kern_clock.c revision 1.96.4.1 1 /* $NetBSD: kern_clock.c,v 1.96.4.1 2006/09/09 02:57:15 rpaulo Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.96.4.1 2006/09/09 02:57:15 rpaulo Exp $");
80
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #ifdef __HAVE_TIMECOUNTER
97 #include <sys/timetc.h>
98 #endif
99
100 #include <machine/cpu.h>
101 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
102 #include <machine/intr.h>
103 #endif
104
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
108
109 /*
110 * Clock handling routines.
111 *
112 * This code is written to operate with two timers that run independently of
113 * each other. The main clock, running hz times per second, is used to keep
114 * track of real time. The second timer handles kernel and user profiling,
115 * and does resource use estimation. If the second timer is programmable,
116 * it is randomized to avoid aliasing between the two clocks. For example,
117 * the randomization prevents an adversary from always giving up the CPU
118 * just before its quantum expires. Otherwise, it would never accumulate
119 * CPU ticks. The mean frequency of the second timer is stathz.
120 *
121 * If no second timer exists, stathz will be zero; in this case we drive
122 * profiling and statistics off the main clock. This WILL NOT be accurate;
123 * do not do it unless absolutely necessary.
124 *
125 * The statistics clock may (or may not) be run at a higher rate while
126 * profiling. This profile clock runs at profhz. We require that profhz
127 * be an integral multiple of stathz.
128 *
129 * If the statistics clock is running fast, it must be divided by the ratio
130 * profhz/stathz for statistics. (For profiling, every tick counts.)
131 */
132
133 #ifndef __HAVE_TIMECOUNTER
134 #ifdef NTP /* NTP phase-locked loop in kernel */
135 /*
136 * Phase/frequency-lock loop (PLL/FLL) definitions
137 *
138 * The following variables are read and set by the ntp_adjtime() system
139 * call.
140 *
141 * time_state shows the state of the system clock, with values defined
142 * in the timex.h header file.
143 *
144 * time_status shows the status of the system clock, with bits defined
145 * in the timex.h header file.
146 *
147 * time_offset is used by the PLL/FLL to adjust the system time in small
148 * increments.
149 *
150 * time_constant determines the bandwidth or "stiffness" of the PLL.
151 *
152 * time_tolerance determines maximum frequency error or tolerance of the
153 * CPU clock oscillator and is a property of the architecture; however,
154 * in principle it could change as result of the presence of external
155 * discipline signals, for instance.
156 *
157 * time_precision is usually equal to the kernel tick variable; however,
158 * in cases where a precision clock counter or external clock is
159 * available, the resolution can be much less than this and depend on
160 * whether the external clock is working or not.
161 *
162 * time_maxerror is initialized by a ntp_adjtime() call and increased by
163 * the kernel once each second to reflect the maximum error bound
164 * growth.
165 *
166 * time_esterror is set and read by the ntp_adjtime() call, but
167 * otherwise not used by the kernel.
168 */
169 int time_state = TIME_OK; /* clock state */
170 int time_status = STA_UNSYNC; /* clock status bits */
171 long time_offset = 0; /* time offset (us) */
172 long time_constant = 0; /* pll time constant */
173 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
174 long time_precision = 1; /* clock precision (us) */
175 long time_maxerror = MAXPHASE; /* maximum error (us) */
176 long time_esterror = MAXPHASE; /* estimated error (us) */
177
178 /*
179 * The following variables establish the state of the PLL/FLL and the
180 * residual time and frequency offset of the local clock. The scale
181 * factors are defined in the timex.h header file.
182 *
183 * time_phase and time_freq are the phase increment and the frequency
184 * increment, respectively, of the kernel time variable.
185 *
186 * time_freq is set via ntp_adjtime() from a value stored in a file when
187 * the synchronization daemon is first started. Its value is retrieved
188 * via ntp_adjtime() and written to the file about once per hour by the
189 * daemon.
190 *
191 * time_adj is the adjustment added to the value of tick at each timer
192 * interrupt and is recomputed from time_phase and time_freq at each
193 * seconds rollover.
194 *
195 * time_reftime is the second's portion of the system time at the last
196 * call to ntp_adjtime(). It is used to adjust the time_freq variable
197 * and to increase the time_maxerror as the time since last update
198 * increases.
199 */
200 long time_phase = 0; /* phase offset (scaled us) */
201 long time_freq = 0; /* frequency offset (scaled ppm) */
202 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
203 long time_reftime = 0; /* time at last adjustment (s) */
204
205 #ifdef PPS_SYNC
206 /*
207 * The following variables are used only if the kernel PPS discipline
208 * code is configured (PPS_SYNC). The scale factors are defined in the
209 * timex.h header file.
210 *
211 * pps_time contains the time at each calibration interval, as read by
212 * microtime(). pps_count counts the seconds of the calibration
213 * interval, the duration of which is nominally pps_shift in powers of
214 * two.
215 *
216 * pps_offset is the time offset produced by the time median filter
217 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
218 * this filter.
219 *
220 * pps_freq is the frequency offset produced by the frequency median
221 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
222 * by this filter.
223 *
224 * pps_usec is latched from a high resolution counter or external clock
225 * at pps_time. Here we want the hardware counter contents only, not the
226 * contents plus the time_tv.usec as usual.
227 *
228 * pps_valid counts the number of seconds since the last PPS update. It
229 * is used as a watchdog timer to disable the PPS discipline should the
230 * PPS signal be lost.
231 *
232 * pps_glitch counts the number of seconds since the beginning of an
233 * offset burst more than tick/2 from current nominal offset. It is used
234 * mainly to suppress error bursts due to priority conflicts between the
235 * PPS interrupt and timer interrupt.
236 *
237 * pps_intcnt counts the calibration intervals for use in the interval-
238 * adaptation algorithm. It's just too complicated for words.
239 *
240 * pps_kc_hardpps_source contains an arbitrary value that uniquely
241 * identifies the currently bound source of the PPS signal, or NULL
242 * if no source is bound.
243 *
244 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
245 * signal should be reported.
246 */
247 struct timeval pps_time; /* kernel time at last interval */
248 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
249 long pps_offset = 0; /* pps time offset (us) */
250 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
251 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
252 long pps_freq = 0; /* frequency offset (scaled ppm) */
253 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
254 long pps_usec = 0; /* microsec counter at last interval */
255 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
256 int pps_glitch = 0; /* pps signal glitch counter */
257 int pps_count = 0; /* calibration interval counter (s) */
258 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
259 int pps_intcnt = 0; /* intervals at current duration */
260 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
261 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
262
263 /*
264 * PPS signal quality monitors
265 *
266 * pps_jitcnt counts the seconds that have been discarded because the
267 * jitter measured by the time median filter exceeds the limit MAXTIME
268 * (100 us).
269 *
270 * pps_calcnt counts the frequency calibration intervals, which are
271 * variable from 4 s to 256 s.
272 *
273 * pps_errcnt counts the calibration intervals which have been discarded
274 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
275 * calibration interval jitter exceeds two ticks.
276 *
277 * pps_stbcnt counts the calibration intervals that have been discarded
278 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
279 */
280 long pps_jitcnt = 0; /* jitter limit exceeded */
281 long pps_calcnt = 0; /* calibration intervals */
282 long pps_errcnt = 0; /* calibration errors */
283 long pps_stbcnt = 0; /* stability limit exceeded */
284 #endif /* PPS_SYNC */
285
286 #ifdef EXT_CLOCK
287 /*
288 * External clock definitions
289 *
290 * The following definitions and declarations are used only if an
291 * external clock is configured on the system.
292 */
293 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
294
295 /*
296 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
297 * interrupt and decremented once each second.
298 */
299 int clock_count = 0; /* CPU clock counter */
300
301 #ifdef HIGHBALL
302 /*
303 * The clock_offset and clock_cpu variables are used by the HIGHBALL
304 * interface. The clock_offset variable defines the offset between
305 * system time and the HIGBALL counters. The clock_cpu variable contains
306 * the offset between the system clock and the HIGHBALL clock for use in
307 * disciplining the kernel time variable.
308 */
309 extern struct timeval clock_offset; /* Highball clock offset */
310 long clock_cpu = 0; /* CPU clock adjust */
311 #endif /* HIGHBALL */
312 #endif /* EXT_CLOCK */
313 #endif /* NTP */
314
315 /*
316 * Bump a timeval by a small number of usec's.
317 */
318 #define BUMPTIME(t, usec) { \
319 volatile struct timeval *tp = (t); \
320 long us; \
321 \
322 tp->tv_usec = us = tp->tv_usec + (usec); \
323 if (us >= 1000000) { \
324 tp->tv_usec = us - 1000000; \
325 tp->tv_sec++; \
326 } \
327 }
328 #endif /* !__HAVE_TIMECOUNTER */
329
330 int stathz;
331 int profhz;
332 int profsrc;
333 int schedhz;
334 int profprocs;
335 int hardclock_ticks;
336 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
337 static int psdiv; /* prof => stat divider */
338 int psratio; /* ratio: prof / stat */
339 #ifndef __HAVE_TIMECOUNTER
340 int tickfix, tickfixinterval; /* used if tick not really integral */
341 #ifndef NTP
342 static int tickfixcnt; /* accumulated fractional error */
343 #else
344 int fixtick; /* used by NTP for same */
345 int shifthz;
346 #endif
347
348 /*
349 * We might want ldd to load the both words from time at once.
350 * To succeed we need to be quadword aligned.
351 * The sparc already does that, and that it has worked so far is a fluke.
352 */
353 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
354 volatile struct timeval mono_time;
355 #endif /* !__HAVE_TIMECOUNTER */
356
357 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
358 void *softclock_si;
359 #endif
360
361 #ifdef __HAVE_TIMECOUNTER
362 static u_int get_intr_timecount(struct timecounter *);
363
364 static struct timecounter intr_timecounter = {
365 get_intr_timecount, /* get_timecount */
366 0, /* no poll_pps */
367 ~0u, /* counter_mask */
368 0, /* frequency */
369 "clockinterrupt", /* name */
370 0, /* quality - minimum implementation level for a clock */
371 NULL, /* prev */
372 NULL, /* next */
373 };
374
375 static u_int
376 get_intr_timecount(struct timecounter *tc)
377 {
378 return (u_int)hardclock_ticks;
379 }
380 #endif
381
382 /*
383 * Initialize clock frequencies and start both clocks running.
384 */
385 void
386 initclocks(void)
387 {
388 int i;
389
390 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
391 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
392 if (softclock_si == NULL)
393 panic("initclocks: unable to register softclock intr");
394 #endif
395
396 /*
397 * Set divisors to 1 (normal case) and let the machine-specific
398 * code do its bit.
399 */
400 psdiv = 1;
401 #ifdef __HAVE_TIMECOUNTER
402 /*
403 * provide minimum default time counter
404 * will only run at interrupt resolution
405 */
406 intr_timecounter.tc_frequency = hz;
407 tc_init(&intr_timecounter);
408 #endif
409 cpu_initclocks();
410
411 /*
412 * Compute profhz/stathz/rrticks, and fix profhz if needed.
413 */
414 i = stathz ? stathz : hz;
415 if (profhz == 0)
416 profhz = i;
417 psratio = profhz / i;
418 rrticks = hz / 10;
419 if (schedhz == 0) {
420 /* 16Hz is best */
421 statscheddiv = i / 16;
422 if (statscheddiv <= 0)
423 panic("statscheddiv");
424 }
425
426 #ifndef __HAVE_TIMECOUNTER
427 #ifdef NTP
428 switch (hz) {
429 case 1:
430 shifthz = SHIFT_SCALE - 0;
431 break;
432 case 2:
433 shifthz = SHIFT_SCALE - 1;
434 break;
435 case 4:
436 shifthz = SHIFT_SCALE - 2;
437 break;
438 case 8:
439 shifthz = SHIFT_SCALE - 3;
440 break;
441 case 16:
442 shifthz = SHIFT_SCALE - 4;
443 break;
444 case 32:
445 shifthz = SHIFT_SCALE - 5;
446 break;
447 case 50:
448 case 60:
449 case 64:
450 shifthz = SHIFT_SCALE - 6;
451 break;
452 case 96:
453 case 100:
454 case 128:
455 shifthz = SHIFT_SCALE - 7;
456 break;
457 case 256:
458 shifthz = SHIFT_SCALE - 8;
459 break;
460 case 512:
461 shifthz = SHIFT_SCALE - 9;
462 break;
463 case 1000:
464 case 1024:
465 shifthz = SHIFT_SCALE - 10;
466 break;
467 case 1200:
468 case 2048:
469 shifthz = SHIFT_SCALE - 11;
470 break;
471 case 4096:
472 shifthz = SHIFT_SCALE - 12;
473 break;
474 case 8192:
475 shifthz = SHIFT_SCALE - 13;
476 break;
477 case 16384:
478 shifthz = SHIFT_SCALE - 14;
479 break;
480 case 32768:
481 shifthz = SHIFT_SCALE - 15;
482 break;
483 case 65536:
484 shifthz = SHIFT_SCALE - 16;
485 break;
486 default:
487 panic("weird hz");
488 }
489 if (fixtick == 0) {
490 /*
491 * Give MD code a chance to set this to a better
492 * value; but, if it doesn't, we should.
493 */
494 fixtick = (1000000 - (hz*tick));
495 }
496 #endif /* NTP */
497 #endif /* !__HAVE_TIMECOUNTER */
498 }
499
500 /*
501 * The real-time timer, interrupting hz times per second.
502 */
503 void
504 hardclock(struct clockframe *frame)
505 {
506 struct lwp *l;
507 struct proc *p;
508 struct cpu_info *ci = curcpu();
509 struct ptimer *pt;
510 #ifndef __HAVE_TIMECOUNTER
511 int delta;
512 extern int tickdelta;
513 extern long timedelta;
514 #ifdef NTP
515 int time_update;
516 int ltemp;
517 #endif /* NTP */
518 #endif /* __HAVE_TIMECOUNTER */
519
520 l = curlwp;
521 if (l) {
522 p = l->l_proc;
523 /*
524 * Run current process's virtual and profile time, as needed.
525 */
526 if (CLKF_USERMODE(frame) && p->p_timers &&
527 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
528 if (itimerdecr(pt, tick) == 0)
529 itimerfire(pt);
530 if (p->p_timers &&
531 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
532 if (itimerdecr(pt, tick) == 0)
533 itimerfire(pt);
534 }
535
536 /*
537 * If no separate statistics clock is available, run it from here.
538 */
539 if (stathz == 0)
540 statclock(frame);
541 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
542 roundrobin(ci);
543
544 #if defined(MULTIPROCESSOR)
545 /*
546 * If we are not the primary CPU, we're not allowed to do
547 * any more work.
548 */
549 if (CPU_IS_PRIMARY(ci) == 0)
550 return;
551 #endif
552
553 hardclock_ticks++;
554
555 #ifdef __HAVE_TIMECOUNTER
556 tc_ticktock();
557 #else /* __HAVE_TIMECOUNTER */
558 /*
559 * Increment the time-of-day. The increment is normally just
560 * ``tick''. If the machine is one which has a clock frequency
561 * such that ``hz'' would not divide the second evenly into
562 * milliseconds, a periodic adjustment must be applied. Finally,
563 * if we are still adjusting the time (see adjtime()),
564 * ``tickdelta'' may also be added in.
565 */
566 delta = tick;
567
568 #ifndef NTP
569 if (tickfix) {
570 tickfixcnt += tickfix;
571 if (tickfixcnt >= tickfixinterval) {
572 delta++;
573 tickfixcnt -= tickfixinterval;
574 }
575 }
576 #endif /* !NTP */
577 /* Imprecise 4bsd adjtime() handling */
578 if (timedelta != 0) {
579 delta += tickdelta;
580 timedelta -= tickdelta;
581 }
582
583 #ifdef notyet
584 microset();
585 #endif
586
587 #ifndef NTP
588 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
589 #endif
590 BUMPTIME(&mono_time, delta);
591
592 #ifdef NTP
593 time_update = delta;
594
595 /*
596 * Compute the phase adjustment. If the low-order bits
597 * (time_phase) of the update overflow, bump the high-order bits
598 * (time_update).
599 */
600 time_phase += time_adj;
601 if (time_phase <= -FINEUSEC) {
602 ltemp = -time_phase >> SHIFT_SCALE;
603 time_phase += ltemp << SHIFT_SCALE;
604 time_update -= ltemp;
605 } else if (time_phase >= FINEUSEC) {
606 ltemp = time_phase >> SHIFT_SCALE;
607 time_phase -= ltemp << SHIFT_SCALE;
608 time_update += ltemp;
609 }
610
611 #ifdef HIGHBALL
612 /*
613 * If the HIGHBALL board is installed, we need to adjust the
614 * external clock offset in order to close the hardware feedback
615 * loop. This will adjust the external clock phase and frequency
616 * in small amounts. The additional phase noise and frequency
617 * wander this causes should be minimal. We also need to
618 * discipline the kernel time variable, since the PLL is used to
619 * discipline the external clock. If the Highball board is not
620 * present, we discipline kernel time with the PLL as usual. We
621 * assume that the external clock phase adjustment (time_update)
622 * and kernel phase adjustment (clock_cpu) are less than the
623 * value of tick.
624 */
625 clock_offset.tv_usec += time_update;
626 if (clock_offset.tv_usec >= 1000000) {
627 clock_offset.tv_sec++;
628 clock_offset.tv_usec -= 1000000;
629 }
630 if (clock_offset.tv_usec < 0) {
631 clock_offset.tv_sec--;
632 clock_offset.tv_usec += 1000000;
633 }
634 time.tv_usec += clock_cpu;
635 clock_cpu = 0;
636 #else
637 time.tv_usec += time_update;
638 #endif /* HIGHBALL */
639
640 /*
641 * On rollover of the second the phase adjustment to be used for
642 * the next second is calculated. Also, the maximum error is
643 * increased by the tolerance. If the PPS frequency discipline
644 * code is present, the phase is increased to compensate for the
645 * CPU clock oscillator frequency error.
646 *
647 * On a 32-bit machine and given parameters in the timex.h
648 * header file, the maximum phase adjustment is +-512 ms and
649 * maximum frequency offset is a tad less than) +-512 ppm. On a
650 * 64-bit machine, you shouldn't need to ask.
651 */
652 if (time.tv_usec >= 1000000) {
653 time.tv_usec -= 1000000;
654 time.tv_sec++;
655 time_maxerror += time_tolerance >> SHIFT_USEC;
656
657 /*
658 * Leap second processing. If in leap-insert state at
659 * the end of the day, the system clock is set back one
660 * second; if in leap-delete state, the system clock is
661 * set ahead one second. The microtime() routine or
662 * external clock driver will insure that reported time
663 * is always monotonic. The ugly divides should be
664 * replaced.
665 */
666 switch (time_state) {
667 case TIME_OK:
668 if (time_status & STA_INS)
669 time_state = TIME_INS;
670 else if (time_status & STA_DEL)
671 time_state = TIME_DEL;
672 break;
673
674 case TIME_INS:
675 if (time.tv_sec % 86400 == 0) {
676 time.tv_sec--;
677 time_state = TIME_OOP;
678 }
679 break;
680
681 case TIME_DEL:
682 if ((time.tv_sec + 1) % 86400 == 0) {
683 time.tv_sec++;
684 time_state = TIME_WAIT;
685 }
686 break;
687
688 case TIME_OOP:
689 time_state = TIME_WAIT;
690 break;
691
692 case TIME_WAIT:
693 if (!(time_status & (STA_INS | STA_DEL)))
694 time_state = TIME_OK;
695 break;
696 }
697
698 /*
699 * Compute the phase adjustment for the next second. In
700 * PLL mode, the offset is reduced by a fixed factor
701 * times the time constant. In FLL mode the offset is
702 * used directly. In either mode, the maximum phase
703 * adjustment for each second is clamped so as to spread
704 * the adjustment over not more than the number of
705 * seconds between updates.
706 */
707 if (time_offset < 0) {
708 ltemp = -time_offset;
709 if (!(time_status & STA_FLL))
710 ltemp >>= SHIFT_KG + time_constant;
711 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
712 ltemp = (MAXPHASE / MINSEC) <<
713 SHIFT_UPDATE;
714 time_offset += ltemp;
715 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
716 } else if (time_offset > 0) {
717 ltemp = time_offset;
718 if (!(time_status & STA_FLL))
719 ltemp >>= SHIFT_KG + time_constant;
720 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
721 ltemp = (MAXPHASE / MINSEC) <<
722 SHIFT_UPDATE;
723 time_offset -= ltemp;
724 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
725 } else
726 time_adj = 0;
727
728 /*
729 * Compute the frequency estimate and additional phase
730 * adjustment due to frequency error for the next
731 * second. When the PPS signal is engaged, gnaw on the
732 * watchdog counter and update the frequency computed by
733 * the pll and the PPS signal.
734 */
735 #ifdef PPS_SYNC
736 pps_valid++;
737 if (pps_valid == PPS_VALID) {
738 pps_jitter = MAXTIME;
739 pps_stabil = MAXFREQ;
740 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
741 STA_PPSWANDER | STA_PPSERROR);
742 }
743 ltemp = time_freq + pps_freq;
744 #else
745 ltemp = time_freq;
746 #endif /* PPS_SYNC */
747
748 if (ltemp < 0)
749 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
750 else
751 time_adj += ltemp >> (SHIFT_USEC - shifthz);
752 time_adj += (long)fixtick << shifthz;
753
754 /*
755 * When the CPU clock oscillator frequency is not a
756 * power of 2 in Hz, shifthz is only an approximate
757 * scale factor.
758 *
759 * To determine the adjustment, you can do the following:
760 * bc -q
761 * scale=24
762 * obase=2
763 * idealhz/realhz
764 * where `idealhz' is the next higher power of 2, and `realhz'
765 * is the actual value. You may need to factor this result
766 * into a sequence of 2 multipliers to get better precision.
767 *
768 * Likewise, the error can be calculated with (e.g. for 100Hz):
769 * bc -q
770 * scale=24
771 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
772 * (and then multiply by 1000000 to get ppm).
773 */
774 switch (hz) {
775 case 60:
776 /* A factor of 1.000100010001 gives about 15ppm
777 error. */
778 if (time_adj < 0) {
779 time_adj -= (-time_adj >> 4);
780 time_adj -= (-time_adj >> 8);
781 } else {
782 time_adj += (time_adj >> 4);
783 time_adj += (time_adj >> 8);
784 }
785 break;
786
787 case 96:
788 /* A factor of 1.0101010101 gives about 244ppm error. */
789 if (time_adj < 0) {
790 time_adj -= (-time_adj >> 2);
791 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
792 } else {
793 time_adj += (time_adj >> 2);
794 time_adj += (time_adj >> 4) + (time_adj >> 8);
795 }
796 break;
797
798 case 50:
799 case 100:
800 /* A factor of 1.010001111010111 gives about 1ppm
801 error. */
802 if (time_adj < 0) {
803 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
804 time_adj += (-time_adj >> 10);
805 } else {
806 time_adj += (time_adj >> 2) + (time_adj >> 5);
807 time_adj -= (time_adj >> 10);
808 }
809 break;
810
811 case 1000:
812 /* A factor of 1.000001100010100001 gives about 50ppm
813 error. */
814 if (time_adj < 0) {
815 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
816 time_adj -= (-time_adj >> 7);
817 } else {
818 time_adj += (time_adj >> 6) + (time_adj >> 11);
819 time_adj += (time_adj >> 7);
820 }
821 break;
822
823 case 1200:
824 /* A factor of 1.1011010011100001 gives about 64ppm
825 error. */
826 if (time_adj < 0) {
827 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
828 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
829 } else {
830 time_adj += (time_adj >> 1) + (time_adj >> 6);
831 time_adj += (time_adj >> 3) + (time_adj >> 10);
832 }
833 break;
834 }
835
836 #ifdef EXT_CLOCK
837 /*
838 * If an external clock is present, it is necessary to
839 * discipline the kernel time variable anyway, since not
840 * all system components use the microtime() interface.
841 * Here, the time offset between the external clock and
842 * kernel time variable is computed every so often.
843 */
844 clock_count++;
845 if (clock_count > CLOCK_INTERVAL) {
846 clock_count = 0;
847 microtime(&clock_ext);
848 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
849 delta.tv_usec = clock_ext.tv_usec -
850 time.tv_usec;
851 if (delta.tv_usec < 0)
852 delta.tv_sec--;
853 if (delta.tv_usec >= 500000) {
854 delta.tv_usec -= 1000000;
855 delta.tv_sec++;
856 }
857 if (delta.tv_usec < -500000) {
858 delta.tv_usec += 1000000;
859 delta.tv_sec--;
860 }
861 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
862 delta.tv_usec > MAXPHASE) ||
863 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
864 delta.tv_usec < -MAXPHASE)) {
865 time = clock_ext;
866 delta.tv_sec = 0;
867 delta.tv_usec = 0;
868 }
869 #ifdef HIGHBALL
870 clock_cpu = delta.tv_usec;
871 #else /* HIGHBALL */
872 hardupdate(delta.tv_usec);
873 #endif /* HIGHBALL */
874 }
875 #endif /* EXT_CLOCK */
876 }
877
878 #endif /* NTP */
879 #endif /* !__HAVE_TIMECOUNTER */
880
881 /*
882 * Update real-time timeout queue.
883 * Process callouts at a very low CPU priority, so we don't keep the
884 * relatively high clock interrupt priority any longer than necessary.
885 */
886 if (callout_hardclock()) {
887 if (CLKF_BASEPRI(frame)) {
888 /*
889 * Save the overhead of a software interrupt;
890 * it will happen as soon as we return, so do
891 * it now.
892 */
893 spllowersoftclock();
894 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
895 softclock(NULL);
896 KERNEL_UNLOCK();
897 } else {
898 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
899 softintr_schedule(softclock_si);
900 #else
901 setsoftclock();
902 #endif
903 }
904 }
905 }
906
907 #ifdef __HAVE_TIMECOUNTER
908 /*
909 * Compute number of hz until specified time. Used to compute second
910 * argument to callout_reset() from an absolute time.
911 */
912 int
913 hzto(struct timeval *tvp)
914 {
915 struct timeval now, tv;
916
917 tv = *tvp; /* Don't modify original tvp. */
918 getmicrotime(&now);
919 timersub(&tv, &now, &tv);
920 return tvtohz(&tv);
921 }
922 #endif /* __HAVE_TIMECOUNTER */
923
924 /*
925 * Compute number of ticks in the specified amount of time.
926 */
927 int
928 tvtohz(struct timeval *tv)
929 {
930 unsigned long ticks;
931 long sec, usec;
932
933 /*
934 * If the number of usecs in the whole seconds part of the time
935 * difference fits in a long, then the total number of usecs will
936 * fit in an unsigned long. Compute the total and convert it to
937 * ticks, rounding up and adding 1 to allow for the current tick
938 * to expire. Rounding also depends on unsigned long arithmetic
939 * to avoid overflow.
940 *
941 * Otherwise, if the number of ticks in the whole seconds part of
942 * the time difference fits in a long, then convert the parts to
943 * ticks separately and add, using similar rounding methods and
944 * overflow avoidance. This method would work in the previous
945 * case, but it is slightly slower and assumes that hz is integral.
946 *
947 * Otherwise, round the time difference down to the maximum
948 * representable value.
949 *
950 * If ints are 32-bit, then the maximum value for any timeout in
951 * 10ms ticks is 248 days.
952 */
953 sec = tv->tv_sec;
954 usec = tv->tv_usec;
955
956 if (usec < 0) {
957 sec--;
958 usec += 1000000;
959 }
960
961 if (sec < 0 || (sec == 0 && usec <= 0)) {
962 /*
963 * Would expire now or in the past. Return 0 ticks.
964 * This is different from the legacy hzto() interface,
965 * and callers need to check for it.
966 */
967 ticks = 0;
968 } else if (sec <= (LONG_MAX / 1000000))
969 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
970 / tick) + 1;
971 else if (sec <= (LONG_MAX / hz))
972 ticks = (sec * hz) +
973 (((unsigned long)usec + (tick - 1)) / tick) + 1;
974 else
975 ticks = LONG_MAX;
976
977 if (ticks > INT_MAX)
978 ticks = INT_MAX;
979
980 return ((int)ticks);
981 }
982
983 #ifndef __HAVE_TIMECOUNTER
984 /*
985 * Compute number of hz until specified time. Used to compute second
986 * argument to callout_reset() from an absolute time.
987 */
988 int
989 hzto(struct timeval *tv)
990 {
991 unsigned long ticks;
992 long sec, usec;
993 int s;
994
995 /*
996 * If the number of usecs in the whole seconds part of the time
997 * difference fits in a long, then the total number of usecs will
998 * fit in an unsigned long. Compute the total and convert it to
999 * ticks, rounding up and adding 1 to allow for the current tick
1000 * to expire. Rounding also depends on unsigned long arithmetic
1001 * to avoid overflow.
1002 *
1003 * Otherwise, if the number of ticks in the whole seconds part of
1004 * the time difference fits in a long, then convert the parts to
1005 * ticks separately and add, using similar rounding methods and
1006 * overflow avoidance. This method would work in the previous
1007 * case, but it is slightly slower and assume that hz is integral.
1008 *
1009 * Otherwise, round the time difference down to the maximum
1010 * representable value.
1011 *
1012 * If ints are 32-bit, then the maximum value for any timeout in
1013 * 10ms ticks is 248 days.
1014 */
1015 s = splclock();
1016 sec = tv->tv_sec - time.tv_sec;
1017 usec = tv->tv_usec - time.tv_usec;
1018 splx(s);
1019
1020 if (usec < 0) {
1021 sec--;
1022 usec += 1000000;
1023 }
1024
1025 if (sec < 0 || (sec == 0 && usec <= 0)) {
1026 /*
1027 * Would expire now or in the past. Return 0 ticks.
1028 * This is different from the legacy hzto() interface,
1029 * and callers need to check for it.
1030 */
1031 ticks = 0;
1032 } else if (sec <= (LONG_MAX / 1000000))
1033 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1034 / tick) + 1;
1035 else if (sec <= (LONG_MAX / hz))
1036 ticks = (sec * hz) +
1037 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1038 else
1039 ticks = LONG_MAX;
1040
1041 if (ticks > INT_MAX)
1042 ticks = INT_MAX;
1043
1044 return ((int)ticks);
1045 }
1046 #endif /* !__HAVE_TIMECOUNTER */
1047
1048 /*
1049 * Compute number of ticks in the specified amount of time.
1050 */
1051 int
1052 tstohz(struct timespec *ts)
1053 {
1054 struct timeval tv;
1055
1056 /*
1057 * usec has great enough resolution for hz, so convert to a
1058 * timeval and use tvtohz() above.
1059 */
1060 TIMESPEC_TO_TIMEVAL(&tv, ts);
1061 return tvtohz(&tv);
1062 }
1063
1064 /*
1065 * Start profiling on a process.
1066 *
1067 * Kernel profiling passes proc0 which never exits and hence
1068 * keeps the profile clock running constantly.
1069 */
1070 void
1071 startprofclock(struct proc *p)
1072 {
1073
1074 if ((p->p_flag & P_PROFIL) == 0) {
1075 p->p_flag |= P_PROFIL;
1076 /*
1077 * This is only necessary if using the clock as the
1078 * profiling source.
1079 */
1080 if (++profprocs == 1 && stathz != 0)
1081 psdiv = psratio;
1082 }
1083 }
1084
1085 /*
1086 * Stop profiling on a process.
1087 */
1088 void
1089 stopprofclock(struct proc *p)
1090 {
1091
1092 if (p->p_flag & P_PROFIL) {
1093 p->p_flag &= ~P_PROFIL;
1094 /*
1095 * This is only necessary if using the clock as the
1096 * profiling source.
1097 */
1098 if (--profprocs == 0 && stathz != 0)
1099 psdiv = 1;
1100 }
1101 }
1102
1103 #if defined(PERFCTRS)
1104 /*
1105 * Independent profiling "tick" in case we're using a separate
1106 * clock or profiling event source. Currently, that's just
1107 * performance counters--hence the wrapper.
1108 */
1109 void
1110 proftick(struct clockframe *frame)
1111 {
1112 #ifdef GPROF
1113 struct gmonparam *g;
1114 intptr_t i;
1115 #endif
1116 struct proc *p;
1117
1118 p = curproc;
1119 if (CLKF_USERMODE(frame)) {
1120 if (p->p_flag & P_PROFIL)
1121 addupc_intr(p, CLKF_PC(frame));
1122 } else {
1123 #ifdef GPROF
1124 g = &_gmonparam;
1125 if (g->state == GMON_PROF_ON) {
1126 i = CLKF_PC(frame) - g->lowpc;
1127 if (i < g->textsize) {
1128 i /= HISTFRACTION * sizeof(*g->kcount);
1129 g->kcount[i]++;
1130 }
1131 }
1132 #endif
1133 #ifdef PROC_PC
1134 if (p && (p->p_flag & P_PROFIL))
1135 addupc_intr(p, PROC_PC(p));
1136 #endif
1137 }
1138 }
1139 #endif
1140
1141 /*
1142 * Statistics clock. Grab profile sample, and if divider reaches 0,
1143 * do process and kernel statistics.
1144 */
1145 void
1146 statclock(struct clockframe *frame)
1147 {
1148 #ifdef GPROF
1149 struct gmonparam *g;
1150 intptr_t i;
1151 #endif
1152 struct cpu_info *ci = curcpu();
1153 struct schedstate_percpu *spc = &ci->ci_schedstate;
1154 struct proc *p;
1155 struct lwp *l;
1156
1157 /*
1158 * Notice changes in divisor frequency, and adjust clock
1159 * frequency accordingly.
1160 */
1161 if (spc->spc_psdiv != psdiv) {
1162 spc->spc_psdiv = psdiv;
1163 spc->spc_pscnt = psdiv;
1164 if (psdiv == 1) {
1165 setstatclockrate(stathz);
1166 } else {
1167 setstatclockrate(profhz);
1168 }
1169 }
1170 l = curlwp;
1171 p = (l ? l->l_proc : NULL);
1172 if (CLKF_USERMODE(frame)) {
1173 KASSERT(p != NULL);
1174
1175 if ((p->p_flag & P_PROFIL) && profsrc == PROFSRC_CLOCK)
1176 addupc_intr(p, CLKF_PC(frame));
1177 if (--spc->spc_pscnt > 0)
1178 return;
1179 /*
1180 * Came from user mode; CPU was in user state.
1181 * If this process is being profiled record the tick.
1182 */
1183 p->p_uticks++;
1184 if (p->p_nice > NZERO)
1185 spc->spc_cp_time[CP_NICE]++;
1186 else
1187 spc->spc_cp_time[CP_USER]++;
1188 } else {
1189 #ifdef GPROF
1190 /*
1191 * Kernel statistics are just like addupc_intr, only easier.
1192 */
1193 g = &_gmonparam;
1194 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1195 i = CLKF_PC(frame) - g->lowpc;
1196 if (i < g->textsize) {
1197 i /= HISTFRACTION * sizeof(*g->kcount);
1198 g->kcount[i]++;
1199 }
1200 }
1201 #endif
1202 #ifdef LWP_PC
1203 if (p && profsrc == PROFSRC_CLOCK && (p->p_flag & P_PROFIL))
1204 addupc_intr(p, LWP_PC(l));
1205 #endif
1206 if (--spc->spc_pscnt > 0)
1207 return;
1208 /*
1209 * Came from kernel mode, so we were:
1210 * - handling an interrupt,
1211 * - doing syscall or trap work on behalf of the current
1212 * user process, or
1213 * - spinning in the idle loop.
1214 * Whichever it is, charge the time as appropriate.
1215 * Note that we charge interrupts to the current process,
1216 * regardless of whether they are ``for'' that process,
1217 * so that we know how much of its real time was spent
1218 * in ``non-process'' (i.e., interrupt) work.
1219 */
1220 if (CLKF_INTR(frame)) {
1221 if (p != NULL)
1222 p->p_iticks++;
1223 spc->spc_cp_time[CP_INTR]++;
1224 } else if (p != NULL) {
1225 p->p_sticks++;
1226 spc->spc_cp_time[CP_SYS]++;
1227 } else
1228 spc->spc_cp_time[CP_IDLE]++;
1229 }
1230 spc->spc_pscnt = psdiv;
1231
1232 if (p != NULL) {
1233 ++p->p_cpticks;
1234 /*
1235 * If no separate schedclock is provided, call it here
1236 * at about 16 Hz.
1237 */
1238 if (schedhz == 0)
1239 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1240 schedclock(l);
1241 ci->ci_schedstate.spc_schedticks = statscheddiv;
1242 }
1243 }
1244 }
1245
1246 #ifndef __HAVE_TIMECOUNTER
1247 #ifdef NTP /* NTP phase-locked loop in kernel */
1248 /*
1249 * hardupdate() - local clock update
1250 *
1251 * This routine is called by ntp_adjtime() to update the local clock
1252 * phase and frequency. The implementation is of an adaptive-parameter,
1253 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1254 * time and frequency offset estimates for each call. If the kernel PPS
1255 * discipline code is configured (PPS_SYNC), the PPS signal itself
1256 * determines the new time offset, instead of the calling argument.
1257 * Presumably, calls to ntp_adjtime() occur only when the caller
1258 * believes the local clock is valid within some bound (+-128 ms with
1259 * NTP). If the caller's time is far different than the PPS time, an
1260 * argument will ensue, and it's not clear who will lose.
1261 *
1262 * For uncompensated quartz crystal oscillatores and nominal update
1263 * intervals less than 1024 s, operation should be in phase-lock mode
1264 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1265 * intervals greater than thiss, operation should be in frequency-lock
1266 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1267 *
1268 * Note: splclock() is in effect.
1269 */
1270 void
1271 hardupdate(long offset)
1272 {
1273 long ltemp, mtemp;
1274
1275 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1276 return;
1277 ltemp = offset;
1278 #ifdef PPS_SYNC
1279 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1280 ltemp = pps_offset;
1281 #endif /* PPS_SYNC */
1282
1283 /*
1284 * Scale the phase adjustment and clamp to the operating range.
1285 */
1286 if (ltemp > MAXPHASE)
1287 time_offset = MAXPHASE << SHIFT_UPDATE;
1288 else if (ltemp < -MAXPHASE)
1289 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1290 else
1291 time_offset = ltemp << SHIFT_UPDATE;
1292
1293 /*
1294 * Select whether the frequency is to be controlled and in which
1295 * mode (PLL or FLL). Clamp to the operating range. Ugly
1296 * multiply/divide should be replaced someday.
1297 */
1298 if (time_status & STA_FREQHOLD || time_reftime == 0)
1299 time_reftime = time.tv_sec;
1300 mtemp = time.tv_sec - time_reftime;
1301 time_reftime = time.tv_sec;
1302 if (time_status & STA_FLL) {
1303 if (mtemp >= MINSEC) {
1304 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1305 SHIFT_UPDATE));
1306 if (ltemp < 0)
1307 time_freq -= -ltemp >> SHIFT_KH;
1308 else
1309 time_freq += ltemp >> SHIFT_KH;
1310 }
1311 } else {
1312 if (mtemp < MAXSEC) {
1313 ltemp *= mtemp;
1314 if (ltemp < 0)
1315 time_freq -= -ltemp >> (time_constant +
1316 time_constant + SHIFT_KF -
1317 SHIFT_USEC);
1318 else
1319 time_freq += ltemp >> (time_constant +
1320 time_constant + SHIFT_KF -
1321 SHIFT_USEC);
1322 }
1323 }
1324 if (time_freq > time_tolerance)
1325 time_freq = time_tolerance;
1326 else if (time_freq < -time_tolerance)
1327 time_freq = -time_tolerance;
1328 }
1329
1330 #ifdef PPS_SYNC
1331 /*
1332 * hardpps() - discipline CPU clock oscillator to external PPS signal
1333 *
1334 * This routine is called at each PPS interrupt in order to discipline
1335 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1336 * and leaves it in a handy spot for the hardclock() routine. It
1337 * integrates successive PPS phase differences and calculates the
1338 * frequency offset. This is used in hardclock() to discipline the CPU
1339 * clock oscillator so that intrinsic frequency error is cancelled out.
1340 * The code requires the caller to capture the time and hardware counter
1341 * value at the on-time PPS signal transition.
1342 *
1343 * Note that, on some Unix systems, this routine runs at an interrupt
1344 * priority level higher than the timer interrupt routine hardclock().
1345 * Therefore, the variables used are distinct from the hardclock()
1346 * variables, except for certain exceptions: The PPS frequency pps_freq
1347 * and phase pps_offset variables are determined by this routine and
1348 * updated atomically. The time_tolerance variable can be considered a
1349 * constant, since it is infrequently changed, and then only when the
1350 * PPS signal is disabled. The watchdog counter pps_valid is updated
1351 * once per second by hardclock() and is atomically cleared in this
1352 * routine.
1353 */
1354 void
1355 hardpps(struct timeval *tvp, /* time at PPS */
1356 long usec /* hardware counter at PPS */)
1357 {
1358 long u_usec, v_usec, bigtick;
1359 long cal_sec, cal_usec;
1360
1361 /*
1362 * An occasional glitch can be produced when the PPS interrupt
1363 * occurs in the hardclock() routine before the time variable is
1364 * updated. Here the offset is discarded when the difference
1365 * between it and the last one is greater than tick/2, but not
1366 * if the interval since the first discard exceeds 30 s.
1367 */
1368 time_status |= STA_PPSSIGNAL;
1369 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1370 pps_valid = 0;
1371 u_usec = -tvp->tv_usec;
1372 if (u_usec < -500000)
1373 u_usec += 1000000;
1374 v_usec = pps_offset - u_usec;
1375 if (v_usec < 0)
1376 v_usec = -v_usec;
1377 if (v_usec > (tick >> 1)) {
1378 if (pps_glitch > MAXGLITCH) {
1379 pps_glitch = 0;
1380 pps_tf[2] = u_usec;
1381 pps_tf[1] = u_usec;
1382 } else {
1383 pps_glitch++;
1384 u_usec = pps_offset;
1385 }
1386 } else
1387 pps_glitch = 0;
1388
1389 /*
1390 * A three-stage median filter is used to help deglitch the pps
1391 * time. The median sample becomes the time offset estimate; the
1392 * difference between the other two samples becomes the time
1393 * dispersion (jitter) estimate.
1394 */
1395 pps_tf[2] = pps_tf[1];
1396 pps_tf[1] = pps_tf[0];
1397 pps_tf[0] = u_usec;
1398 if (pps_tf[0] > pps_tf[1]) {
1399 if (pps_tf[1] > pps_tf[2]) {
1400 pps_offset = pps_tf[1]; /* 0 1 2 */
1401 v_usec = pps_tf[0] - pps_tf[2];
1402 } else if (pps_tf[2] > pps_tf[0]) {
1403 pps_offset = pps_tf[0]; /* 2 0 1 */
1404 v_usec = pps_tf[2] - pps_tf[1];
1405 } else {
1406 pps_offset = pps_tf[2]; /* 0 2 1 */
1407 v_usec = pps_tf[0] - pps_tf[1];
1408 }
1409 } else {
1410 if (pps_tf[1] < pps_tf[2]) {
1411 pps_offset = pps_tf[1]; /* 2 1 0 */
1412 v_usec = pps_tf[2] - pps_tf[0];
1413 } else if (pps_tf[2] < pps_tf[0]) {
1414 pps_offset = pps_tf[0]; /* 1 0 2 */
1415 v_usec = pps_tf[1] - pps_tf[2];
1416 } else {
1417 pps_offset = pps_tf[2]; /* 1 2 0 */
1418 v_usec = pps_tf[1] - pps_tf[0];
1419 }
1420 }
1421 if (v_usec > MAXTIME)
1422 pps_jitcnt++;
1423 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1424 if (v_usec < 0)
1425 pps_jitter -= -v_usec >> PPS_AVG;
1426 else
1427 pps_jitter += v_usec >> PPS_AVG;
1428 if (pps_jitter > (MAXTIME >> 1))
1429 time_status |= STA_PPSJITTER;
1430
1431 /*
1432 * During the calibration interval adjust the starting time when
1433 * the tick overflows. At the end of the interval compute the
1434 * duration of the interval and the difference of the hardware
1435 * counters at the beginning and end of the interval. This code
1436 * is deliciously complicated by the fact valid differences may
1437 * exceed the value of tick when using long calibration
1438 * intervals and small ticks. Note that the counter can be
1439 * greater than tick if caught at just the wrong instant, but
1440 * the values returned and used here are correct.
1441 */
1442 bigtick = (long)tick << SHIFT_USEC;
1443 pps_usec -= pps_freq;
1444 if (pps_usec >= bigtick)
1445 pps_usec -= bigtick;
1446 if (pps_usec < 0)
1447 pps_usec += bigtick;
1448 pps_time.tv_sec++;
1449 pps_count++;
1450 if (pps_count < (1 << pps_shift))
1451 return;
1452 pps_count = 0;
1453 pps_calcnt++;
1454 u_usec = usec << SHIFT_USEC;
1455 v_usec = pps_usec - u_usec;
1456 if (v_usec >= bigtick >> 1)
1457 v_usec -= bigtick;
1458 if (v_usec < -(bigtick >> 1))
1459 v_usec += bigtick;
1460 if (v_usec < 0)
1461 v_usec = -(-v_usec >> pps_shift);
1462 else
1463 v_usec = v_usec >> pps_shift;
1464 pps_usec = u_usec;
1465 cal_sec = tvp->tv_sec;
1466 cal_usec = tvp->tv_usec;
1467 cal_sec -= pps_time.tv_sec;
1468 cal_usec -= pps_time.tv_usec;
1469 if (cal_usec < 0) {
1470 cal_usec += 1000000;
1471 cal_sec--;
1472 }
1473 pps_time = *tvp;
1474
1475 /*
1476 * Check for lost interrupts, noise, excessive jitter and
1477 * excessive frequency error. The number of timer ticks during
1478 * the interval may vary +-1 tick. Add to this a margin of one
1479 * tick for the PPS signal jitter and maximum frequency
1480 * deviation. If the limits are exceeded, the calibration
1481 * interval is reset to the minimum and we start over.
1482 */
1483 u_usec = (long)tick << 1;
1484 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1485 || (cal_sec == 0 && cal_usec < u_usec))
1486 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1487 pps_errcnt++;
1488 pps_shift = PPS_SHIFT;
1489 pps_intcnt = 0;
1490 time_status |= STA_PPSERROR;
1491 return;
1492 }
1493
1494 /*
1495 * A three-stage median filter is used to help deglitch the pps
1496 * frequency. The median sample becomes the frequency offset
1497 * estimate; the difference between the other two samples
1498 * becomes the frequency dispersion (stability) estimate.
1499 */
1500 pps_ff[2] = pps_ff[1];
1501 pps_ff[1] = pps_ff[0];
1502 pps_ff[0] = v_usec;
1503 if (pps_ff[0] > pps_ff[1]) {
1504 if (pps_ff[1] > pps_ff[2]) {
1505 u_usec = pps_ff[1]; /* 0 1 2 */
1506 v_usec = pps_ff[0] - pps_ff[2];
1507 } else if (pps_ff[2] > pps_ff[0]) {
1508 u_usec = pps_ff[0]; /* 2 0 1 */
1509 v_usec = pps_ff[2] - pps_ff[1];
1510 } else {
1511 u_usec = pps_ff[2]; /* 0 2 1 */
1512 v_usec = pps_ff[0] - pps_ff[1];
1513 }
1514 } else {
1515 if (pps_ff[1] < pps_ff[2]) {
1516 u_usec = pps_ff[1]; /* 2 1 0 */
1517 v_usec = pps_ff[2] - pps_ff[0];
1518 } else if (pps_ff[2] < pps_ff[0]) {
1519 u_usec = pps_ff[0]; /* 1 0 2 */
1520 v_usec = pps_ff[1] - pps_ff[2];
1521 } else {
1522 u_usec = pps_ff[2]; /* 1 2 0 */
1523 v_usec = pps_ff[1] - pps_ff[0];
1524 }
1525 }
1526
1527 /*
1528 * Here the frequency dispersion (stability) is updated. If it
1529 * is less than one-fourth the maximum (MAXFREQ), the frequency
1530 * offset is updated as well, but clamped to the tolerance. It
1531 * will be processed later by the hardclock() routine.
1532 */
1533 v_usec = (v_usec >> 1) - pps_stabil;
1534 if (v_usec < 0)
1535 pps_stabil -= -v_usec >> PPS_AVG;
1536 else
1537 pps_stabil += v_usec >> PPS_AVG;
1538 if (pps_stabil > MAXFREQ >> 2) {
1539 pps_stbcnt++;
1540 time_status |= STA_PPSWANDER;
1541 return;
1542 }
1543 if (time_status & STA_PPSFREQ) {
1544 if (u_usec < 0) {
1545 pps_freq -= -u_usec >> PPS_AVG;
1546 if (pps_freq < -time_tolerance)
1547 pps_freq = -time_tolerance;
1548 u_usec = -u_usec;
1549 } else {
1550 pps_freq += u_usec >> PPS_AVG;
1551 if (pps_freq > time_tolerance)
1552 pps_freq = time_tolerance;
1553 }
1554 }
1555
1556 /*
1557 * Here the calibration interval is adjusted. If the maximum
1558 * time difference is greater than tick / 4, reduce the interval
1559 * by half. If this is not the case for four consecutive
1560 * intervals, double the interval.
1561 */
1562 if (u_usec << pps_shift > bigtick >> 2) {
1563 pps_intcnt = 0;
1564 if (pps_shift > PPS_SHIFT)
1565 pps_shift--;
1566 } else if (pps_intcnt >= 4) {
1567 pps_intcnt = 0;
1568 if (pps_shift < PPS_SHIFTMAX)
1569 pps_shift++;
1570 } else
1571 pps_intcnt++;
1572 }
1573 #endif /* PPS_SYNC */
1574 #endif /* NTP */
1575
1576 /* timecounter compat functions */
1577 void
1578 nanotime(struct timespec *ts)
1579 {
1580 struct timeval tv;
1581
1582 microtime(&tv);
1583 TIMEVAL_TO_TIMESPEC(&tv, ts);
1584 }
1585
1586 void
1587 getbinuptime(struct bintime *bt)
1588 {
1589 struct timeval tv;
1590
1591 microtime(&tv);
1592 timeval2bintime(&tv, bt);
1593 }
1594
1595 void
1596 nanouptime(struct timespec *tsp)
1597 {
1598 int s;
1599
1600 s = splclock();
1601 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1602 splx(s);
1603 }
1604
1605 void
1606 getnanouptime(struct timespec *tsp)
1607 {
1608 int s;
1609
1610 s = splclock();
1611 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1612 splx(s);
1613 }
1614
1615 void
1616 getmicrouptime(struct timeval *tvp)
1617 {
1618 int s;
1619
1620 s = splclock();
1621 *tvp = mono_time;
1622 splx(s);
1623 }
1624
1625 void
1626 getnanotime(struct timespec *tsp)
1627 {
1628 int s;
1629
1630 s = splclock();
1631 TIMEVAL_TO_TIMESPEC(&time, tsp);
1632 splx(s);
1633 }
1634
1635 void
1636 getmicrotime(struct timeval *tvp)
1637 {
1638 int s;
1639
1640 s = splclock();
1641 *tvp = time;
1642 splx(s);
1643 }
1644 #endif /* !__HAVE_TIMECOUNTER */
1645