Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.95
      1 /*	$NetBSD: kern_clock.c,v 1.95 2005/09/12 16:21:31 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the NetBSD
     24  *	Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*-
     43  * Copyright (c) 1982, 1986, 1991, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  * (c) UNIX System Laboratories, Inc.
     46  * All or some portions of this file are derived from material licensed
     47  * to the University of California by American Telephone and Telegraph
     48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49  * the permission of UNIX System Laboratories, Inc.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.95 2005/09/12 16:21:31 christos Exp $");
     80 
     81 #include "opt_ntp.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/callout.h>
     88 #include <sys/kernel.h>
     89 #include <sys/proc.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/sysctl.h>
     93 #include <sys/timex.h>
     94 #include <sys/sched.h>
     95 #include <sys/time.h>
     96 
     97 #include <machine/cpu.h>
     98 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
     99 #include <machine/intr.h>
    100 #endif
    101 
    102 #ifdef GPROF
    103 #include <sys/gmon.h>
    104 #endif
    105 
    106 /*
    107  * Clock handling routines.
    108  *
    109  * This code is written to operate with two timers that run independently of
    110  * each other.  The main clock, running hz times per second, is used to keep
    111  * track of real time.  The second timer handles kernel and user profiling,
    112  * and does resource use estimation.  If the second timer is programmable,
    113  * it is randomized to avoid aliasing between the two clocks.  For example,
    114  * the randomization prevents an adversary from always giving up the CPU
    115  * just before its quantum expires.  Otherwise, it would never accumulate
    116  * CPU ticks.  The mean frequency of the second timer is stathz.
    117  *
    118  * If no second timer exists, stathz will be zero; in this case we drive
    119  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    120  * do not do it unless absolutely necessary.
    121  *
    122  * The statistics clock may (or may not) be run at a higher rate while
    123  * profiling.  This profile clock runs at profhz.  We require that profhz
    124  * be an integral multiple of stathz.
    125  *
    126  * If the statistics clock is running fast, it must be divided by the ratio
    127  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    128  */
    129 
    130 #ifdef NTP	/* NTP phase-locked loop in kernel */
    131 /*
    132  * Phase/frequency-lock loop (PLL/FLL) definitions
    133  *
    134  * The following variables are read and set by the ntp_adjtime() system
    135  * call.
    136  *
    137  * time_state shows the state of the system clock, with values defined
    138  * in the timex.h header file.
    139  *
    140  * time_status shows the status of the system clock, with bits defined
    141  * in the timex.h header file.
    142  *
    143  * time_offset is used by the PLL/FLL to adjust the system time in small
    144  * increments.
    145  *
    146  * time_constant determines the bandwidth or "stiffness" of the PLL.
    147  *
    148  * time_tolerance determines maximum frequency error or tolerance of the
    149  * CPU clock oscillator and is a property of the architecture; however,
    150  * in principle it could change as result of the presence of external
    151  * discipline signals, for instance.
    152  *
    153  * time_precision is usually equal to the kernel tick variable; however,
    154  * in cases where a precision clock counter or external clock is
    155  * available, the resolution can be much less than this and depend on
    156  * whether the external clock is working or not.
    157  *
    158  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    159  * the kernel once each second to reflect the maximum error bound
    160  * growth.
    161  *
    162  * time_esterror is set and read by the ntp_adjtime() call, but
    163  * otherwise not used by the kernel.
    164  */
    165 int time_state = TIME_OK;	/* clock state */
    166 int time_status = STA_UNSYNC;	/* clock status bits */
    167 long time_offset = 0;		/* time offset (us) */
    168 long time_constant = 0;		/* pll time constant */
    169 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    170 long time_precision = 1;	/* clock precision (us) */
    171 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    172 long time_esterror = MAXPHASE;	/* estimated error (us) */
    173 
    174 /*
    175  * The following variables establish the state of the PLL/FLL and the
    176  * residual time and frequency offset of the local clock. The scale
    177  * factors are defined in the timex.h header file.
    178  *
    179  * time_phase and time_freq are the phase increment and the frequency
    180  * increment, respectively, of the kernel time variable.
    181  *
    182  * time_freq is set via ntp_adjtime() from a value stored in a file when
    183  * the synchronization daemon is first started. Its value is retrieved
    184  * via ntp_adjtime() and written to the file about once per hour by the
    185  * daemon.
    186  *
    187  * time_adj is the adjustment added to the value of tick at each timer
    188  * interrupt and is recomputed from time_phase and time_freq at each
    189  * seconds rollover.
    190  *
    191  * time_reftime is the second's portion of the system time at the last
    192  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    193  * and to increase the time_maxerror as the time since last update
    194  * increases.
    195  */
    196 long time_phase = 0;		/* phase offset (scaled us) */
    197 long time_freq = 0;		/* frequency offset (scaled ppm) */
    198 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    199 long time_reftime = 0;		/* time at last adjustment (s) */
    200 
    201 #ifdef PPS_SYNC
    202 /*
    203  * The following variables are used only if the kernel PPS discipline
    204  * code is configured (PPS_SYNC). The scale factors are defined in the
    205  * timex.h header file.
    206  *
    207  * pps_time contains the time at each calibration interval, as read by
    208  * microtime(). pps_count counts the seconds of the calibration
    209  * interval, the duration of which is nominally pps_shift in powers of
    210  * two.
    211  *
    212  * pps_offset is the time offset produced by the time median filter
    213  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    214  * this filter.
    215  *
    216  * pps_freq is the frequency offset produced by the frequency median
    217  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    218  * by this filter.
    219  *
    220  * pps_usec is latched from a high resolution counter or external clock
    221  * at pps_time. Here we want the hardware counter contents only, not the
    222  * contents plus the time_tv.usec as usual.
    223  *
    224  * pps_valid counts the number of seconds since the last PPS update. It
    225  * is used as a watchdog timer to disable the PPS discipline should the
    226  * PPS signal be lost.
    227  *
    228  * pps_glitch counts the number of seconds since the beginning of an
    229  * offset burst more than tick/2 from current nominal offset. It is used
    230  * mainly to suppress error bursts due to priority conflicts between the
    231  * PPS interrupt and timer interrupt.
    232  *
    233  * pps_intcnt counts the calibration intervals for use in the interval-
    234  * adaptation algorithm. It's just too complicated for words.
    235  *
    236  * pps_kc_hardpps_source contains an arbitrary value that uniquely
    237  * identifies the currently bound source of the PPS signal, or NULL
    238  * if no source is bound.
    239  *
    240  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
    241  * signal should be reported.
    242  */
    243 struct timeval pps_time;	/* kernel time at last interval */
    244 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    245 long pps_offset = 0;		/* pps time offset (us) */
    246 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    247 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    248 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    249 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    250 long pps_usec = 0;		/* microsec counter at last interval */
    251 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    252 int pps_glitch = 0;		/* pps signal glitch counter */
    253 int pps_count = 0;		/* calibration interval counter (s) */
    254 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    255 int pps_intcnt = 0;		/* intervals at current duration */
    256 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
    257 int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
    258 
    259 /*
    260  * PPS signal quality monitors
    261  *
    262  * pps_jitcnt counts the seconds that have been discarded because the
    263  * jitter measured by the time median filter exceeds the limit MAXTIME
    264  * (100 us).
    265  *
    266  * pps_calcnt counts the frequency calibration intervals, which are
    267  * variable from 4 s to 256 s.
    268  *
    269  * pps_errcnt counts the calibration intervals which have been discarded
    270  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    271  * calibration interval jitter exceeds two ticks.
    272  *
    273  * pps_stbcnt counts the calibration intervals that have been discarded
    274  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    275  */
    276 long pps_jitcnt = 0;		/* jitter limit exceeded */
    277 long pps_calcnt = 0;		/* calibration intervals */
    278 long pps_errcnt = 0;		/* calibration errors */
    279 long pps_stbcnt = 0;		/* stability limit exceeded */
    280 #endif /* PPS_SYNC */
    281 
    282 #ifdef EXT_CLOCK
    283 /*
    284  * External clock definitions
    285  *
    286  * The following definitions and declarations are used only if an
    287  * external clock is configured on the system.
    288  */
    289 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    290 
    291 /*
    292  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    293  * interrupt and decremented once each second.
    294  */
    295 int clock_count = 0;		/* CPU clock counter */
    296 
    297 #ifdef HIGHBALL
    298 /*
    299  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    300  * interface. The clock_offset variable defines the offset between
    301  * system time and the HIGBALL counters. The clock_cpu variable contains
    302  * the offset between the system clock and the HIGHBALL clock for use in
    303  * disciplining the kernel time variable.
    304  */
    305 extern struct timeval clock_offset; /* Highball clock offset */
    306 long clock_cpu = 0;		/* CPU clock adjust */
    307 #endif /* HIGHBALL */
    308 #endif /* EXT_CLOCK */
    309 #endif /* NTP */
    310 
    311 
    312 /*
    313  * Bump a timeval by a small number of usec's.
    314  */
    315 #define BUMPTIME(t, usec) { \
    316 	volatile struct timeval *tp = (t); \
    317 	long us; \
    318  \
    319 	tp->tv_usec = us = tp->tv_usec + (usec); \
    320 	if (us >= 1000000) { \
    321 		tp->tv_usec = us - 1000000; \
    322 		tp->tv_sec++; \
    323 	} \
    324 }
    325 
    326 int	stathz;
    327 int	profhz;
    328 int	profsrc;
    329 int	schedhz;
    330 int	profprocs;
    331 int	hardclock_ticks;
    332 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
    333 static int psdiv;			/* prof => stat divider */
    334 int	psratio;			/* ratio: prof / stat */
    335 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    336 #ifndef NTP
    337 static int tickfixcnt;			/* accumulated fractional error */
    338 #else
    339 int	fixtick;			/* used by NTP for same */
    340 int	shifthz;
    341 #endif
    342 
    343 /*
    344  * We might want ldd to load the both words from time at once.
    345  * To succeed we need to be quadword aligned.
    346  * The sparc already does that, and that it has worked so far is a fluke.
    347  */
    348 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    349 volatile struct	timeval mono_time;
    350 
    351 void	*softclock_si;
    352 
    353 /*
    354  * Initialize clock frequencies and start both clocks running.
    355  */
    356 void
    357 initclocks(void)
    358 {
    359 	int i;
    360 
    361 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    362 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    363 	if (softclock_si == NULL)
    364 		panic("initclocks: unable to register softclock intr");
    365 #endif
    366 
    367 	/*
    368 	 * Set divisors to 1 (normal case) and let the machine-specific
    369 	 * code do its bit.
    370 	 */
    371 	psdiv = 1;
    372 	cpu_initclocks();
    373 
    374 	/*
    375 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    376 	 */
    377 	i = stathz ? stathz : hz;
    378 	if (profhz == 0)
    379 		profhz = i;
    380 	psratio = profhz / i;
    381 	rrticks = hz / 10;
    382 	if (schedhz == 0) {
    383 		/* 16Hz is best */
    384 		statscheddiv = i / 16;
    385 		if (statscheddiv <= 0)
    386 			panic("statscheddiv");
    387 	}
    388 
    389 #ifdef NTP
    390 	switch (hz) {
    391 	case 1:
    392 		shifthz = SHIFT_SCALE - 0;
    393 		break;
    394 	case 2:
    395 		shifthz = SHIFT_SCALE - 1;
    396 		break;
    397 	case 4:
    398 		shifthz = SHIFT_SCALE - 2;
    399 		break;
    400 	case 8:
    401 		shifthz = SHIFT_SCALE - 3;
    402 		break;
    403 	case 16:
    404 		shifthz = SHIFT_SCALE - 4;
    405 		break;
    406 	case 32:
    407 		shifthz = SHIFT_SCALE - 5;
    408 		break;
    409 	case 50:
    410 	case 60:
    411 	case 64:
    412 		shifthz = SHIFT_SCALE - 6;
    413 		break;
    414 	case 96:
    415 	case 100:
    416 	case 128:
    417 		shifthz = SHIFT_SCALE - 7;
    418 		break;
    419 	case 256:
    420 		shifthz = SHIFT_SCALE - 8;
    421 		break;
    422 	case 512:
    423 		shifthz = SHIFT_SCALE - 9;
    424 		break;
    425 	case 1000:
    426 	case 1024:
    427 		shifthz = SHIFT_SCALE - 10;
    428 		break;
    429 	case 1200:
    430 	case 2048:
    431 		shifthz = SHIFT_SCALE - 11;
    432 		break;
    433 	case 4096:
    434 		shifthz = SHIFT_SCALE - 12;
    435 		break;
    436 	case 8192:
    437 		shifthz = SHIFT_SCALE - 13;
    438 		break;
    439 	case 16384:
    440 		shifthz = SHIFT_SCALE - 14;
    441 		break;
    442 	case 32768:
    443 		shifthz = SHIFT_SCALE - 15;
    444 		break;
    445 	case 65536:
    446 		shifthz = SHIFT_SCALE - 16;
    447 		break;
    448 	default:
    449 		panic("weird hz");
    450 	}
    451 	if (fixtick == 0) {
    452 		/*
    453 		 * Give MD code a chance to set this to a better
    454 		 * value; but, if it doesn't, we should.
    455 		 */
    456 		fixtick = (1000000 - (hz*tick));
    457 	}
    458 #endif
    459 }
    460 
    461 /*
    462  * The real-time timer, interrupting hz times per second.
    463  */
    464 void
    465 hardclock(struct clockframe *frame)
    466 {
    467 	struct lwp *l;
    468 	struct proc *p;
    469 	int delta;
    470 	extern int tickdelta;
    471 	extern long timedelta;
    472 	struct cpu_info *ci = curcpu();
    473 	struct ptimer *pt;
    474 #ifdef NTP
    475 	int time_update;
    476 	int ltemp;
    477 #endif
    478 
    479 	l = curlwp;
    480 	if (l) {
    481 		p = l->l_proc;
    482 		/*
    483 		 * Run current process's virtual and profile time, as needed.
    484 		 */
    485 		if (CLKF_USERMODE(frame) && p->p_timers &&
    486 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    487 			if (itimerdecr(pt, tick) == 0)
    488 				itimerfire(pt);
    489 		if (p->p_timers &&
    490 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    491 			if (itimerdecr(pt, tick) == 0)
    492 				itimerfire(pt);
    493 	}
    494 
    495 	/*
    496 	 * If no separate statistics clock is available, run it from here.
    497 	 */
    498 	if (stathz == 0)
    499 		statclock(frame);
    500 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    501 		roundrobin(ci);
    502 
    503 #if defined(MULTIPROCESSOR)
    504 	/*
    505 	 * If we are not the primary CPU, we're not allowed to do
    506 	 * any more work.
    507 	 */
    508 	if (CPU_IS_PRIMARY(ci) == 0)
    509 		return;
    510 #endif
    511 
    512 	/*
    513 	 * Increment the time-of-day.  The increment is normally just
    514 	 * ``tick''.  If the machine is one which has a clock frequency
    515 	 * such that ``hz'' would not divide the second evenly into
    516 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    517 	 * if we are still adjusting the time (see adjtime()),
    518 	 * ``tickdelta'' may also be added in.
    519 	 */
    520 	hardclock_ticks++;
    521 	delta = tick;
    522 
    523 #ifndef NTP
    524 	if (tickfix) {
    525 		tickfixcnt += tickfix;
    526 		if (tickfixcnt >= tickfixinterval) {
    527 			delta++;
    528 			tickfixcnt -= tickfixinterval;
    529 		}
    530 	}
    531 #endif /* !NTP */
    532 	/* Imprecise 4bsd adjtime() handling */
    533 	if (timedelta != 0) {
    534 		delta += tickdelta;
    535 		timedelta -= tickdelta;
    536 	}
    537 
    538 #ifdef notyet
    539 	microset();
    540 #endif
    541 
    542 #ifndef NTP
    543 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    544 #endif
    545 	BUMPTIME(&mono_time, delta);
    546 
    547 #ifdef NTP
    548 	time_update = delta;
    549 
    550 	/*
    551 	 * Compute the phase adjustment. If the low-order bits
    552 	 * (time_phase) of the update overflow, bump the high-order bits
    553 	 * (time_update).
    554 	 */
    555 	time_phase += time_adj;
    556 	if (time_phase <= -FINEUSEC) {
    557 		ltemp = -time_phase >> SHIFT_SCALE;
    558 		time_phase += ltemp << SHIFT_SCALE;
    559 		time_update -= ltemp;
    560 	} else if (time_phase >= FINEUSEC) {
    561 		ltemp = time_phase >> SHIFT_SCALE;
    562 		time_phase -= ltemp << SHIFT_SCALE;
    563 		time_update += ltemp;
    564 	}
    565 
    566 #ifdef HIGHBALL
    567 	/*
    568 	 * If the HIGHBALL board is installed, we need to adjust the
    569 	 * external clock offset in order to close the hardware feedback
    570 	 * loop. This will adjust the external clock phase and frequency
    571 	 * in small amounts. The additional phase noise and frequency
    572 	 * wander this causes should be minimal. We also need to
    573 	 * discipline the kernel time variable, since the PLL is used to
    574 	 * discipline the external clock. If the Highball board is not
    575 	 * present, we discipline kernel time with the PLL as usual. We
    576 	 * assume that the external clock phase adjustment (time_update)
    577 	 * and kernel phase adjustment (clock_cpu) are less than the
    578 	 * value of tick.
    579 	 */
    580 	clock_offset.tv_usec += time_update;
    581 	if (clock_offset.tv_usec >= 1000000) {
    582 		clock_offset.tv_sec++;
    583 		clock_offset.tv_usec -= 1000000;
    584 	}
    585 	if (clock_offset.tv_usec < 0) {
    586 		clock_offset.tv_sec--;
    587 		clock_offset.tv_usec += 1000000;
    588 	}
    589 	time.tv_usec += clock_cpu;
    590 	clock_cpu = 0;
    591 #else
    592 	time.tv_usec += time_update;
    593 #endif /* HIGHBALL */
    594 
    595 	/*
    596 	 * On rollover of the second the phase adjustment to be used for
    597 	 * the next second is calculated. Also, the maximum error is
    598 	 * increased by the tolerance. If the PPS frequency discipline
    599 	 * code is present, the phase is increased to compensate for the
    600 	 * CPU clock oscillator frequency error.
    601 	 *
    602  	 * On a 32-bit machine and given parameters in the timex.h
    603 	 * header file, the maximum phase adjustment is +-512 ms and
    604 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    605 	 * 64-bit machine, you shouldn't need to ask.
    606 	 */
    607 	if (time.tv_usec >= 1000000) {
    608 		time.tv_usec -= 1000000;
    609 		time.tv_sec++;
    610 		time_maxerror += time_tolerance >> SHIFT_USEC;
    611 
    612 		/*
    613 		 * Leap second processing. If in leap-insert state at
    614 		 * the end of the day, the system clock is set back one
    615 		 * second; if in leap-delete state, the system clock is
    616 		 * set ahead one second. The microtime() routine or
    617 		 * external clock driver will insure that reported time
    618 		 * is always monotonic. The ugly divides should be
    619 		 * replaced.
    620 		 */
    621 		switch (time_state) {
    622 		case TIME_OK:
    623 			if (time_status & STA_INS)
    624 				time_state = TIME_INS;
    625 			else if (time_status & STA_DEL)
    626 				time_state = TIME_DEL;
    627 			break;
    628 
    629 		case TIME_INS:
    630 			if (time.tv_sec % 86400 == 0) {
    631 				time.tv_sec--;
    632 				time_state = TIME_OOP;
    633 			}
    634 			break;
    635 
    636 		case TIME_DEL:
    637 			if ((time.tv_sec + 1) % 86400 == 0) {
    638 				time.tv_sec++;
    639 				time_state = TIME_WAIT;
    640 			}
    641 			break;
    642 
    643 		case TIME_OOP:
    644 			time_state = TIME_WAIT;
    645 			break;
    646 
    647 		case TIME_WAIT:
    648 			if (!(time_status & (STA_INS | STA_DEL)))
    649 				time_state = TIME_OK;
    650 			break;
    651 		}
    652 
    653 		/*
    654 		 * Compute the phase adjustment for the next second. In
    655 		 * PLL mode, the offset is reduced by a fixed factor
    656 		 * times the time constant. In FLL mode the offset is
    657 		 * used directly. In either mode, the maximum phase
    658 		 * adjustment for each second is clamped so as to spread
    659 		 * the adjustment over not more than the number of
    660 		 * seconds between updates.
    661 		 */
    662 		if (time_offset < 0) {
    663 			ltemp = -time_offset;
    664 			if (!(time_status & STA_FLL))
    665 				ltemp >>= SHIFT_KG + time_constant;
    666 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    667 				ltemp = (MAXPHASE / MINSEC) <<
    668 				    SHIFT_UPDATE;
    669 			time_offset += ltemp;
    670 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    671 		} else if (time_offset > 0) {
    672 			ltemp = time_offset;
    673 			if (!(time_status & STA_FLL))
    674 				ltemp >>= SHIFT_KG + time_constant;
    675 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    676 				ltemp = (MAXPHASE / MINSEC) <<
    677 				    SHIFT_UPDATE;
    678 			time_offset -= ltemp;
    679 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    680 		} else
    681 			time_adj = 0;
    682 
    683 		/*
    684 		 * Compute the frequency estimate and additional phase
    685 		 * adjustment due to frequency error for the next
    686 		 * second. When the PPS signal is engaged, gnaw on the
    687 		 * watchdog counter and update the frequency computed by
    688 		 * the pll and the PPS signal.
    689 		 */
    690 #ifdef PPS_SYNC
    691 		pps_valid++;
    692 		if (pps_valid == PPS_VALID) {
    693 			pps_jitter = MAXTIME;
    694 			pps_stabil = MAXFREQ;
    695 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    696 			    STA_PPSWANDER | STA_PPSERROR);
    697 		}
    698 		ltemp = time_freq + pps_freq;
    699 #else
    700 		ltemp = time_freq;
    701 #endif /* PPS_SYNC */
    702 
    703 		if (ltemp < 0)
    704 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    705 		else
    706 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    707 		time_adj += (long)fixtick << shifthz;
    708 
    709 		/*
    710 		 * When the CPU clock oscillator frequency is not a
    711 		 * power of 2 in Hz, shifthz is only an approximate
    712 		 * scale factor.
    713 		 *
    714 		 * To determine the adjustment, you can do the following:
    715 		 *   bc -q
    716 		 *   scale=24
    717 		 *   obase=2
    718 		 *   idealhz/realhz
    719 		 * where `idealhz' is the next higher power of 2, and `realhz'
    720 		 * is the actual value.  You may need to factor this result
    721 		 * into a sequence of 2 multipliers to get better precision.
    722 		 *
    723 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    724 		 *   bc -q
    725 		 *   scale=24
    726 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    727 		 * (and then multiply by 1000000 to get ppm).
    728 		 */
    729 		switch (hz) {
    730 		case 60:
    731 			/* A factor of 1.000100010001 gives about 15ppm
    732 			   error. */
    733 			if (time_adj < 0) {
    734 				time_adj -= (-time_adj >> 4);
    735 				time_adj -= (-time_adj >> 8);
    736 			} else {
    737 				time_adj += (time_adj >> 4);
    738 				time_adj += (time_adj >> 8);
    739 			}
    740 			break;
    741 
    742 		case 96:
    743 			/* A factor of 1.0101010101 gives about 244ppm error. */
    744 			if (time_adj < 0) {
    745 				time_adj -= (-time_adj >> 2);
    746 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    747 			} else {
    748 				time_adj += (time_adj >> 2);
    749 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    750 			}
    751 			break;
    752 
    753 		case 50:
    754 		case 100:
    755 			/* A factor of 1.010001111010111 gives about 1ppm
    756 			   error. */
    757 			if (time_adj < 0) {
    758 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    759 				time_adj += (-time_adj >> 10);
    760 			} else {
    761 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    762 				time_adj -= (time_adj >> 10);
    763 			}
    764 			break;
    765 
    766 		case 1000:
    767 			/* A factor of 1.000001100010100001 gives about 50ppm
    768 			   error. */
    769 			if (time_adj < 0) {
    770 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    771 				time_adj -= (-time_adj >> 7);
    772 			} else {
    773 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    774 				time_adj += (time_adj >> 7);
    775 			}
    776 			break;
    777 
    778 		case 1200:
    779 			/* A factor of 1.1011010011100001 gives about 64ppm
    780 			   error. */
    781 			if (time_adj < 0) {
    782 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    783 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    784 			} else {
    785 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    786 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    787 			}
    788 			break;
    789 		}
    790 
    791 #ifdef EXT_CLOCK
    792 		/*
    793 		 * If an external clock is present, it is necessary to
    794 		 * discipline the kernel time variable anyway, since not
    795 		 * all system components use the microtime() interface.
    796 		 * Here, the time offset between the external clock and
    797 		 * kernel time variable is computed every so often.
    798 		 */
    799 		clock_count++;
    800 		if (clock_count > CLOCK_INTERVAL) {
    801 			clock_count = 0;
    802 			microtime(&clock_ext);
    803 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    804 			delta.tv_usec = clock_ext.tv_usec -
    805 			    time.tv_usec;
    806 			if (delta.tv_usec < 0)
    807 				delta.tv_sec--;
    808 			if (delta.tv_usec >= 500000) {
    809 				delta.tv_usec -= 1000000;
    810 				delta.tv_sec++;
    811 			}
    812 			if (delta.tv_usec < -500000) {
    813 				delta.tv_usec += 1000000;
    814 				delta.tv_sec--;
    815 			}
    816 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    817 			    delta.tv_usec > MAXPHASE) ||
    818 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    819 			    delta.tv_usec < -MAXPHASE)) {
    820 				time = clock_ext;
    821 				delta.tv_sec = 0;
    822 				delta.tv_usec = 0;
    823 			}
    824 #ifdef HIGHBALL
    825 			clock_cpu = delta.tv_usec;
    826 #else /* HIGHBALL */
    827 			hardupdate(delta.tv_usec);
    828 #endif /* HIGHBALL */
    829 		}
    830 #endif /* EXT_CLOCK */
    831 	}
    832 
    833 #endif /* NTP */
    834 
    835 	/*
    836 	 * Update real-time timeout queue.
    837 	 * Process callouts at a very low CPU priority, so we don't keep the
    838 	 * relatively high clock interrupt priority any longer than necessary.
    839 	 */
    840 	if (callout_hardclock()) {
    841 		if (CLKF_BASEPRI(frame)) {
    842 			/*
    843 			 * Save the overhead of a software interrupt;
    844 			 * it will happen as soon as we return, so do
    845 			 * it now.
    846 			 */
    847 			spllowersoftclock();
    848 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    849 			softclock(NULL);
    850 			KERNEL_UNLOCK();
    851 		} else {
    852 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    853 			softintr_schedule(softclock_si);
    854 #else
    855 			setsoftclock();
    856 #endif
    857 		}
    858 	}
    859 }
    860 
    861 /*
    862  * Compute number of hz until specified time.  Used to compute second
    863  * argument to callout_reset() from an absolute time.
    864  */
    865 int
    866 hzto(struct timeval *tv)
    867 {
    868 	unsigned long ticks;
    869 	long sec, usec;
    870 	int s;
    871 
    872 	/*
    873 	 * If the number of usecs in the whole seconds part of the time
    874 	 * difference fits in a long, then the total number of usecs will
    875 	 * fit in an unsigned long.  Compute the total and convert it to
    876 	 * ticks, rounding up and adding 1 to allow for the current tick
    877 	 * to expire.  Rounding also depends on unsigned long arithmetic
    878 	 * to avoid overflow.
    879 	 *
    880 	 * Otherwise, if the number of ticks in the whole seconds part of
    881 	 * the time difference fits in a long, then convert the parts to
    882 	 * ticks separately and add, using similar rounding methods and
    883 	 * overflow avoidance.  This method would work in the previous
    884 	 * case, but it is slightly slower and assume that hz is integral.
    885 	 *
    886 	 * Otherwise, round the time difference down to the maximum
    887 	 * representable value.
    888 	 *
    889 	 * If ints are 32-bit, then the maximum value for any timeout in
    890 	 * 10ms ticks is 248 days.
    891 	 */
    892 	s = splclock();
    893 	sec = tv->tv_sec - time.tv_sec;
    894 	usec = tv->tv_usec - time.tv_usec;
    895 	splx(s);
    896 
    897 	if (usec < 0) {
    898 		sec--;
    899 		usec += 1000000;
    900 	}
    901 
    902 	if (sec < 0 || (sec == 0 && usec <= 0)) {
    903 		/*
    904 		 * Would expire now or in the past.  Return 0 ticks.
    905 		 * This is different from the legacy hzto() interface,
    906 		 * and callers need to check for it.
    907 		 */
    908 		ticks = 0;
    909 	} else if (sec <= (LONG_MAX / 1000000))
    910 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    911 		    / tick) + 1;
    912 	else if (sec <= (LONG_MAX / hz))
    913 		ticks = (sec * hz) +
    914 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    915 	else
    916 		ticks = LONG_MAX;
    917 
    918 	if (ticks > INT_MAX)
    919 		ticks = INT_MAX;
    920 
    921 	return ((int)ticks);
    922 }
    923 
    924 /*
    925  * Start profiling on a process.
    926  *
    927  * Kernel profiling passes proc0 which never exits and hence
    928  * keeps the profile clock running constantly.
    929  */
    930 void
    931 startprofclock(struct proc *p)
    932 {
    933 
    934 	if ((p->p_flag & P_PROFIL) == 0) {
    935 		p->p_flag |= P_PROFIL;
    936 		/*
    937 		 * This is only necessary if using the clock as the
    938 		 * profiling source.
    939 		 */
    940 		if (++profprocs == 1 && stathz != 0)
    941 			psdiv = psratio;
    942 	}
    943 }
    944 
    945 /*
    946  * Stop profiling on a process.
    947  */
    948 void
    949 stopprofclock(struct proc *p)
    950 {
    951 
    952 	if (p->p_flag & P_PROFIL) {
    953 		p->p_flag &= ~P_PROFIL;
    954 		/*
    955 		 * This is only necessary if using the clock as the
    956 		 * profiling source.
    957 		 */
    958 		if (--profprocs == 0 && stathz != 0)
    959 			psdiv = 1;
    960 	}
    961 }
    962 
    963 #if defined(PERFCTRS)
    964 /*
    965  * Independent profiling "tick" in case we're using a separate
    966  * clock or profiling event source.  Currently, that's just
    967  * performance counters--hence the wrapper.
    968  */
    969 void
    970 proftick(struct clockframe *frame)
    971 {
    972 #ifdef GPROF
    973         struct gmonparam *g;
    974         intptr_t i;
    975 #endif
    976 	struct proc *p;
    977 
    978 	p = curproc;
    979 	if (CLKF_USERMODE(frame)) {
    980 		if (p->p_flag & P_PROFIL)
    981 			addupc_intr(p, CLKF_PC(frame));
    982 	} else {
    983 #ifdef GPROF
    984 		g = &_gmonparam;
    985 		if (g->state == GMON_PROF_ON) {
    986 			i = CLKF_PC(frame) - g->lowpc;
    987 			if (i < g->textsize) {
    988 				i /= HISTFRACTION * sizeof(*g->kcount);
    989 				g->kcount[i]++;
    990 			}
    991 		}
    992 #endif
    993 #ifdef PROC_PC
    994                 if (p && p->p_flag & P_PROFIL)
    995                         addupc_intr(p, PROC_PC(p));
    996 #endif
    997 	}
    998 }
    999 #endif
   1000 
   1001 /*
   1002  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1003  * do process and kernel statistics.
   1004  */
   1005 void
   1006 statclock(struct clockframe *frame)
   1007 {
   1008 #ifdef GPROF
   1009 	struct gmonparam *g;
   1010 	intptr_t i;
   1011 #endif
   1012 	struct cpu_info *ci = curcpu();
   1013 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1014 	struct lwp *l;
   1015 	struct proc *p;
   1016 
   1017 	/*
   1018 	 * Notice changes in divisor frequency, and adjust clock
   1019 	 * frequency accordingly.
   1020 	 */
   1021 	if (spc->spc_psdiv != psdiv) {
   1022 		spc->spc_psdiv = psdiv;
   1023 		spc->spc_pscnt = psdiv;
   1024 		if (psdiv == 1) {
   1025 			setstatclockrate(stathz);
   1026 		} else {
   1027 			setstatclockrate(profhz);
   1028 		}
   1029 	}
   1030 	l = curlwp;
   1031 	p = (l ? l->l_proc : 0);
   1032 	if (CLKF_USERMODE(frame)) {
   1033 		if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
   1034 			addupc_intr(p, CLKF_PC(frame));
   1035 		if (--spc->spc_pscnt > 0)
   1036 			return;
   1037 		/*
   1038 		 * Came from user mode; CPU was in user state.
   1039 		 * If this process is being profiled record the tick.
   1040 		 */
   1041 		p->p_uticks++;
   1042 		if (p->p_nice > NZERO)
   1043 			spc->spc_cp_time[CP_NICE]++;
   1044 		else
   1045 			spc->spc_cp_time[CP_USER]++;
   1046 	} else {
   1047 #ifdef GPROF
   1048 		/*
   1049 		 * Kernel statistics are just like addupc_intr, only easier.
   1050 		 */
   1051 		g = &_gmonparam;
   1052 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1053 			i = CLKF_PC(frame) - g->lowpc;
   1054 			if (i < g->textsize) {
   1055 				i /= HISTFRACTION * sizeof(*g->kcount);
   1056 				g->kcount[i]++;
   1057 			}
   1058 		}
   1059 #endif
   1060 #ifdef LWP_PC
   1061 		if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
   1062 			addupc_intr(p, LWP_PC(l));
   1063 #endif
   1064 		if (--spc->spc_pscnt > 0)
   1065 			return;
   1066 		/*
   1067 		 * Came from kernel mode, so we were:
   1068 		 * - handling an interrupt,
   1069 		 * - doing syscall or trap work on behalf of the current
   1070 		 *   user process, or
   1071 		 * - spinning in the idle loop.
   1072 		 * Whichever it is, charge the time as appropriate.
   1073 		 * Note that we charge interrupts to the current process,
   1074 		 * regardless of whether they are ``for'' that process,
   1075 		 * so that we know how much of its real time was spent
   1076 		 * in ``non-process'' (i.e., interrupt) work.
   1077 		 */
   1078 		if (CLKF_INTR(frame)) {
   1079 			if (p != NULL)
   1080 				p->p_iticks++;
   1081 			spc->spc_cp_time[CP_INTR]++;
   1082 		} else if (p != NULL) {
   1083 			p->p_sticks++;
   1084 			spc->spc_cp_time[CP_SYS]++;
   1085 		} else
   1086 			spc->spc_cp_time[CP_IDLE]++;
   1087 	}
   1088 	spc->spc_pscnt = psdiv;
   1089 
   1090 	if (l != NULL) {
   1091 		++p->p_cpticks;
   1092 		/*
   1093 		 * If no separate schedclock is provided, call it here
   1094 		 * at about 16 Hz.
   1095 		 */
   1096 		if (schedhz == 0)
   1097 			if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
   1098 				schedclock(l);
   1099 				ci->ci_schedstate.spc_schedticks = statscheddiv;
   1100 			}
   1101 	}
   1102 }
   1103 
   1104 
   1105 #ifdef NTP	/* NTP phase-locked loop in kernel */
   1106 
   1107 /*
   1108  * hardupdate() - local clock update
   1109  *
   1110  * This routine is called by ntp_adjtime() to update the local clock
   1111  * phase and frequency. The implementation is of an adaptive-parameter,
   1112  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1113  * time and frequency offset estimates for each call. If the kernel PPS
   1114  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1115  * determines the new time offset, instead of the calling argument.
   1116  * Presumably, calls to ntp_adjtime() occur only when the caller
   1117  * believes the local clock is valid within some bound (+-128 ms with
   1118  * NTP). If the caller's time is far different than the PPS time, an
   1119  * argument will ensue, and it's not clear who will lose.
   1120  *
   1121  * For uncompensated quartz crystal oscillatores and nominal update
   1122  * intervals less than 1024 s, operation should be in phase-lock mode
   1123  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1124  * intervals greater than thiss, operation should be in frequency-lock
   1125  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1126  *
   1127  * Note: splclock() is in effect.
   1128  */
   1129 void
   1130 hardupdate(long offset)
   1131 {
   1132 	long ltemp, mtemp;
   1133 
   1134 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1135 		return;
   1136 	ltemp = offset;
   1137 #ifdef PPS_SYNC
   1138 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1139 		ltemp = pps_offset;
   1140 #endif /* PPS_SYNC */
   1141 
   1142 	/*
   1143 	 * Scale the phase adjustment and clamp to the operating range.
   1144 	 */
   1145 	if (ltemp > MAXPHASE)
   1146 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1147 	else if (ltemp < -MAXPHASE)
   1148 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1149 	else
   1150 		time_offset = ltemp << SHIFT_UPDATE;
   1151 
   1152 	/*
   1153 	 * Select whether the frequency is to be controlled and in which
   1154 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1155 	 * multiply/divide should be replaced someday.
   1156 	 */
   1157 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1158 		time_reftime = time.tv_sec;
   1159 	mtemp = time.tv_sec - time_reftime;
   1160 	time_reftime = time.tv_sec;
   1161 	if (time_status & STA_FLL) {
   1162 		if (mtemp >= MINSEC) {
   1163 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1164 			    SHIFT_UPDATE));
   1165 			if (ltemp < 0)
   1166 				time_freq -= -ltemp >> SHIFT_KH;
   1167 			else
   1168 				time_freq += ltemp >> SHIFT_KH;
   1169 		}
   1170 	} else {
   1171 		if (mtemp < MAXSEC) {
   1172 			ltemp *= mtemp;
   1173 			if (ltemp < 0)
   1174 				time_freq -= -ltemp >> (time_constant +
   1175 				    time_constant + SHIFT_KF -
   1176 				    SHIFT_USEC);
   1177 			else
   1178 				time_freq += ltemp >> (time_constant +
   1179 				    time_constant + SHIFT_KF -
   1180 				    SHIFT_USEC);
   1181 		}
   1182 	}
   1183 	if (time_freq > time_tolerance)
   1184 		time_freq = time_tolerance;
   1185 	else if (time_freq < -time_tolerance)
   1186 		time_freq = -time_tolerance;
   1187 }
   1188 
   1189 #ifdef PPS_SYNC
   1190 /*
   1191  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1192  *
   1193  * This routine is called at each PPS interrupt in order to discipline
   1194  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1195  * and leaves it in a handy spot for the hardclock() routine. It
   1196  * integrates successive PPS phase differences and calculates the
   1197  * frequency offset. This is used in hardclock() to discipline the CPU
   1198  * clock oscillator so that intrinsic frequency error is cancelled out.
   1199  * The code requires the caller to capture the time and hardware counter
   1200  * value at the on-time PPS signal transition.
   1201  *
   1202  * Note that, on some Unix systems, this routine runs at an interrupt
   1203  * priority level higher than the timer interrupt routine hardclock().
   1204  * Therefore, the variables used are distinct from the hardclock()
   1205  * variables, except for certain exceptions: The PPS frequency pps_freq
   1206  * and phase pps_offset variables are determined by this routine and
   1207  * updated atomically. The time_tolerance variable can be considered a
   1208  * constant, since it is infrequently changed, and then only when the
   1209  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1210  * once per second by hardclock() and is atomically cleared in this
   1211  * routine.
   1212  */
   1213 void
   1214 hardpps(struct timeval *tvp,		/* time at PPS */
   1215 	long usec			/* hardware counter at PPS */)
   1216 {
   1217 	long u_usec, v_usec, bigtick;
   1218 	long cal_sec, cal_usec;
   1219 
   1220 	/*
   1221 	 * An occasional glitch can be produced when the PPS interrupt
   1222 	 * occurs in the hardclock() routine before the time variable is
   1223 	 * updated. Here the offset is discarded when the difference
   1224 	 * between it and the last one is greater than tick/2, but not
   1225 	 * if the interval since the first discard exceeds 30 s.
   1226 	 */
   1227 	time_status |= STA_PPSSIGNAL;
   1228 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1229 	pps_valid = 0;
   1230 	u_usec = -tvp->tv_usec;
   1231 	if (u_usec < -500000)
   1232 		u_usec += 1000000;
   1233 	v_usec = pps_offset - u_usec;
   1234 	if (v_usec < 0)
   1235 		v_usec = -v_usec;
   1236 	if (v_usec > (tick >> 1)) {
   1237 		if (pps_glitch > MAXGLITCH) {
   1238 			pps_glitch = 0;
   1239 			pps_tf[2] = u_usec;
   1240 			pps_tf[1] = u_usec;
   1241 		} else {
   1242 			pps_glitch++;
   1243 			u_usec = pps_offset;
   1244 		}
   1245 	} else
   1246 		pps_glitch = 0;
   1247 
   1248 	/*
   1249 	 * A three-stage median filter is used to help deglitch the pps
   1250 	 * time. The median sample becomes the time offset estimate; the
   1251 	 * difference between the other two samples becomes the time
   1252 	 * dispersion (jitter) estimate.
   1253 	 */
   1254 	pps_tf[2] = pps_tf[1];
   1255 	pps_tf[1] = pps_tf[0];
   1256 	pps_tf[0] = u_usec;
   1257 	if (pps_tf[0] > pps_tf[1]) {
   1258 		if (pps_tf[1] > pps_tf[2]) {
   1259 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1260 			v_usec = pps_tf[0] - pps_tf[2];
   1261 		} else if (pps_tf[2] > pps_tf[0]) {
   1262 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1263 			v_usec = pps_tf[2] - pps_tf[1];
   1264 		} else {
   1265 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1266 			v_usec = pps_tf[0] - pps_tf[1];
   1267 		}
   1268 	} else {
   1269 		if (pps_tf[1] < pps_tf[2]) {
   1270 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1271 			v_usec = pps_tf[2] - pps_tf[0];
   1272 		} else  if (pps_tf[2] < pps_tf[0]) {
   1273 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1274 			v_usec = pps_tf[1] - pps_tf[2];
   1275 		} else {
   1276 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1277 			v_usec = pps_tf[1] - pps_tf[0];
   1278 		}
   1279 	}
   1280 	if (v_usec > MAXTIME)
   1281 		pps_jitcnt++;
   1282 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1283 	if (v_usec < 0)
   1284 		pps_jitter -= -v_usec >> PPS_AVG;
   1285 	else
   1286 		pps_jitter += v_usec >> PPS_AVG;
   1287 	if (pps_jitter > (MAXTIME >> 1))
   1288 		time_status |= STA_PPSJITTER;
   1289 
   1290 	/*
   1291 	 * During the calibration interval adjust the starting time when
   1292 	 * the tick overflows. At the end of the interval compute the
   1293 	 * duration of the interval and the difference of the hardware
   1294 	 * counters at the beginning and end of the interval. This code
   1295 	 * is deliciously complicated by the fact valid differences may
   1296 	 * exceed the value of tick when using long calibration
   1297 	 * intervals and small ticks. Note that the counter can be
   1298 	 * greater than tick if caught at just the wrong instant, but
   1299 	 * the values returned and used here are correct.
   1300 	 */
   1301 	bigtick = (long)tick << SHIFT_USEC;
   1302 	pps_usec -= pps_freq;
   1303 	if (pps_usec >= bigtick)
   1304 		pps_usec -= bigtick;
   1305 	if (pps_usec < 0)
   1306 		pps_usec += bigtick;
   1307 	pps_time.tv_sec++;
   1308 	pps_count++;
   1309 	if (pps_count < (1 << pps_shift))
   1310 		return;
   1311 	pps_count = 0;
   1312 	pps_calcnt++;
   1313 	u_usec = usec << SHIFT_USEC;
   1314 	v_usec = pps_usec - u_usec;
   1315 	if (v_usec >= bigtick >> 1)
   1316 		v_usec -= bigtick;
   1317 	if (v_usec < -(bigtick >> 1))
   1318 		v_usec += bigtick;
   1319 	if (v_usec < 0)
   1320 		v_usec = -(-v_usec >> pps_shift);
   1321 	else
   1322 		v_usec = v_usec >> pps_shift;
   1323 	pps_usec = u_usec;
   1324 	cal_sec = tvp->tv_sec;
   1325 	cal_usec = tvp->tv_usec;
   1326 	cal_sec -= pps_time.tv_sec;
   1327 	cal_usec -= pps_time.tv_usec;
   1328 	if (cal_usec < 0) {
   1329 		cal_usec += 1000000;
   1330 		cal_sec--;
   1331 	}
   1332 	pps_time = *tvp;
   1333 
   1334 	/*
   1335 	 * Check for lost interrupts, noise, excessive jitter and
   1336 	 * excessive frequency error. The number of timer ticks during
   1337 	 * the interval may vary +-1 tick. Add to this a margin of one
   1338 	 * tick for the PPS signal jitter and maximum frequency
   1339 	 * deviation. If the limits are exceeded, the calibration
   1340 	 * interval is reset to the minimum and we start over.
   1341 	 */
   1342 	u_usec = (long)tick << 1;
   1343 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1344 	    || (cal_sec == 0 && cal_usec < u_usec))
   1345 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1346 		pps_errcnt++;
   1347 		pps_shift = PPS_SHIFT;
   1348 		pps_intcnt = 0;
   1349 		time_status |= STA_PPSERROR;
   1350 		return;
   1351 	}
   1352 
   1353 	/*
   1354 	 * A three-stage median filter is used to help deglitch the pps
   1355 	 * frequency. The median sample becomes the frequency offset
   1356 	 * estimate; the difference between the other two samples
   1357 	 * becomes the frequency dispersion (stability) estimate.
   1358 	 */
   1359 	pps_ff[2] = pps_ff[1];
   1360 	pps_ff[1] = pps_ff[0];
   1361 	pps_ff[0] = v_usec;
   1362 	if (pps_ff[0] > pps_ff[1]) {
   1363 		if (pps_ff[1] > pps_ff[2]) {
   1364 			u_usec = pps_ff[1];		/* 0 1 2 */
   1365 			v_usec = pps_ff[0] - pps_ff[2];
   1366 		} else if (pps_ff[2] > pps_ff[0]) {
   1367 			u_usec = pps_ff[0];		/* 2 0 1 */
   1368 			v_usec = pps_ff[2] - pps_ff[1];
   1369 		} else {
   1370 			u_usec = pps_ff[2];		/* 0 2 1 */
   1371 			v_usec = pps_ff[0] - pps_ff[1];
   1372 		}
   1373 	} else {
   1374 		if (pps_ff[1] < pps_ff[2]) {
   1375 			u_usec = pps_ff[1];		/* 2 1 0 */
   1376 			v_usec = pps_ff[2] - pps_ff[0];
   1377 		} else  if (pps_ff[2] < pps_ff[0]) {
   1378 			u_usec = pps_ff[0];		/* 1 0 2 */
   1379 			v_usec = pps_ff[1] - pps_ff[2];
   1380 		} else {
   1381 			u_usec = pps_ff[2];		/* 1 2 0 */
   1382 			v_usec = pps_ff[1] - pps_ff[0];
   1383 		}
   1384 	}
   1385 
   1386 	/*
   1387 	 * Here the frequency dispersion (stability) is updated. If it
   1388 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1389 	 * offset is updated as well, but clamped to the tolerance. It
   1390 	 * will be processed later by the hardclock() routine.
   1391 	 */
   1392 	v_usec = (v_usec >> 1) - pps_stabil;
   1393 	if (v_usec < 0)
   1394 		pps_stabil -= -v_usec >> PPS_AVG;
   1395 	else
   1396 		pps_stabil += v_usec >> PPS_AVG;
   1397 	if (pps_stabil > MAXFREQ >> 2) {
   1398 		pps_stbcnt++;
   1399 		time_status |= STA_PPSWANDER;
   1400 		return;
   1401 	}
   1402 	if (time_status & STA_PPSFREQ) {
   1403 		if (u_usec < 0) {
   1404 			pps_freq -= -u_usec >> PPS_AVG;
   1405 			if (pps_freq < -time_tolerance)
   1406 				pps_freq = -time_tolerance;
   1407 			u_usec = -u_usec;
   1408 		} else {
   1409 			pps_freq += u_usec >> PPS_AVG;
   1410 			if (pps_freq > time_tolerance)
   1411 				pps_freq = time_tolerance;
   1412 		}
   1413 	}
   1414 
   1415 	/*
   1416 	 * Here the calibration interval is adjusted. If the maximum
   1417 	 * time difference is greater than tick / 4, reduce the interval
   1418 	 * by half. If this is not the case for four consecutive
   1419 	 * intervals, double the interval.
   1420 	 */
   1421 	if (u_usec << pps_shift > bigtick >> 2) {
   1422 		pps_intcnt = 0;
   1423 		if (pps_shift > PPS_SHIFT)
   1424 			pps_shift--;
   1425 	} else if (pps_intcnt >= 4) {
   1426 		pps_intcnt = 0;
   1427 		if (pps_shift < PPS_SHIFTMAX)
   1428 			pps_shift++;
   1429 	} else
   1430 		pps_intcnt++;
   1431 }
   1432 #endif /* PPS_SYNC */
   1433 #endif /* NTP  */
   1434 
   1435 /*
   1436  * XXX: Until all md code has it.
   1437  */
   1438 struct timespec *
   1439 nanotime(struct timespec *ts)
   1440 {
   1441 	struct timeval tv;
   1442 
   1443 	microtime(&tv);
   1444 	TIMEVAL_TO_TIMESPEC(&tv, ts);
   1445 	return ts;
   1446 }
   1447