Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.12.4.2
      1  1.12.4.2  matt /*	kern_condvar.c,v 1.12.4.1 2007/11/06 23:31:31 matt Exp	*/
      2       1.2    ad 
      3       1.2    ad /*-
      4  1.12.4.2  matt  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2    ad  * All rights reserved.
      6       1.2    ad  *
      7       1.2    ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2    ad  * by Andrew Doran.
      9       1.2    ad  *
     10       1.2    ad  * Redistribution and use in source and binary forms, with or without
     11       1.2    ad  * modification, are permitted provided that the following conditions
     12       1.2    ad  * are met:
     13       1.2    ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2    ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2    ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2    ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2    ad  *    documentation and/or other materials provided with the distribution.
     18       1.2    ad  * 3. All advertising materials mentioning features or use of this software
     19       1.2    ad  *    must display the following acknowledgement:
     20       1.2    ad  *	This product includes software developed by the NetBSD
     21       1.2    ad  *	Foundation, Inc. and its contributors.
     22       1.2    ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.2    ad  *    contributors may be used to endorse or promote products derived
     24       1.2    ad  *    from this software without specific prior written permission.
     25       1.2    ad  *
     26       1.2    ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.2    ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.2    ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.2    ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.2    ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.2    ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.2    ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.2    ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.2    ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.2    ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.2    ad  * POSSIBILITY OF SUCH DAMAGE.
     37       1.2    ad  */
     38       1.2    ad 
     39       1.2    ad /*
     40       1.2    ad  * Kernel condition variable implementation, modeled after those found in
     41       1.2    ad  * Solaris, a description of which can be found in:
     42       1.2    ad  *
     43       1.2    ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44       1.2    ad  *	    Richard McDougall.
     45       1.2    ad  */
     46       1.2    ad 
     47       1.2    ad #include <sys/cdefs.h>
     48  1.12.4.2  matt __KERNEL_RCSID(0, "kern_condvar.c,v 1.12.4.1 2007/11/06 23:31:31 matt Exp");
     49       1.2    ad 
     50       1.2    ad #include <sys/param.h>
     51       1.2    ad #include <sys/proc.h>
     52       1.2    ad #include <sys/sched.h>
     53       1.2    ad #include <sys/systm.h>
     54       1.2    ad #include <sys/condvar.h>
     55       1.2    ad #include <sys/sleepq.h>
     56       1.2    ad 
     57  1.12.4.2  matt static u_int	cv_unsleep(lwp_t *, bool);
     58       1.2    ad 
     59      1.10    ad static syncobj_t cv_syncobj = {
     60       1.2    ad 	SOBJ_SLEEPQ_SORTED,
     61       1.2    ad 	cv_unsleep,
     62  1.12.4.1  matt 	sleepq_changepri,
     63       1.4  yamt 	sleepq_lendpri,
     64       1.4  yamt 	syncobj_noowner,
     65       1.2    ad };
     66       1.2    ad 
     67      1.10    ad static const char deadcv[] = "deadcv";
     68      1.10    ad 
     69       1.2    ad /*
     70       1.2    ad  * cv_init:
     71       1.2    ad  *
     72       1.2    ad  *	Initialize a condition variable for use.
     73       1.2    ad  */
     74       1.2    ad void
     75       1.2    ad cv_init(kcondvar_t *cv, const char *wmesg)
     76       1.2    ad {
     77       1.2    ad 
     78       1.2    ad 	KASSERT(wmesg != NULL);
     79       1.2    ad 
     80       1.2    ad 	cv->cv_wmesg = wmesg;
     81       1.2    ad 	cv->cv_waiters = 0;
     82       1.2    ad }
     83       1.2    ad 
     84       1.2    ad /*
     85       1.2    ad  * cv_destroy:
     86       1.2    ad  *
     87       1.2    ad  *	Tear down a condition variable.
     88       1.2    ad  */
     89       1.2    ad void
     90       1.2    ad cv_destroy(kcondvar_t *cv)
     91       1.2    ad {
     92       1.2    ad 
     93       1.2    ad #ifdef DIAGNOSTIC
     94  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
     95      1.10    ad 	cv->cv_wmesg = deadcv;
     96  1.12.4.2  matt 	cv->cv_waiters = -3;
     97       1.2    ad #endif
     98       1.2    ad }
     99       1.2    ad 
    100       1.2    ad /*
    101       1.2    ad  * cv_enter:
    102       1.2    ad  *
    103       1.2    ad  *	Look up and lock the sleep queue corresponding to the given
    104       1.2    ad  *	condition variable, and increment the number of waiters.
    105       1.2    ad  */
    106       1.2    ad static inline sleepq_t *
    107       1.6    ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
    108       1.2    ad {
    109       1.2    ad 	sleepq_t *sq;
    110       1.2    ad 
    111  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    112  1.12.4.1  matt 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    113       1.2    ad 
    114       1.6    ad 	l->l_cv_signalled = 0;
    115  1.12.4.1  matt 	l->l_kpriority = true;
    116       1.2    ad 	sq = sleeptab_lookup(&sleeptab, cv);
    117       1.2    ad 	cv->cv_waiters++;
    118       1.2    ad 	sleepq_enter(sq, l);
    119  1.12.4.1  matt 	sleepq_enqueue(sq, cv, cv->cv_wmesg, &cv_syncobj);
    120       1.2    ad 	mutex_exit(mtx);
    121       1.2    ad 
    122       1.2    ad 	return sq;
    123       1.2    ad }
    124       1.2    ad 
    125       1.2    ad /*
    126       1.6    ad  * cv_exit:
    127       1.6    ad  *
    128       1.6    ad  *	After resuming execution, check to see if we have been restarted
    129       1.6    ad  *	as a result of cv_signal().  If we have, but cannot take the
    130       1.6    ad  *	wakeup (because of eg a pending Unix signal or timeout) then try
    131       1.6    ad  *	to ensure that another LWP sees it.  This is necessary because
    132       1.6    ad  *	there may be multiple waiters, and at least one should take the
    133       1.6    ad  *	wakeup if possible.
    134       1.6    ad  */
    135       1.6    ad static inline int
    136       1.6    ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
    137       1.6    ad {
    138       1.6    ad 
    139       1.6    ad 	mutex_enter(mtx);
    140       1.6    ad 	if (__predict_false(error != 0) && l->l_cv_signalled != 0)
    141       1.6    ad 		cv_signal(cv);
    142       1.6    ad 
    143  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    144      1.10    ad 
    145       1.6    ad 	return error;
    146       1.6    ad }
    147       1.6    ad 
    148       1.6    ad /*
    149       1.2    ad  * cv_unsleep:
    150       1.2    ad  *
    151       1.2    ad  *	Remove an LWP from the condition variable and sleep queue.  This
    152       1.2    ad  *	is called when the LWP has not been awoken normally but instead
    153       1.2    ad  *	interrupted: for example, when a signal is received.  Must be
    154       1.2    ad  *	called with the LWP locked, and must return it unlocked.
    155       1.2    ad  */
    156  1.12.4.2  matt static u_int
    157  1.12.4.2  matt cv_unsleep(lwp_t *l, bool cleanup)
    158       1.2    ad {
    159      1.10    ad 	kcondvar_t *cv;
    160       1.2    ad 
    161  1.12.4.2  matt 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    162  1.12.4.2  matt 
    163       1.2    ad 	KASSERT(l->l_wchan != NULL);
    164       1.8  yamt 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    165  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    166  1.12.4.2  matt 	KASSERT(cv->cv_waiters > 0);
    167       1.2    ad 
    168      1.10    ad 	cv->cv_waiters--;
    169  1.12.4.2  matt 	return sleepq_unsleep(l, cleanup);
    170       1.2    ad }
    171       1.2    ad 
    172       1.2    ad /*
    173       1.2    ad  * cv_wait:
    174       1.2    ad  *
    175       1.2    ad  *	Wait non-interruptably on a condition variable until awoken.
    176       1.2    ad  */
    177       1.2    ad void
    178       1.2    ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    179       1.2    ad {
    180       1.6    ad 	lwp_t *l = curlwp;
    181       1.2    ad 	sleepq_t *sq;
    182       1.2    ad 
    183       1.8  yamt 	KASSERT(mutex_owned(mtx));
    184       1.2    ad 
    185       1.2    ad 	if (sleepq_dontsleep(l)) {
    186       1.2    ad 		(void)sleepq_abort(mtx, 0);
    187       1.2    ad 		return;
    188       1.2    ad 	}
    189       1.2    ad 
    190       1.2    ad 	sq = cv_enter(cv, mtx, l);
    191       1.8  yamt 	(void)sleepq_block(0, false);
    192       1.6    ad 	(void)cv_exit(cv, mtx, l, 0);
    193       1.2    ad }
    194       1.2    ad 
    195       1.2    ad /*
    196       1.2    ad  * cv_wait_sig:
    197       1.2    ad  *
    198       1.2    ad  *	Wait on a condition variable until a awoken or a signal is received.
    199       1.2    ad  *	Will also return early if the process is exiting.  Returns zero if
    200       1.2    ad  *	awoken normallly, ERESTART if a signal was received and the system
    201       1.2    ad  *	call is restartable, or EINTR otherwise.
    202       1.2    ad  */
    203       1.2    ad int
    204       1.2    ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    205       1.2    ad {
    206       1.6    ad 	lwp_t *l = curlwp;
    207       1.2    ad 	sleepq_t *sq;
    208       1.2    ad 	int error;
    209       1.2    ad 
    210       1.8  yamt 	KASSERT(mutex_owned(mtx));
    211       1.2    ad 
    212       1.2    ad 	if (sleepq_dontsleep(l))
    213       1.2    ad 		return sleepq_abort(mtx, 0);
    214       1.2    ad 
    215       1.2    ad 	sq = cv_enter(cv, mtx, l);
    216       1.8  yamt 	error = sleepq_block(0, true);
    217       1.6    ad 	return cv_exit(cv, mtx, l, error);
    218       1.2    ad }
    219       1.2    ad 
    220       1.2    ad /*
    221       1.2    ad  * cv_timedwait:
    222       1.2    ad  *
    223       1.2    ad  *	Wait on a condition variable until awoken or the specified timeout
    224       1.2    ad  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    225       1.2    ad  *	timeout expired.
    226       1.2    ad  */
    227       1.2    ad int
    228       1.2    ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    229       1.2    ad {
    230       1.6    ad 	lwp_t *l = curlwp;
    231       1.2    ad 	sleepq_t *sq;
    232       1.2    ad 	int error;
    233       1.2    ad 
    234       1.8  yamt 	KASSERT(mutex_owned(mtx));
    235       1.2    ad 
    236       1.2    ad 	if (sleepq_dontsleep(l))
    237       1.2    ad 		return sleepq_abort(mtx, 0);
    238       1.2    ad 
    239       1.2    ad 	sq = cv_enter(cv, mtx, l);
    240       1.8  yamt 	error = sleepq_block(timo, false);
    241       1.6    ad 	return cv_exit(cv, mtx, l, error);
    242       1.2    ad }
    243       1.2    ad 
    244       1.2    ad /*
    245       1.2    ad  * cv_timedwait_sig:
    246       1.2    ad  *
    247       1.2    ad  *	Wait on a condition variable until a timeout expires, awoken or a
    248       1.2    ad  *	signal is received.  Will also return early if the process is
    249       1.2    ad  *	exiting.  Returns zero if awoken normallly, EWOULDBLOCK if the
    250       1.2    ad  *	timeout expires, ERESTART if a signal was received and the system
    251       1.2    ad  *	call is restartable, or EINTR otherwise.
    252       1.2    ad  */
    253       1.2    ad int
    254       1.2    ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    255       1.2    ad {
    256       1.6    ad 	lwp_t *l = curlwp;
    257       1.2    ad 	sleepq_t *sq;
    258       1.2    ad 	int error;
    259       1.2    ad 
    260       1.8  yamt 	KASSERT(mutex_owned(mtx));
    261       1.2    ad 
    262       1.2    ad 	if (sleepq_dontsleep(l))
    263       1.2    ad 		return sleepq_abort(mtx, 0);
    264       1.2    ad 
    265       1.2    ad 	sq = cv_enter(cv, mtx, l);
    266       1.8  yamt 	error = sleepq_block(timo, true);
    267       1.6    ad 	return cv_exit(cv, mtx, l, error);
    268       1.2    ad }
    269       1.2    ad 
    270       1.2    ad /*
    271       1.2    ad  * cv_signal:
    272       1.2    ad  *
    273       1.2    ad  *	Wake the highest priority LWP waiting on a condition variable.
    274       1.2    ad  *	Must be called with the interlocking mutex held.
    275       1.2    ad  */
    276       1.2    ad void
    277       1.2    ad cv_signal(kcondvar_t *cv)
    278       1.2    ad {
    279       1.6    ad 	lwp_t *l;
    280       1.2    ad 	sleepq_t *sq;
    281       1.2    ad 
    282  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    283  1.12.4.2  matt 
    284       1.2    ad 	if (cv->cv_waiters == 0)
    285       1.2    ad 		return;
    286       1.2    ad 
    287       1.2    ad 	/*
    288       1.2    ad 	 * cv->cv_waiters may be stale and have dropped to zero, but
    289       1.2    ad 	 * while holding the interlock (the mutex passed to cv_wait()
    290       1.2    ad 	 * and similar) we will see non-zero values when it matters.
    291       1.2    ad 	 */
    292       1.2    ad 
    293       1.2    ad 	sq = sleeptab_lookup(&sleeptab, cv);
    294       1.2    ad 	if (cv->cv_waiters != 0) {
    295       1.2    ad 		cv->cv_waiters--;
    296       1.6    ad 		l = sleepq_wake(sq, cv, 1);
    297       1.6    ad 		l->l_cv_signalled = 1;
    298       1.2    ad 	} else
    299       1.2    ad 		sleepq_unlock(sq);
    300  1.12.4.2  matt 
    301  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    302       1.2    ad }
    303       1.2    ad 
    304       1.2    ad /*
    305       1.2    ad  * cv_broadcast:
    306       1.2    ad  *
    307       1.2    ad  *	Wake all LWPs waiting on a condition variable.  Must be called
    308       1.2    ad  *	with the interlocking mutex held.
    309       1.2    ad  */
    310       1.2    ad void
    311       1.2    ad cv_broadcast(kcondvar_t *cv)
    312       1.2    ad {
    313       1.2    ad 	sleepq_t *sq;
    314       1.2    ad 	u_int cnt;
    315       1.2    ad 
    316  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    317  1.12.4.2  matt 
    318       1.2    ad 	if (cv->cv_waiters == 0)
    319       1.2    ad 		return;
    320       1.2    ad 
    321       1.2    ad 	sq = sleeptab_lookup(&sleeptab, cv);
    322       1.2    ad 	if ((cnt = cv->cv_waiters) != 0) {
    323       1.2    ad 		cv->cv_waiters = 0;
    324       1.2    ad 		sleepq_wake(sq, cv, cnt);
    325       1.2    ad 	} else
    326       1.2    ad 		sleepq_unlock(sq);
    327  1.12.4.2  matt 
    328  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    329       1.2    ad }
    330       1.2    ad 
    331       1.2    ad /*
    332      1.11    ad  * cv_wakeup:
    333      1.11    ad  *
    334      1.11    ad  *	Wake all LWPs waiting on a condition variable.  For cases
    335      1.11    ad  *	where the address may be waited on by mtsleep()/tsleep().
    336      1.11    ad  *	Not a documented call.
    337      1.11    ad  */
    338      1.11    ad void
    339      1.11    ad cv_wakeup(kcondvar_t *cv)
    340      1.11    ad {
    341      1.11    ad 	sleepq_t *sq;
    342      1.11    ad 
    343  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    344  1.12.4.2  matt 
    345      1.11    ad 	sq = sleeptab_lookup(&sleeptab, cv);
    346      1.12    ad 	cv->cv_waiters = 0;
    347      1.12    ad 	sleepq_wake(sq, cv, (u_int)-1);
    348  1.12.4.2  matt 
    349  1.12.4.2  matt 	KASSERT(cv_is_valid(cv));
    350      1.11    ad }
    351      1.11    ad 
    352      1.11    ad /*
    353       1.2    ad  * cv_has_waiters:
    354       1.2    ad  *
    355       1.2    ad  *	For diagnostic assertions: return non-zero if a condition
    356       1.2    ad  *	variable has waiters.
    357       1.2    ad  */
    358       1.7    ad bool
    359       1.2    ad cv_has_waiters(kcondvar_t *cv)
    360       1.2    ad {
    361       1.2    ad 
    362       1.2    ad 	/* No need to interlock here */
    363       1.7    ad 	return cv->cv_waiters != 0;
    364       1.2    ad }
    365  1.12.4.2  matt 
    366  1.12.4.2  matt /*
    367  1.12.4.2  matt  * cv_is_valid:
    368  1.12.4.2  matt  *
    369  1.12.4.2  matt  *	For diagnostic assertions: return non-zero if a condition
    370  1.12.4.2  matt  *	variable appears to be valid.  No locks need be held.
    371  1.12.4.2  matt  */
    372  1.12.4.2  matt bool
    373  1.12.4.2  matt cv_is_valid(kcondvar_t *cv)
    374  1.12.4.2  matt {
    375  1.12.4.2  matt 
    376  1.12.4.2  matt 	if (cv->cv_wmesg == deadcv || cv->cv_wmesg == NULL)
    377  1.12.4.2  matt 		return false;
    378  1.12.4.2  matt 	if ((cv->cv_waiters & 0xff000000) != 0) {
    379  1.12.4.2  matt 		/* Arbitrary: invalid number of waiters. */
    380  1.12.4.2  matt 		return false;
    381  1.12.4.2  matt 	}
    382  1.12.4.2  matt 	return cv->cv_waiters >= 0;
    383  1.12.4.2  matt }
    384