 int i;
386
387 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
388 if (softclock_si == NULL)
389 panic("initclocks: unable to register softclock intr");
390
391 /*
392 * Set divisors to 1 (normal case) and let the machine-specific
393 * code do its bit.
394 */
395 psdiv = 1;
396 #ifdef __HAVE_TIMECOUNTER
397 /*
398 * provide minimum default time counter
399 * will only run at interrupt resolution
400 */
401 intr_timecounter.tc_frequency = hz;
402 tc_init(&intr_timecounter);
403 #endif
404 cpu_initclocks();
405
406 /*
407 * Compute profhz/stathz/rrticks, and fix profhz if needed.
408 */
409 i = stathz ? stathz : hz;
410 if (profhz == 0)
411 profhz = i;
412 psratio = profhz / i;
413 rrticks = hz / 10;
414 if (schedhz == 0) {
415 /* 16Hz is best */
416 statscheddiv = i / 16;
417 if (statscheddiv <= 0)
418 panic("statscheddiv");
419 }
420
421 #ifndef __HAVE_TIMECOUNTER
422 #ifdef NTP
423 switch (hz) {
424 case 1:
425 shifthz = SHIFT_SCALE - 0;
426 break;
427 case 2:
428 shifthz = SHIFT_SCALE - 1;
429 break;
430 case 4:
431 shifthz = SHIFT_SCALE - 2;
432 break;
433 case 8:
434 shifthz = SHIFT_SCALE - 3;
435 break;
436 case 16:
437 shifthz = SHIFT_SCALE - 4;
438 break;
439 case 32:
440 shifthz = SHIFT_SCALE - 5;
441 break;
442 case 50:
443 case 60:
444 case 64:
445 shifthz = SHIFT_SCALE - 6;
446 break;
447 case 96:
448 case 100:
449 case 128:
450 shifthz = SHIFT_SCALE - 7;
451 break;
452 case 256:
453 shifthz = SHIFT_SCALE - 8;
454 break;
455 case 512:
456 shifthz = SHIFT_SCALE - 9;
457 break;
458 case 1000:
459 case 1024:
460 shifthz = SHIFT_SCALE - 10;
461 break;
462 case 1200:
463 case 2048:
464 shifthz = SHIFT_SCALE - 11;
465 break;
466 case 4096:
467 shifthz = SHIFT_SCALE - 12;
468 break;
469 case 8192:
470 shifthz = SHIFT_SCALE - 13;
471 break;
472 case 16384:
473 shifthz = SHIFT_SCALE - 14;
474 break;
475 case 32768:
476 shifthz = SHIFT_SCALE - 15;
477 break;
478 case 65536:
479 shifthz = SHIFT_SCALE - 16;
480 break;
481 default:
482 panic("weird hz");
483 }
484 if (fixtick == 0) {
485 /*
486 * Give MD code a chance to set this to a better
487 * value; but, if it doesn't, we should.
488 */
489 fixtick = (1000000 - (hz*tick));
490 }
491 #endif /* NTP */
492 #endif /* !__HAVE_TIMECOUNTER */
493 }
494
495 /*
496 * The real-time timer, interrupting hz times per second.
497 */
498 void
499 hardclock(struct clockframe *frame)
500 {
501 struct lwp *l;
502 struct proc *p;
503 struct cpu_info *ci = curcpu();
504 struct ptimer *pt;
505 #ifndef __HAVE_TIMECOUNTER
506 int delta;
507 extern int tickdelta;
508 extern long timedelta;
509 #ifdef NTP
510 int time_update;
511 int ltemp;
512 #endif /* NTP */
513 #endif /* __HAVE_TIMECOUNTER */
514
515 l = curlwp;
516 if (l) {
517 p = l->l_proc;
518 /*
519 * Run current process's virtual and profile time, as needed.
520 */
521 if (CLKF_USERMODE(frame) && p->p_timers &&
522 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
523 if (itimerdecr(pt, tick) == 0)
524 itimerfire(pt);
525 if (p->p_timers &&
526 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
527 if (itimerdecr(pt, tick) == 0)
528 itimerfire(pt);
529 }
530
531 /*
532 * If no separate statistics clock is available, run it from here.
533 */
534 if (stathz == 0)
535 statclock(frame);
536 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
537 roundrobin(ci);
538
539 #if defined(MULTIPROCESSOR)
540 /*
541 * If we are not the primary CPU, we're not allowed to do
542 * any more work.
543 */
544 if (CPU_IS_PRIMARY(ci) == 0)
545 return;
546 #endif
547
548 hardclock_ticks++;
549
550 #ifdef __HAVE_TIMECOUNTER
551 tc_ticktock();
552 #else /* __HAVE_TIMECOUNTER */
553 /*
554 * Increment the time-of-day. The increment is normally just
555 * ``tick''. If the machine is one which has a clock frequency
556 * such that ``hz'' would not divide the second evenly into
557 * milliseconds, a periodic adjustment must be applied. Finally,
558 * if we are still adjusting the time (see adjtime()),
559 * ``tickdelta'' may also be added in.
560 */
561 delta = tick;
562
563 #ifndef NTP
564 if (tickfix) {
565 tickfixcnt += tickfix;
566 if (tickfixcnt >= tickfixinterval) {
567 delta++;
568 tickfixcnt -= tickfixinterval;
569 }
570 }
571 #endif /* !NTP */
572 /* Imprecise 4bsd adjtime() handling */
573 if (timedelta != 0) {
574 delta += tickdelta;
575 timedelta -= tickdelta;
576 }
577
578 #ifdef notyet
579 microset();
580 #endif
581
582 #ifndef NTP
583 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
584 #endif
585 BUMPTIME(&mono_time, delta);
586
587 #ifdef NTP
588 time_update = delta;
589
590 /*
591 * Compute the phase adjustment. If the low-order bits
592 * (time_phase) of the update overflow, bump the high-order bits
593 * (time_update).
594 */
595 time_phase += time_adj;
596 if (time_phase <= -FINEUSEC) {
597 ltemp = -time_phase >> SHIFT_SCALE;
598 time_phase += ltemp << SHIFT_SCALE;
599 time_update -= ltemp;
600 } else if (time_phase >= FINEUSEC) {
601 ltemp = time_phase >> SHIFT_SCALE;
602 time_phase -= ltemp << SHIFT_SCALE;
603 time_update += ltemp;
604 }
605
606 #ifdef HIGHBALL
607 /*
608 * If the HIGHBALL board is installed, we need to adjust the
609 * external clock offset in order to close the hardware feedback
610 * loop. This will adjust the external clock phase and frequency
611 * in small amounts. The additional phase noise and frequency
612 * wander this causes should be minimal. We also need to
613 * discipline the kernel time variable, since the PLL is used to
614 * discipline the external clock. If the Highball board is not
615 * present, we discipline kernel time with the PLL as usual. We
616 * assume that the external clock phase adjustment (time_update)
617 * and kernel phase adjustment (clock_cpu) are less than the
618 * value of tick.
619 */
620 clock_offset.tv_usec += time_update;
621 if (clock_offset.tv_usec >= 1000000) {
622 clock_offset.tv_sec++;
623 clock_offset.tv_usec -= 1000000;
624 }
625 if (clock_offset.tv_usec < 0) {
626 clock_offset.tv_sec--;
627 clock_offset.tv_usec += 1000000;
628 }
629 time.tv_usec += clock_cpu;
630 clock_cpu = 0;
631 #else
632 time.tv_usec += time_update;
633 #endif /* HIGHBALL */
634
635 /*
636 * On rollover of the second the phase adjustment to be used for
637 * the next second is calculated. Also, the maximum error is
638 * increased by the tolerance. If the PPS frequency discipline
639 * code is present, the phase is increased to compensate for the
640 * CPU clock oscillator frequency error.
641 *
642 * On a 32-bit machine and given parameters in the timex.h
643 * header file, the maximum phase adjustment is +-512 ms and
644 * maximum frequency offset is a tad less than) +-512 ppm. On a
645 * 64-bit machine, you shouldn't need to ask.
646 */
647 if (time.tv_usec >= 1000000) {
648 time.tv_usec -= 1000000;
649 time.tv_sec++;
650 time_maxerror += time_tolerance >> SHIFT_USEC;
651
652 /*
653 * Leap second processing. If in leap-insert state at
654 * the end of the day, the system clock is set back one
655 * second; if in leap-delete state, the system clock is
656 * set ahead one second. The microtime() routine or
657 * external clock driver will insure that reported time
658 * is always monotonic. The ugly divides should be
659 * replaced.
660 */
661 switch (time_state) {
662 case TIME_OK:
663 if (time_status & STA_INS)
664 time_state = TIME_INS;
665 else if (time_status & STA_DEL)
666 time_state = TIME_DEL;
667 break;
668
669 case TIME_INS:
670 if (time.tv_sec % 86400 == 0) {
671 time.tv_sec--;
672 time_state = TIME_OOP;
673 }
674 break;
675
676 case TIME_DEL:
677 if ((time.tv_sec + 1) % 86400 == 0) {
678 time.tv_sec++;
679 time_state = TIME_WAIT;
680 }
681 break;
682
683 case TIME_OOP:
684 time_state = TIME_WAIT;
685 break;
686
687 case TIME_WAIT:
688 if (!(time_status & (STA_INS | STA_DEL)))
689 time_state = TIME_OK;
690 break;
691 }
692
693 /*
694 * Compute the phase adjustment for the next second. In
695 * PLL mode, the offset is reduced by a fixed factor
696 * times the time constant. In FLL mode the offset is
697 * used directly. In either mode, the maximum phase
698 * adjustment for each second is clamped so as to spread
699 * the adjustment over not more than the number of
700 * seconds between updates.
701 */
702 if (time_offset < 0) {
703 ltemp = -time_offset;
704 if (!(time_status & STA_FLL))
705 ltemp >>= SHIFT_KG + time_constant;
706 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
707 ltemp = (MAXPHASE / MINSEC) <<
708 SHIFT_UPDATE;
709 time_offset += ltemp;
710 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
711 } else if (time_offset > 0) {
712 ltemp = time_offset;
713 if (!(time_status & STA_FLL))
714 ltemp >>= SHIFT_KG + time_constant;
715 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
716 ltemp = (MAXPHASE / MINSEC) <<
717 SHIFT_UPDATE;
718 time_offset -= ltemp;
719 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
720 } else
721 time_adj = 0;
722
723 /*
724 * Compute the frequency estimate and additional phase
725 * adjustment due to frequency error for the next
726 * second. When the PPS signal is engaged, gnaw on the
727 * watchdog counter and update the frequency computed by
728 * the pll and the PPS signal.
729 */
730 #ifdef PPS_SYNC
731 pps_valid++;
732 if (pps_valid == PPS_VALID) {
733 pps_jitter = MAXTIME;
734 pps_stabil = MAXFREQ;
735 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
736 STA_PPSWANDER | STA_PPSERROR);
737 }
738 ltemp = time_freq + pps_freq;
739 #else
740 ltemp = time_freq;
741 #endif /* PPS_SYNC */
742
743 if (ltemp < 0)
744 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
745 else
746 time_adj += ltemp >> (SHIFT_USEC - shifthz);
747 time_adj += (long)fixtick << shifthz;
748
749 /*
750 * When the CPU clock oscillator frequency is not a
751 * power of 2 in Hz, shifthz is only an approximate
752 * scale factor.
753 *
754 * To determine the adjustment, you can do the following:
755 * bc -q
756 * scale=24
757 * obase=2
758 * idealhz/realhz
759 * where `idealhz' is the next higher power of 2, and `realhz'
760 * is the actual value. You may need to factor this result
761 * into a sequence of 2 multipliers to get better precision.
762 *
763 * Likewise, the error can be calculated with (e.g. for 100Hz):
764 * bc -q
765 * scale=24
766 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
767 * (and then multiply by 1000000 to get ppm).
768 */
769 switch (hz) {
770 case 60:
771 /* A factor of 1.000100010001 gives about 15ppm
772 error. */
773 if (time_adj < 0) {
774 time_adj -= (-time_adj >> 4);
775 time_adj -= (-time_adj >> 8);
776 } else {
777 time_adj += (time_adj >> 4);
778 time_adj += (time_adj >> 8);
779 }
780 break;
781
782 case 96:
783 /* A factor of 1.0101010101 gives about 244ppm error. */
784 if (time_adj < 0) {
785 time_adj -= (-time_adj >> 2);
786 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
787 } else {
788 time_adj += (time_adj >> 2);
789 time_adj += (time_adj >> 4) + (time_adj >> 8);
790 }
791 break;
792
793 case 50:
794 case 100:
795 /* A factor of 1.010001111010111 gives about 1ppm
796 error. */
797 if (time_adj < 0) {
798 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
799 time_adj += (-time_adj >> 10);
800 } else {
801 time_adj += (time_adj >> 2) + (time_adj >> 5);
802 time_adj -= (time_adj >> 10);
803 }
804 break;
805
806 case 1000:
807 /* A factor of 1.000001100010100001 gives about 50ppm
808 error. */
809 if (time_adj < 0) {
810 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
811 time_adj -= (-time_adj >> 7);
812 } else {
813 time_adj += (time_adj >> 6) + (time_adj >> 11);
814 time_adj += (time_adj >> 7);
815 }
816 break;
817
818 case 1200:
819 /* A factor of 1.1011010011100001 gives about 64ppm
820 error. */
821 if (time_adj < 0) {
822 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
823 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
824 } else {
825 time_adj += (time_adj >> 1) + (time_adj >> 6);
826 time_adj += (time_adj >> 3) + (time_adj >> 10);
827 }
828 break;
829 }
830
831 #ifdef EXT_CLOCK
832 /*
833 * If an external clock is present, it is necessary to
834 * discipline the kernel time variable anyway, since not
835 * all system components use the microtime() interface.
836 * Here, the time offset between the external clock and
837 * kernel time variable is computed every so often.
838 */
839 clock_count++;
840 if (clock_count > CLOCK_INTERVAL) {
841 clock_count = 0;
842 microtime(&clock_ext);
843 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
844 delta.tv_usec = clock_ext.tv_usec -
845 time.tv_usec;
846 if (delta.tv_usec < 0)
847 delta.tv_sec--;
848 if (delta.tv_usec >= 500000) {
849 delta.tv_usec -= 1000000;
850 delta.tv_sec++;
851 }
852 if (delta.tv_usec < -500000) {
853 delta.tv_usec += 1000000;
854 delta.tv_sec--;
855 }
856 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
857 delta.tv_usec > MAXPHASE) ||
858 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
859 delta.tv_usec < -MAXPHASE)) {
860 time = clock_ext;
861 delta.tv_sec = 0;
862 delta.tv_usec = 0;
863 }
864 #ifdef HIGHBALL
865 clock_cpu = delta.tv_usec;
866 #else /* HIGHBALL */
867 hardupdate(delta.tv_usec);
868 #endif /* HIGHBALL */
869 }
870 #endif /* EXT_CLOCK */
871 }
872
873 #endif /* NTP */
874 #endif /* !__HAVE_TIMECOUNTER */
875
876 /*
877 * Update real-time timeout queue. Callouts are processed at a
878 * very low CPU priority, so we don't keep the relatively high
879 * clock interrupt priority any longer than necessary.
880 */
881 if (callout_hardclock())
882 softintr_schedule(softclock_si);
883 }
884
885 #ifdef __HAVE_TIMECOUNTER
886 /*
887 * Compute number of hz until specified time. Used to compute second
888 * argument to callout_reset() from an absolute time.
889 */
890 int
891 hzto(struct timeval *tvp)
892 {
893 struct timeval now, tv;
894
895 tv = *tvp; /* Don't modify original tvp. */
896 getmicrotime(&now);
897 timersub(&tv, &now, &tv);
898 return tvtohz(&tv);
899 }
900 #endif /* __HAVE_TIMECOUNTER */
901
902 /*
903 * Compute number of ticks in the specified amount of time.
904 */
905 int
906 tvtohz(struct timeval *tv)
907 {
908 unsigned long ticks;
909 long sec, usec;
910
911 /*
912 * If the number of usecs in the whole seconds part of the time
913 * difference fits in a long, then the total number of usecs will
914 * fit in an unsigned long. Compute the total and convert it to
915 * ticks, rounding up and adding 1 to allow for the current tick
916 * to expire. Rounding also depends on unsigned long arithmetic
917 * to avoid overflow.
918 *
919 * Otherwise, if the number of ticks in the whole seconds part of
920 * the time difference fits in a long, then convert the parts to
921 * ticks separately and add, using similar rounding methods and
922 * overflow avoidance. This method would work in the previous
923 * case, but it is slightly slower and assumes that hz is integral.
924 *
925 * Otherwise, round the time difference down to the maximum
926 * representable value.
927 *
928 * If ints are 32-bit, then the maximum value for any timeout in
929 * 10ms ticks is 248 days.
930 */
931 sec = tv->tv_sec;
932 usec = tv->tv_usec;
933
934 if (usec < 0) {
935 sec--;
936 usec += 1000000;
937 }
938
939 if (sec < 0 || (sec == 0 && usec <= 0)) {
940 /*
941 * Would expire now or in the past. Return 0 ticks.
942 * This is different from the legacy hzto() interface,
943 * and callers need to check for it.
944 */
945 ticks = 0;
946 } else if (sec <= (LONG_MAX / 1000000))
947 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
948 / tick) + 1;
949 else if (sec <= (LONG_MAX / hz))
950 ticks = (sec * hz) +
951 (((unsigned long)usec + (tick - 1)) / tick) + 1;
952 else
953 ticks = LONG_MAX;
954
955 if (ticks > INT_MAX)
956 ticks = INT_MAX;
957
958 return ((int)ticks);
959 }
960
961 #ifndef __HAVE_TIMECOUNTER
962 /*
963 * Compute number of hz until specified time. Used to compute second
964 * argument to callout_reset() from an absolute time.
965 */
966 int
967 hzto(struct timeval *tv)
968 {
969 unsigned long ticks;
970 long sec, usec;
971 int s;
972
973 /*
974 * If the number of usecs in the whole seconds part of the time
975 * difference fits in a long, then the total number of usecs will
976 * fit in an unsigned long. Compute the total and convert it to
977 * ticks, rounding up and adding 1 to allow for the current tick
978 * to expire. Rounding also depends on unsigned long arithmetic
979 * to avoid overflow.
980 *
981 * Otherwise, if the number of ticks in the whole seconds part of
982 * the time difference fits in a long, then convert the parts to
983 * ticks separately and add, using similar rounding methods and
984 * overflow avoidance. This method would work in the previous
985 * case, but it is slightly slower and assume that hz is integral.
986 *
987 * Otherwise, round the time difference down to the maximum
988 * representable value.
989 *
990 * If ints are 32-bit, then the maximum value for any timeout in
991 * 10ms ticks is 248 days.
992 */
993 s = splclock();
994 sec = tv->tv_sec - time.tv_sec;
995 usec = tv->tv_usec - time.tv_usec;
996 splx(s);
997
998 if (usec < 0) {
999 sec--;
1000 usec += 1000000;
1001 }
1002
1003 if (sec < 0 || (sec == 0 && usec <= 0)) {
1004 /*
1005 * Would expire now or in the past. Return 0 ticks.
1006 * This is different from the legacy hzto() interface,
1007 * and callers need to check for it.
1008 */
1009 ticks = 0;
1010 } else if (sec <= (LONG_MAX / 1000000))
1011 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1012 / tick) + 1;
1013 else if (sec <= (LONG_MAX / hz))
1014 ticks = (sec * hz) +
1015 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1016 else
1017 ticks = LONG_MAX;
1018
1019 if (ticks > INT_MAX)
1020 ticks = INT_MAX;
1021
1022 return ((int)ticks);
1023 }
1024 #endif /* !__HAVE_TIMECOUNTER */
1025
1026 /*
1027 * Compute number of ticks in the specified amount of time.
1028 */
1029 int
1030 tstohz(struct timespec *ts)
1031 {
1032 struct timeval tv;
1033
1034 /*
1035 * usec has great enough resolution for hz, so convert to a
1036 * timeval and use tvtohz() above.
1037 */
1038 TIMESPEC_TO_TIMEVAL(&tv, ts);
1039 return tvtohz(&tv);
1040 }
1041
1042 /*
1043 * Start profiling on a process.
1044 *
1045 * Kernel profiling passes proc0 which never exits and hence
1046 * keeps the profile clock running constantly.
1047 */
1048 void
1049 startprofclock(struct proc *p)
1050 {
1051
1052 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
1053
1054 if ((p->p_stflag & PST_PROFIL) == 0) {
1055 p->p_stflag |= PST_PROFIL;
1056 /*
1057 * This is only necessary if using the clock as the
1058 * profiling source.
1059 */
1060 if (++profprocs == 1 && stathz != 0)
1061 psdiv = psratio;
1062 }
1063 }
1064
1065 /*
1066 * Stop profiling on a process.
1067 */
1068 void
1069 stopprofclock(struct proc *p)
1070 {
1071
1072 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
1073
1074 if (p->p_stflag & PST_PROFIL) {
1075 p->p_stflag &= ~PST_PROFIL;
1076 /*
1077 * This is only necessary if using the clock as the
1078 * profiling source.
1079 */
1080 if (--profprocs == 0 && stathz != 0)
1081 psdiv = 1;
1082 }
1083 }
1084
1085 #if defined(PERFCTRS)
1086 /*
1087 * Independent profiling "tick" in case we're using a separate
1088 * clock or profiling event source. Currently, that's just
1089 * performance counters--hence the wrapper.
1090 */
1091 void
1092 proftick(struct clockframe *frame)
1093 {
1094 #ifdef GPROF
1095 struct gmonparam *g;
1096 intptr_t i;
1097 #endif
1098 struct lwp *l;
1099 struct proc *p;
1100
1101 l = curlwp;
1102 p = (l ? l->l_proc : NULL);
1103 if (CLKF_USERMODE(frame)) {
1104 mutex_spin_enter(&p->p_stmutex);
1105 if (p->p_stflag & PST_PROFIL)
1106 addupc_intr(l, CLKF_PC(frame));
1107 mutex_spin_exit(&p->p_stmutex);
1108 } else {
1109 #ifdef GPROF
1110 g = &_gmonparam;
1111 if (g->state == GMON_PROF_ON) {
1112 i = CLKF_PC(frame) - g->lowpc;
1113 if (i < g->textsize) {
1114 i /= HISTFRACTION * sizeof(*g->kcount);
1115 g->kcount[i]++;
1116 }
1117 }
1118 #endif
1119 #ifdef PROC_PC
1120 if (p != NULL) {
1121 mutex_spin_enter(&p->p_stmutex);
1122 if (p->p_stflag & PST_PROFIL))
1123 addupc_intr(l, PROC_PC(p));
1124 mutex_spin_exit(&p->p_stmutex);
1125 }
1126 #endif
1127 }
1128 }
1129 #endif
1130
1131 /*
1132 * Statistics clock. Grab profile sample, and if divider reaches 0,
1133 * do process and kernel statistics.
1134 */
1135 void
1136 statclock(struct clockframe *frame)
1137 {
1138 #ifdef GPROF
1139 struct gmonparam *g;
1140 intptr_t i;
1141 #endif
1142 struct cpu_info *ci = curcpu();
1143 struct schedstate_percpu *spc = &ci->ci_schedstate;
1144 struct proc *p;
1145 struct lwp *l;
1146
1147 /*
1148 * Notice changes in divisor frequency, and adjust clock
1149 * frequency accordingly.
1150 */
1151 if (spc->spc_psdiv != psdiv) {
1152 spc->spc_psdiv = psdiv;
1153 spc->spc_pscnt = psdiv;
1154 if (psdiv == 1) {
1155 setstatclockrate(stathz);
1156 } else {
1157 setstatclockrate(profhz);
1158 }
1159 }
1160 l = curlwp;
1161 if ((p = (l ? l->l_proc : NULL)) != NULL)
1162 mutex_spin_enter(&p->p_stmutex);
1163 if (CLKF_USERMODE(frame)) {
1164 KASSERT(p != NULL);
1165
1166 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
1167 addupc_intr(l, CLKF_PC(frame));
1168 if (--spc->spc_pscnt > 0) {
1169 mutex_spin_exit(&p->p_stmutex);
1170 return;
1171 }
1172
1173 /*
1174 * Came from user mode; CPU was in user state.
1175 * If this process is being profiled record the tick.
1176 */
1177 p->p_uticks++;
1178 if (p->p_nice > NZERO)
1179 spc->spc_cp_time[CP_NICE]++;
1180 else
1181 spc->spc_cp_time[CP_USER]++;
1182 } else {
1183 #ifdef GPROF
1184 /*
1185 * Kernel statistics are just like addupc_intr, only easier.
1186 */
1187 g = &_gmonparam;
1188 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1189 i = CLKF_PC(frame) - g->lowpc;
1190 if (i < g->textsize) {
1191 i /= HISTFRACTION * sizeof(*g->kcount);
1192 g->kcount[i]++;
1193 }
1194 }
1195 #endif
1196 #ifdef LWP_PC
1197 if (p && profsrc == PROFSRC_CLOCK && (p->p_stflag & PST_PROFIL))
1198 addupc_intr(l, LWP_PC(l));
1199 #endif
1200 if (--spc->spc_pscnt > 0) {
1201 if (p != NULL)
1202 mutex_spin_exit(&p->p_stmutex);
1203 return;
1204 }
1205 /*
1206 * Came from kernel mode, so we were:
1207 * - handling an interrupt,
1208 * - doing syscall or trap work on behalf of the current
1209 * user process, or
1210 * - spinning in the idle loop.
1211 * Whichever it is, charge the time as appropriate.
1212 * Note that we charge interrupts to the current process,
1213 * regardless of whether they are ``for'' that process,
1214 * so that we know how much of its real time was spent
1215 * in ``non-process'' (i.e., interrupt) work.
1216 */
1217 if (CLKF_INTR(frame)) {
1218 if (p != NULL)
1219 p->p_iticks++;
1220 spc->spc_cp_time[CP_INTR]++;
1221 } else if (p != NULL) {
1222 p->p_sticks++;
1223 spc->spc_cp_time[CP_SYS]++;
1224 } else
1225 spc->spc_cp_time[CP_IDLE]++;
1226 }
1227 spc->spc_pscnt = psdiv;
1228
1229 if (p != NULL) {
1230 ++p->p_cpticks;
1231 mutex_spin_exit(&p->p_stmutex);
1232
1233 /*
1234 * If no separate schedclock is provided, call it here
1235 * at about 16 Hz.
1236 */
1237 if (schedhz == 0)
1238 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1239 schedclock(l);
1240 ci->ci_schedstate.spc_schedticks = statscheddiv;
1241 }
1242 }
1243 }
1244
1245 #ifndef __HAVE_TIMECOUNTER
1246 #ifdef NTP /* NTP phase-locked loop in kernel */
1247 /*
1248 * hardupdate() - local clock update
1249 *
1250 * This routine is called by ntp_adjtime() to update the local clock
1251 * phase and frequency. The implementation is of an adaptive-parameter,
1252 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1253 * time and frequency offset estimates for each call. If the kernel PPS
1254 * discipline code is configured (PPS_SYNC), the PPS signal itself
1255 * determines the new time offset, instead of the calling argument.
1256 * Presumably, calls to ntp_adjtime() occur only when the caller
1257 * believes the local clock is valid within some bound (+-128 ms with
1258 * NTP). If the caller's time is far different than the PPS time, an
1259 * argument will ensue, and it's not clear who will lose.
1260 *
1261 * For uncompensated quartz crystal oscillatores and nominal update
1262 * intervals less than 1024 s, operation should be in phase-lock mode
1263 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1264 * intervals greater than thiss, operation should be in frequency-lock
1265 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1266 *
1267 * Note: splclock() is in effect.
1268 */
1269 void
1270 hardupdate(long offset)
1271 {
1272 long ltemp, mtemp;
1273
1274 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1275 return;
1276 ltemp = offset;
1277 #ifdef PPS_SYNC
1278 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1279 ltemp = pps_offset;
1280 #endif /* PPS_SYNC */
1281
1282 /*
1283 * Scale the phase adjustment and clamp to the operating range.
1284 */
1285 if (ltemp > MAXPHASE)
1286 time_offset = MAXPHASE << SHIFT_UPDATE;
1287 else if (ltemp < -MAXPHASE)
1288 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1289 else
1290 time_offset = ltemp << SHIFT_UPDATE;
1291
1292 /*
1293 * Select whether the frequency is to be controlled and in which
1294 * mode (PLL or FLL). Clamp to the operating range. Ugly
1295 * multiply/divide should be replaced someday.
1296 */
1297 if (time_status & STA_FREQHOLD || time_reftime == 0)
1298 time_reftime = time.tv_sec;
1299 mtemp = time.tv_sec - time_reftime;
1300 time_reftime = time.tv_sec;
1301 if (time_status & STA_FLL) {
1302 if (mtemp >= MINSEC) {
1303 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1304 SHIFT_UPDATE));
1305 if (ltemp < 0)
1306 time_freq -= -ltemp >> SHIFT_KH;
1307 else
1308 time_freq += ltemp >> SHIFT_KH;
1309 }
1310 } else {
1311 if (mtemp < MAXSEC) {
1312 ltemp *= mtemp;
1313 if (ltemp < 0)
1314 time_freq -= -ltemp >> (time_constant +
1315 time_constant + SHIFT_KF -
1316 SHIFT_USEC);
1317 else
1318 time_freq += ltemp >> (time_constant +
1319 time_constant + SHIFT_KF -
1320 SHIFT_USEC);
1321 }
1322 }
1323 if (time_freq > time_tolerance)
1324 time_freq = time_tolerance;
1325 else if (time_freq < -time_tolerance)
1326 time_freq = -time_tolerance;
1327 }
1328
1329 #ifdef PPS_SYNC
1330 /*
1331 * hardpps() - discipline CPU clock oscillator to external PPS signal
1332 *
1333 * This routine is called at each PPS interrupt in order to discipline
1334 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1335 * and leaves it in a handy spot for the hardclock() routine. It
1336 * integrates successive PPS phase differences and calculates the
1337 * frequency offset. This is used in hardclock() to discipline the CPU
1338 * clock oscillator so that intrinsic frequency error is cancelled out.
1339 * The code requires the caller to capture the time and hardware counter
1340 * value at the on-time PPS signal transition.
1341 *
1342 * Note that, on some Unix systems, this routine runs at an interrupt
1343 * priority level higher than the timer interrupt routine hardclock().
1344 * Therefore, the variables used are distinct from the hardclock()
1345 * variables, except for certain exceptions: The PPS frequency pps_freq
1346 * and phase pps_offset variables are determined by this routine and
1347 * updated atomically. The time_tolerance variable can be considered a
1348 * constant, since it is infrequently changed, and then only when the
1349 * PPS signal is disabled. The watchdog counter pps_valid is updated
1350 * once per second by hardclock() and is atomically cleared in this
1351 * routine.
1352 */
1353 void
1354 hardpps(struct timeval *tvp, /* time at PPS */
1355 long usec /* hardware counter at PPS */)
1356 {
1357 long u_usec, v_usec, bigtick;
1358 long cal_sec, cal_usec;
1359
1360 /*
1361 * An occasional glitch can be produced when the PPS interrupt
1362 * occurs in the hardclock() routine before the time variable is
1363 * updated. Here the offset is discarded when the difference
1364 * between it and the last one is greater than tick/2, but not
1365 * if the interval since the first discard exceeds 30 s.
1366 */
1367 time_status |= STA_PPSSIGNAL;
1368 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1369 pps_valid = 0;
1370 u_usec = -tvp->tv_usec;
1371 if (u_usec < -500000)
1372 u_usec += 1000000;
1373 v_usec = pps_offset - u_usec;
1374 if (v_usec < 0)
1375 v_usec = -v_usec;
1376 if (v_usec > (tick >> 1)) {
1377 if (pps_glitch > MAXGLITCH) {
1378 pps_glitch = 0;
1379 pps_tf[2] = u_usec;
1380 pps_tf[1] = u_usec;
1381 } else {
1382 pps_glitch++;
1383 u_usec = pps_offset;
1384 }
1385 } else
1386 pps_glitch = 0;
1387
1388 /*
1389 * A three-stage median filter is used to help deglitch the pps
1390 * time. The median sample becomes the time offset estimate; the
1391 * difference between the other two samples becomes the time
1392 * dispersion (jitter) estimate.
1393 */
1394 pps_tf[2] = pps_tf[1];
1395 pps_tf[1] = pps_tf[0];
1396 pps_tf[0] = u_usec;
1397 if (pps_tf[0] > pps_tf[1]) {
1398 if (pps_tf[1] > pps_tf[2]) {
1399 pps_offset = pps_tf[1]; /* 0 1 2 */
1400 v_usec = pps_tf[0] - pps_tf[2];
1401 } else if (pps_tf[2] > pps_tf[0]) {
1402 pps_offset = pps_tf[0]; /* 2 0 1 */
1403 v_usec = pps_tf[2] - pps_tf[1];
1404 } else {
1405 pps_offset = pps_tf[2]; /* 0 2 1 */
1406 v_usec = pps_tf[0] - pps_tf[1];
1407 }
1408 } else {
1409 if (pps_tf[1] < pps_tf[2]) {
1410 pps_offset = pps_tf[1]; /* 2 1 0 */
1411 v_usec = pps_tf[2] - pps_tf[0];
1412 } else if (pps_tf[2] < pps_tf[0]) {
1413 pps_offset = pps_tf[0]; /* 1 0 2 */
1414 v_usec = pps_tf[1] - pps_tf[2];
1415 } else {
1416 pps_offset = pps_tf[2]; /* 1 2 0 */
1417 v_usec = pps_tf[1] - pps_tf[0];
1418 }
1419 }
1420 if (v_usec > MAXTIME)
1421 pps_jitcnt++;
1422 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1423 if (v_usec < 0)
1424 pps_jitter -= -v_usec >> PPS_AVG;
1425 else
1426 pps_jitter += v_usec >> PPS_AVG;
1427 if (pps_jitter > (MAXTIME >> 1))
1428 time_status |= STA_PPSJITTER;
1429
1430 /*
1431 * During the calibration interval adjust the starting time when
1432 * the tick overflows. At the end of the interval compute the
1433 * duration of the interval and the difference of the hardware
1434 * counters at the beginning and end of the interval. This code
1435 * is deliciously complicated by the fact valid differences may
1436 * exceed the value of tick when using long calibration
1437 * intervals and small ticks. Note that the counter can be
1438 * greater than tick if caught at just the wrong instant, but
1439 * the values returned and used here are correct.
1440 */
1441 bigtick = (long)tick << SHIFT_USEC;
1442 pps_usec -= pps_freq;
1443 if (pps_usec >= bigtick)
1444 pps_usec -= bigtick;
1445 if (pps_usec < 0)
1446 pps_usec += bigtick;
1447 pps_time.tv_sec++;
1448 pps_count++;
1449 if (pps_count < (1 << pps_shift))
1450 return;
1451 pps_count = 0;
1452 pps_calcnt++;
1453 u_usec = usec << SHIFT_USEC;
1454 v_usec = pps_usec - u_usec;
1455 if (v_usec >= bigtick >> 1)
1456 v_usec -= bigtick;
1457 if (v_usec < -(bigtick >> 1))
1458 v_usec += bigtick;
1459 if (v_usec < 0)
1460 v_usec = -(-v_usec >> pps_shift);
1461 else
1462 v_usec = v_usec >> pps_shift;
1463 pps_usec = u_usec;
1464 cal_sec = tvp->tv_sec;
1465 cal_usec = tvp->tv_usec;
1466 cal_sec -= pps_time.tv_sec;
1467 cal_usec -= pps_time.tv_usec;
1468 if (cal_usec < 0) {
1469 cal_usec += 1000000;
1470 cal_sec--;
1471 }
1472 pps_time = *tvp;
1473
1474 /*
1475 * Check for lost interrupts, noise, excessive jitter and
1476 * excessive frequency error. The number of timer ticks during
1477 * the interval may vary +-1 tick. Add to this a margin of one
1478 * tick for the PPS signal jitter and maximum frequency
1479 * deviation. If the limits are exceeded, the calibration
1480 * interval is reset to the minimum and we start over.
1481 */
1482 u_usec = (long)tick << 1;
1483 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1484 || (cal_sec == 0 && cal_usec < u_usec))
1485 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1486 pps_errcnt++;
1487 pps_shift = PPS_SHIFT;
1488 pps_intcnt = 0;
1489 time_status |= STA_PPSERROR;
1490 return;
1491 }
1492
1493 /*
1494 * A three-stage median filter is used to help deglitch the pps
1495 * frequency. The median sample becomes the frequency offset
1496 * estimate; the difference between the other two samples
1497 * becomes the frequency dispersion (stability) estimate.
1498 */
1499 pps_ff[2] = pps_ff[1];
1500 pps_ff[1] = pps_ff[0];
1501 pps_ff[0] = v_usec;
1502 if (pps_ff[0] > pps_ff[1]) {
1503 if (pps_ff[1] > pps_ff[2]) {
1504 u_usec = pps_ff[1]; /* 0 1 2 */
1505 v_usec = pps_ff[0] - pps_ff[2];
1506 } else if (pps_ff[2] > pps_ff[0]) {
1507 u_usec = pps_ff[0]; /* 2 0 1 */
1508 v_usec = pps_ff[2] - pps_ff[1];
1509 } else {
1510 u_usec = pps_ff[2]; /* 0 2 1 */
1511 v_usec = pps_ff[0] - pps_ff[1];
1512 }
1513 } else {
1514 if (pps_ff[1] < pps_ff[2]) {
1515 u_usec = pps_ff[1]; /* 2 1 0 */
1516 v_usec = pps_ff[2] - pps_ff[0];
1517 } else if (pps_ff[2] < pps_ff[0]) {
1518 u_usec = pps_ff[0]; /* 1 0 2 */
1519 v_usec = pps_ff[1] - pps_ff[2];
1520 } else {
1521 u_usec = pps_ff[2]; /* 1 2 0 */
1522 v_usec = pps_ff[1] - pps_ff[0];
1523 }
1524 }
1525
1526 /*
1527 * Here the frequency dispersion (stability) is updated. If it
1528 * is less than one-fourth the maximum (MAXFREQ), the frequency
1529 * offset is updated as well, but clamped to the tolerance. It
1530 * will be processed later by the hardclock() routine.
1531 */
1532 v_usec = (v_usec >> 1) - pps_stabil;
1533 if (v_usec < 0)
1534 pps_stabil -= -v_usec >> PPS_AVG;
1535 else
1536 pps_stabil += v_usec >> PPS_AVG;
1537 if (pps_stabil > MAXFREQ >> 2) {
1538 pps_stbcnt++;
1539 time_status |= STA_PPSWANDER;
1540 return;
1541 }
1542 if (time_status & STA_PPSFREQ) {
1543 if (u_usec < 0) {
1544 pps_freq -= -u_usec >> PPS_AVG;
1545 if (pps_freq < -time_tolerance)
1546 pps_freq = -time_tolerance;
1547 u_usec = -u_usec;
1548 } else {
1549 pps_freq += u_usec >> PPS_AVG;
1550 if (pps_freq > time_tolerance)
1551 pps_freq = time_tolerance;
1552 }
1553 }
1554
1555 /*
1556 * Here the calibration interval is adjusted. If the maximum
1557 * time difference is greater than tick / 4, reduce the interval
1558 * by half. If this is not the case for four consecutive
1559 * intervals, double the interval.
1560 */
1561 if (u_usec << pps_shift > bigtick >> 2) {
1562 pps_intcnt = 0;
1563 if (pps_shift > PPS_SHIFT)
1564 pps_shift--;
1565 } else if (pps_intcnt >= 4) {
1566 pps_intcnt = 0;
1567 if (pps_shift < PPS_SHIFTMAX)
1568 pps_shift++;
1569 } else
1570 pps_intcnt++;
1571 }
1572 #endif /* PPS_SYNC */
1573 #endif /* NTP */
1574
1575 /* timecounter compat functions */
1576 void
1577 nanotime(struct timespec *ts)
1578 {
1579 struct timeval tv;
1580
1581 microtime(&tv);
1582 TIMEVAL_TO_TIMESPEC(&tv, ts);
1583 }
1584
1585 void
1586 getbinuptime(struct bintime *bt)
1587 {
1588 struct timeval tv;
1589
1590 microtime(&tv);
1591 timeval2bintime(&tv, bt);
1592 }
1593
1594 void
1595 nanouptime(struct timespec *tsp)
1596 {
1597 int s;
1598
1599 s = splclock();
1600 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1601 splx(s);
1602 }
1603
1604 void
1605 getnanouptime(struct timespec *tsp)
1606 {
1607 int s;
1608
1609 s = splclock();
1610 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1611 splx(s);
1612 }
1613
1614 void
1615 getmicrouptime(struct timeval *tvp)
1616 {
1617 int s;
1618
1619 s = splclock();
1620 *tvp = mono_time;
1621 splx(s);
1622 }
1623
1624 void
1625 getnanotime(struct timespec *tsp)
1626 {
1627 int s;
1628
1629 s = splclock();
1630 TIMEVAL_TO_TIMESPEC(&time, tsp);
1631 splx(s);
1632 }
1633
1634 void
1635 getmicrotime(struct timeval *tvp)
1636 {
1637 int s;
1638
1639 s = splclock();
1640 *tvp = time;
1641 splx(s);
1642 }
1643 #endif /* !__HAVE_TIMECOUNTER */
1644