kern_condvar.c revision 1.1.2.7 1 1.1.2.7 ad /* $NetBSD: kern_condvar.c,v 1.1.2.7 2007/02/09 19:58:10 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.5 ad * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.2 ad * Kernel condition variable implementation, modeled after those found in
41 1.1.2.1 ad * Solaris, a description of which can be found in:
42 1.1.2.1 ad *
43 1.1.2.1 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 1.1.2.1 ad * Richard McDougall.
45 1.1.2.1 ad */
46 1.1.2.1 ad
47 1.1.2.1 ad #include <sys/cdefs.h>
48 1.1.2.7 ad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.1.2.7 2007/02/09 19:58:10 ad Exp $");
49 1.1.2.1 ad
50 1.1.2.1 ad #include <sys/param.h>
51 1.1.2.1 ad #include <sys/proc.h>
52 1.1.2.1 ad #include <sys/sched.h>
53 1.1.2.1 ad #include <sys/systm.h>
54 1.1.2.1 ad #include <sys/condvar.h>
55 1.1.2.1 ad #include <sys/sleepq.h>
56 1.1.2.1 ad
57 1.1.2.7 ad static void cv_unsleep(struct lwp *);
58 1.1.2.7 ad static void cv_changepri(struct lwp *, int);
59 1.1.2.2 ad
60 1.1.2.2 ad syncobj_t cv_syncobj = {
61 1.1.2.2 ad SOBJ_SLEEPQ_SORTED,
62 1.1.2.2 ad cv_unsleep,
63 1.1.2.7 ad cv_changepri,
64 1.1.2.2 ad };
65 1.1.2.2 ad
66 1.1.2.1 ad /*
67 1.1.2.1 ad * cv_init:
68 1.1.2.1 ad *
69 1.1.2.1 ad * Initialize a condition variable for use.
70 1.1.2.1 ad */
71 1.1.2.1 ad void
72 1.1.2.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
73 1.1.2.1 ad {
74 1.1.2.1 ad
75 1.1.2.2 ad KASSERT(wmesg != NULL);
76 1.1.2.2 ad
77 1.1.2.1 ad cv->cv_wmesg = wmesg;
78 1.1.2.4 ad cv->cv_waiters = 0;
79 1.1.2.1 ad }
80 1.1.2.1 ad
81 1.1.2.1 ad /*
82 1.1.2.1 ad * cv_destroy:
83 1.1.2.1 ad *
84 1.1.2.1 ad * Tear down a condition variable.
85 1.1.2.1 ad */
86 1.1.2.1 ad void
87 1.1.2.1 ad cv_destroy(kcondvar_t *cv)
88 1.1.2.1 ad {
89 1.1.2.1 ad
90 1.1.2.4 ad #ifdef DIAGNOSTIC
91 1.1.2.2 ad KASSERT(cv->cv_waiters == 0 && cv->cv_wmesg != NULL);
92 1.1.2.4 ad cv->cv_wmesg = NULL;
93 1.1.2.4 ad #endif
94 1.1.2.2 ad }
95 1.1.2.2 ad
96 1.1.2.2 ad /*
97 1.1.2.2 ad * cv_enter:
98 1.1.2.2 ad *
99 1.1.2.2 ad * Look up and lock the sleep queue corresponding to the given
100 1.1.2.2 ad * condition variable, and increment the number of waiters.
101 1.1.2.2 ad */
102 1.1.2.2 ad static inline sleepq_t *
103 1.1.2.4 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, struct lwp *l)
104 1.1.2.2 ad {
105 1.1.2.2 ad sleepq_t *sq;
106 1.1.2.2 ad
107 1.1.2.2 ad KASSERT(cv->cv_wmesg != NULL);
108 1.1.2.2 ad
109 1.1.2.2 ad sq = sleeptab_lookup(&sleeptab, cv);
110 1.1.2.2 ad cv->cv_waiters++;
111 1.1.2.4 ad sleepq_enter(sq, l);
112 1.1.2.4 ad mutex_exit(mtx);
113 1.1.2.2 ad
114 1.1.2.2 ad return sq;
115 1.1.2.2 ad }
116 1.1.2.2 ad
117 1.1.2.2 ad /*
118 1.1.2.2 ad * cv_unsleep:
119 1.1.2.2 ad *
120 1.1.2.2 ad * Remove an LWP from the condition variable and sleep queue. This
121 1.1.2.2 ad * is called when the LWP has not been awoken normally but instead
122 1.1.2.5 ad * interrupted: for example, when a signal is received. Must be
123 1.1.2.5 ad * called with the LWP locked, and must return it unlocked.
124 1.1.2.2 ad */
125 1.1.2.7 ad static void
126 1.1.2.2 ad cv_unsleep(struct lwp *l)
127 1.1.2.2 ad {
128 1.1.2.2 ad uintptr_t addr;
129 1.1.2.2 ad
130 1.1.2.2 ad KASSERT(l->l_wchan != NULL);
131 1.1.2.2 ad LOCK_ASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
132 1.1.2.2 ad
133 1.1.2.2 ad addr = (uintptr_t)l->l_wchan;
134 1.1.2.2 ad ((kcondvar_t *)addr)->cv_waiters--;
135 1.1.2.2 ad
136 1.1.2.2 ad sleepq_unsleep(l);
137 1.1.2.1 ad }
138 1.1.2.1 ad
139 1.1.2.1 ad /*
140 1.1.2.7 ad * cv_changepri:
141 1.1.2.7 ad *
142 1.1.2.7 ad * Adjust the real (user) priority of an LWP blocked on a CV.
143 1.1.2.7 ad */
144 1.1.2.7 ad static void
145 1.1.2.7 ad cv_changepri(struct lwp *l, int pri)
146 1.1.2.7 ad {
147 1.1.2.7 ad sleepq_t *sq = l->l_sleepq;
148 1.1.2.7 ad int opri;
149 1.1.2.7 ad
150 1.1.2.7 ad KASSERT(lwp_locked(l, sq->sq_mutex));
151 1.1.2.7 ad
152 1.1.2.7 ad opri = l->l_priority;
153 1.1.2.7 ad l->l_usrpri = pri;
154 1.1.2.7 ad l->l_priority = sched_kpri(l);
155 1.1.2.7 ad
156 1.1.2.7 ad if (l->l_priority != opri) {
157 1.1.2.7 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
158 1.1.2.7 ad sleepq_insert(sq, l, pri, l->l_syncobj);
159 1.1.2.7 ad }
160 1.1.2.7 ad }
161 1.1.2.7 ad
162 1.1.2.7 ad /*
163 1.1.2.1 ad * cv_wait:
164 1.1.2.1 ad *
165 1.1.2.1 ad * Wait non-interruptably on a condition variable until awoken.
166 1.1.2.1 ad */
167 1.1.2.1 ad void
168 1.1.2.1 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
169 1.1.2.1 ad {
170 1.1.2.1 ad struct lwp *l = curlwp;
171 1.1.2.1 ad sleepq_t *sq;
172 1.1.2.1 ad
173 1.1.2.1 ad LOCK_ASSERT(mutex_owned(mtx));
174 1.1.2.1 ad
175 1.1.2.1 ad if (sleepq_dontsleep(l)) {
176 1.1.2.1 ad (void)sleepq_abort(mtx, 0);
177 1.1.2.1 ad return;
178 1.1.2.1 ad }
179 1.1.2.1 ad
180 1.1.2.4 ad sq = cv_enter(cv, mtx, l);
181 1.1.2.4 ad sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, 0, 0,
182 1.1.2.2 ad &cv_syncobj);
183 1.1.2.4 ad (void)sleepq_unblock(0, 0);
184 1.1.2.1 ad mutex_enter(mtx);
185 1.1.2.1 ad }
186 1.1.2.1 ad
187 1.1.2.1 ad /*
188 1.1.2.1 ad * cv_wait_sig:
189 1.1.2.1 ad *
190 1.1.2.1 ad * Wait on a condition variable until a awoken or a signal is received.
191 1.1.2.1 ad * Will also return early if the process is exiting. Returns zero if
192 1.1.2.1 ad * awoken normallly, ERESTART if a signal was received and the system
193 1.1.2.1 ad * call is restartable, or EINTR otherwise.
194 1.1.2.1 ad */
195 1.1.2.1 ad int
196 1.1.2.1 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
197 1.1.2.1 ad {
198 1.1.2.1 ad struct lwp *l = curlwp;
199 1.1.2.1 ad sleepq_t *sq;
200 1.1.2.1 ad int error;
201 1.1.2.1 ad
202 1.1.2.1 ad LOCK_ASSERT(mutex_owned(mtx));
203 1.1.2.1 ad
204 1.1.2.1 ad if (sleepq_dontsleep(l))
205 1.1.2.1 ad return sleepq_abort(mtx, 0);
206 1.1.2.1 ad
207 1.1.2.4 ad sq = cv_enter(cv, mtx, l);
208 1.1.2.4 ad sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, 0, 1,
209 1.1.2.2 ad &cv_syncobj);
210 1.1.2.4 ad error = sleepq_unblock(0, 1);
211 1.1.2.1 ad mutex_enter(mtx);
212 1.1.2.2 ad
213 1.1.2.1 ad return error;
214 1.1.2.1 ad }
215 1.1.2.1 ad
216 1.1.2.1 ad /*
217 1.1.2.1 ad * cv_timedwait:
218 1.1.2.1 ad *
219 1.1.2.1 ad * Wait on a condition variable until awoken or the specified timeout
220 1.1.2.1 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
221 1.1.2.1 ad * timeout expired.
222 1.1.2.1 ad */
223 1.1.2.1 ad int
224 1.1.2.1 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
225 1.1.2.1 ad {
226 1.1.2.1 ad struct lwp *l = curlwp;
227 1.1.2.1 ad sleepq_t *sq;
228 1.1.2.1 ad int error;
229 1.1.2.1 ad
230 1.1.2.1 ad LOCK_ASSERT(mutex_owned(mtx));
231 1.1.2.1 ad
232 1.1.2.1 ad if (sleepq_dontsleep(l))
233 1.1.2.1 ad return sleepq_abort(mtx, 0);
234 1.1.2.1 ad
235 1.1.2.4 ad sq = cv_enter(cv, mtx, l);
236 1.1.2.4 ad sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, timo, 0,
237 1.1.2.2 ad &cv_syncobj);
238 1.1.2.4 ad error = sleepq_unblock(timo, 0);
239 1.1.2.1 ad mutex_enter(mtx);
240 1.1.2.2 ad
241 1.1.2.2 ad return error;
242 1.1.2.1 ad }
243 1.1.2.1 ad
244 1.1.2.1 ad /*
245 1.1.2.1 ad * cv_timedwait_sig:
246 1.1.2.1 ad *
247 1.1.2.1 ad * Wait on a condition variable until a timeout expires, awoken or a
248 1.1.2.1 ad * signal is received. Will also return early if the process is
249 1.1.2.1 ad * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
250 1.1.2.1 ad * timeout expires, ERESTART if a signal was received and the system
251 1.1.2.1 ad * call is restartable, or EINTR otherwise.
252 1.1.2.1 ad */
253 1.1.2.1 ad int
254 1.1.2.1 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
255 1.1.2.1 ad {
256 1.1.2.1 ad struct lwp *l = curlwp;
257 1.1.2.1 ad sleepq_t *sq;
258 1.1.2.1 ad int error;
259 1.1.2.1 ad
260 1.1.2.1 ad LOCK_ASSERT(mutex_owned(mtx));
261 1.1.2.1 ad
262 1.1.2.1 ad if (sleepq_dontsleep(l))
263 1.1.2.1 ad return sleepq_abort(mtx, 0);
264 1.1.2.1 ad
265 1.1.2.4 ad sq = cv_enter(cv, mtx, l);
266 1.1.2.4 ad sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, timo, 1,
267 1.1.2.2 ad &cv_syncobj);
268 1.1.2.4 ad error = sleepq_unblock(timo, 1);
269 1.1.2.1 ad mutex_enter(mtx);
270 1.1.2.2 ad
271 1.1.2.2 ad return error;
272 1.1.2.1 ad }
273 1.1.2.1 ad
274 1.1.2.1 ad /*
275 1.1.2.1 ad * cv_signal:
276 1.1.2.1 ad *
277 1.1.2.1 ad * Wake the highest priority LWP waiting on a condition variable.
278 1.1.2.5 ad * Must be called with the interlocking mutex held.
279 1.1.2.1 ad */
280 1.1.2.1 ad void
281 1.1.2.1 ad cv_signal(kcondvar_t *cv)
282 1.1.2.1 ad {
283 1.1.2.1 ad sleepq_t *sq;
284 1.1.2.1 ad
285 1.1.2.5 ad if (cv->cv_waiters == 0)
286 1.1.2.5 ad return;
287 1.1.2.5 ad
288 1.1.2.5 ad /*
289 1.1.2.5 ad * cv->cv_waiters may be stale and have dropped to zero, but
290 1.1.2.5 ad * while holding the interlock (the mutex passed to cv_wait()
291 1.1.2.5 ad * and similar) we will see non-zero values when it matters.
292 1.1.2.5 ad */
293 1.1.2.5 ad
294 1.1.2.2 ad sq = sleeptab_lookup(&sleeptab, cv);
295 1.1.2.1 ad if (cv->cv_waiters != 0) {
296 1.1.2.1 ad cv->cv_waiters--;
297 1.1.2.3 ad sleepq_wake(sq, cv, 1);
298 1.1.2.1 ad } else
299 1.1.2.1 ad sleepq_unlock(sq);
300 1.1.2.1 ad }
301 1.1.2.1 ad
302 1.1.2.1 ad /*
303 1.1.2.1 ad * cv_broadcast:
304 1.1.2.1 ad *
305 1.1.2.5 ad * Wake all LWPs waiting on a condition variable. Must be called
306 1.1.2.5 ad * with the interlocking mutex held.
307 1.1.2.1 ad */
308 1.1.2.1 ad void
309 1.1.2.1 ad cv_broadcast(kcondvar_t *cv)
310 1.1.2.1 ad {
311 1.1.2.1 ad sleepq_t *sq;
312 1.1.2.3 ad u_int cnt;
313 1.1.2.1 ad
314 1.1.2.5 ad if (cv->cv_waiters == 0)
315 1.1.2.5 ad return;
316 1.1.2.5 ad
317 1.1.2.5 ad sq = sleeptab_lookup(&sleeptab, cv);
318 1.1.2.5 ad if ((cnt = cv->cv_waiters) != 0) {
319 1.1.2.5 ad cv->cv_waiters = 0;
320 1.1.2.5 ad sleepq_wake(sq, cv, cnt);
321 1.1.2.5 ad } else
322 1.1.2.5 ad sleepq_unlock(sq);
323 1.1.2.5 ad }
324 1.1.2.5 ad
325 1.1.2.5 ad /*
326 1.1.2.6 ad * cv_wakeup:
327 1.1.2.5 ad *
328 1.1.2.6 ad * Wake all LWPs waiting on a condition variable. The interlock
329 1.1.2.6 ad * need not be held, but it is the caller's responsibility to
330 1.1.2.6 ad * ensure correct synchronization.
331 1.1.2.5 ad */
332 1.1.2.5 ad void
333 1.1.2.6 ad cv_wakeup(kcondvar_t *cv)
334 1.1.2.5 ad {
335 1.1.2.5 ad sleepq_t *sq;
336 1.1.2.5 ad u_int cnt;
337 1.1.2.5 ad
338 1.1.2.2 ad sq = sleeptab_lookup(&sleeptab, cv);
339 1.1.2.3 ad if ((cnt = cv->cv_waiters) != 0) {
340 1.1.2.1 ad cv->cv_waiters = 0;
341 1.1.2.3 ad sleepq_wake(sq, cv, cnt);
342 1.1.2.1 ad } else
343 1.1.2.1 ad sleepq_unlock(sq);
344 1.1.2.1 ad }
345 1.1.2.4 ad
346 1.1.2.4 ad /*
347 1.1.2.4 ad * cv_has_waiters:
348 1.1.2.4 ad *
349 1.1.2.4 ad * For diagnostic assertions: return non-zero if a condition
350 1.1.2.4 ad * variable has waiters.
351 1.1.2.4 ad */
352 1.1.2.4 ad int
353 1.1.2.4 ad cv_has_waiters(kcondvar_t *cv)
354 1.1.2.4 ad {
355 1.1.2.4 ad
356 1.1.2.4 ad /* No need to interlock here */
357 1.1.2.4 ad return (int)cv->cv_waiters;
358 1.1.2.4 ad }
359