kern_condvar.c revision 1.32 1 1.32 apb /* $NetBSD: kern_condvar.c,v 1.32 2013/03/08 08:36:37 apb Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.15 ad * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.24 ad * Kernel condition variable implementation.
34 1.2 ad */
35 1.2 ad
36 1.2 ad #include <sys/cdefs.h>
37 1.32 apb __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.32 2013/03/08 08:36:37 apb Exp $");
38 1.2 ad
39 1.2 ad #include <sys/param.h>
40 1.2 ad #include <sys/proc.h>
41 1.2 ad #include <sys/sched.h>
42 1.2 ad #include <sys/systm.h>
43 1.2 ad #include <sys/condvar.h>
44 1.2 ad #include <sys/sleepq.h>
45 1.20 ad #include <sys/lockdebug.h>
46 1.24 ad #include <sys/cpu.h>
47 1.20 ad
48 1.26 thorpej /*
49 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
50 1.26 thorpej *
51 1.26 thorpej * cv_opaque[0] sleepq...
52 1.26 thorpej * cv_opaque[1] ...pointers
53 1.26 thorpej * cv_opaque[2] description for ps(1)
54 1.26 thorpej *
55 1.26 thorpej * cv_opaque[0..1] is protected by the interlock passed to cv_wait() (enqueue
56 1.26 thorpej * only), and the sleep queue lock acquired with sleeptab_lookup() (enqueue
57 1.26 thorpej * and dequeue).
58 1.26 thorpej *
59 1.26 thorpej * cv_opaque[2] (the wmesg) is static and does not change throughout the life
60 1.26 thorpej * of the CV.
61 1.26 thorpej */
62 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
63 1.26 thorpej #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[2])
64 1.26 thorpej #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[2] = __UNCONST(v)
65 1.26 thorpej
66 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
67 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
68 1.2 ad
69 1.27 rmind static void cv_unsleep(lwp_t *, bool);
70 1.20 ad static void cv_wakeup_one(kcondvar_t *);
71 1.20 ad static void cv_wakeup_all(kcondvar_t *);
72 1.2 ad
73 1.10 ad static syncobj_t cv_syncobj = {
74 1.2 ad SOBJ_SLEEPQ_SORTED,
75 1.2 ad cv_unsleep,
76 1.14 ad sleepq_changepri,
77 1.4 yamt sleepq_lendpri,
78 1.4 yamt syncobj_noowner,
79 1.2 ad };
80 1.2 ad
81 1.20 ad lockops_t cv_lockops = {
82 1.20 ad "Condition variable",
83 1.20 ad LOCKOPS_CV,
84 1.20 ad NULL
85 1.20 ad };
86 1.20 ad
87 1.10 ad static const char deadcv[] = "deadcv";
88 1.20 ad static const char nodebug[] = "nodebug";
89 1.10 ad
90 1.2 ad /*
91 1.2 ad * cv_init:
92 1.2 ad *
93 1.2 ad * Initialize a condition variable for use.
94 1.2 ad */
95 1.2 ad void
96 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
97 1.2 ad {
98 1.21 ad #ifdef LOCKDEBUG
99 1.20 ad bool dodebug;
100 1.2 ad
101 1.20 ad dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
102 1.20 ad (uintptr_t)__builtin_return_address(0));
103 1.21 ad if (!dodebug) {
104 1.20 ad /* XXX This will break vfs_lockf. */
105 1.21 ad wmesg = nodebug;
106 1.20 ad }
107 1.21 ad #endif
108 1.21 ad KASSERT(wmesg != NULL);
109 1.26 thorpej CV_SET_WMESG(cv, wmesg);
110 1.20 ad sleepq_init(CV_SLEEPQ(cv));
111 1.2 ad }
112 1.2 ad
113 1.2 ad /*
114 1.2 ad * cv_destroy:
115 1.2 ad *
116 1.2 ad * Tear down a condition variable.
117 1.2 ad */
118 1.2 ad void
119 1.2 ad cv_destroy(kcondvar_t *cv)
120 1.2 ad {
121 1.2 ad
122 1.20 ad LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
123 1.2 ad #ifdef DIAGNOSTIC
124 1.15 ad KASSERT(cv_is_valid(cv));
125 1.26 thorpej CV_SET_WMESG(cv, deadcv);
126 1.2 ad #endif
127 1.2 ad }
128 1.2 ad
129 1.2 ad /*
130 1.2 ad * cv_enter:
131 1.2 ad *
132 1.2 ad * Look up and lock the sleep queue corresponding to the given
133 1.2 ad * condition variable, and increment the number of waiters.
134 1.2 ad */
135 1.20 ad static inline void
136 1.6 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
137 1.2 ad {
138 1.2 ad sleepq_t *sq;
139 1.18 ad kmutex_t *mp;
140 1.2 ad
141 1.15 ad KASSERT(cv_is_valid(cv));
142 1.24 ad KASSERT(!cpu_intr_p());
143 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
144 1.2 ad
145 1.20 ad LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
146 1.20 ad
147 1.14 ad l->l_kpriority = true;
148 1.24 ad mp = sleepq_hashlock(cv);
149 1.20 ad sq = CV_SLEEPQ(cv);
150 1.18 ad sleepq_enter(sq, l, mp);
151 1.26 thorpej sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
152 1.2 ad mutex_exit(mtx);
153 1.24 ad KASSERT(cv_has_waiters(cv));
154 1.2 ad }
155 1.2 ad
156 1.2 ad /*
157 1.6 ad * cv_exit:
158 1.6 ad *
159 1.6 ad * After resuming execution, check to see if we have been restarted
160 1.6 ad * as a result of cv_signal(). If we have, but cannot take the
161 1.6 ad * wakeup (because of eg a pending Unix signal or timeout) then try
162 1.6 ad * to ensure that another LWP sees it. This is necessary because
163 1.6 ad * there may be multiple waiters, and at least one should take the
164 1.6 ad * wakeup if possible.
165 1.6 ad */
166 1.6 ad static inline int
167 1.6 ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
168 1.6 ad {
169 1.6 ad
170 1.6 ad mutex_enter(mtx);
171 1.20 ad if (__predict_false(error != 0))
172 1.6 ad cv_signal(cv);
173 1.6 ad
174 1.20 ad LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
175 1.15 ad KASSERT(cv_is_valid(cv));
176 1.10 ad
177 1.6 ad return error;
178 1.6 ad }
179 1.6 ad
180 1.6 ad /*
181 1.2 ad * cv_unsleep:
182 1.2 ad *
183 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
184 1.2 ad * is called when the LWP has not been awoken normally but instead
185 1.2 ad * interrupted: for example, when a signal is received. Must be
186 1.2 ad * called with the LWP locked, and must return it unlocked.
187 1.2 ad */
188 1.27 rmind static void
189 1.16 ad cv_unsleep(lwp_t *l, bool cleanup)
190 1.2 ad {
191 1.10 ad kcondvar_t *cv;
192 1.2 ad
193 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
194 1.15 ad
195 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
196 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
197 1.15 ad KASSERT(cv_is_valid(cv));
198 1.24 ad KASSERT(cv_has_waiters(cv));
199 1.2 ad
200 1.27 rmind sleepq_unsleep(l, cleanup);
201 1.2 ad }
202 1.2 ad
203 1.2 ad /*
204 1.2 ad * cv_wait:
205 1.2 ad *
206 1.2 ad * Wait non-interruptably on a condition variable until awoken.
207 1.2 ad */
208 1.2 ad void
209 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
210 1.2 ad {
211 1.6 ad lwp_t *l = curlwp;
212 1.2 ad
213 1.8 yamt KASSERT(mutex_owned(mtx));
214 1.2 ad
215 1.20 ad cv_enter(cv, mtx, l);
216 1.8 yamt (void)sleepq_block(0, false);
217 1.6 ad (void)cv_exit(cv, mtx, l, 0);
218 1.2 ad }
219 1.2 ad
220 1.2 ad /*
221 1.2 ad * cv_wait_sig:
222 1.2 ad *
223 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
224 1.2 ad * Will also return early if the process is exiting. Returns zero if
225 1.29 jym * awoken normally, ERESTART if a signal was received and the system
226 1.2 ad * call is restartable, or EINTR otherwise.
227 1.2 ad */
228 1.2 ad int
229 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
230 1.2 ad {
231 1.6 ad lwp_t *l = curlwp;
232 1.2 ad int error;
233 1.2 ad
234 1.8 yamt KASSERT(mutex_owned(mtx));
235 1.2 ad
236 1.20 ad cv_enter(cv, mtx, l);
237 1.8 yamt error = sleepq_block(0, true);
238 1.6 ad return cv_exit(cv, mtx, l, error);
239 1.2 ad }
240 1.2 ad
241 1.2 ad /*
242 1.2 ad * cv_timedwait:
243 1.2 ad *
244 1.2 ad * Wait on a condition variable until awoken or the specified timeout
245 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
246 1.2 ad * timeout expired.
247 1.31 apb *
248 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
249 1.2 ad */
250 1.2 ad int
251 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
252 1.2 ad {
253 1.6 ad lwp_t *l = curlwp;
254 1.2 ad int error;
255 1.2 ad
256 1.8 yamt KASSERT(mutex_owned(mtx));
257 1.2 ad
258 1.20 ad cv_enter(cv, mtx, l);
259 1.8 yamt error = sleepq_block(timo, false);
260 1.6 ad return cv_exit(cv, mtx, l, error);
261 1.2 ad }
262 1.2 ad
263 1.2 ad /*
264 1.2 ad * cv_timedwait_sig:
265 1.2 ad *
266 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
267 1.2 ad * signal is received. Will also return early if the process is
268 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
269 1.2 ad * timeout expires, ERESTART if a signal was received and the system
270 1.2 ad * call is restartable, or EINTR otherwise.
271 1.32 apb *
272 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
273 1.2 ad */
274 1.2 ad int
275 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
276 1.2 ad {
277 1.6 ad lwp_t *l = curlwp;
278 1.2 ad int error;
279 1.2 ad
280 1.8 yamt KASSERT(mutex_owned(mtx));
281 1.2 ad
282 1.20 ad cv_enter(cv, mtx, l);
283 1.8 yamt error = sleepq_block(timo, true);
284 1.6 ad return cv_exit(cv, mtx, l, error);
285 1.2 ad }
286 1.2 ad
287 1.2 ad /*
288 1.2 ad * cv_signal:
289 1.2 ad *
290 1.2 ad * Wake the highest priority LWP waiting on a condition variable.
291 1.2 ad * Must be called with the interlocking mutex held.
292 1.2 ad */
293 1.2 ad void
294 1.2 ad cv_signal(kcondvar_t *cv)
295 1.2 ad {
296 1.20 ad
297 1.22 ad /* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
298 1.20 ad KASSERT(cv_is_valid(cv));
299 1.20 ad
300 1.24 ad if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
301 1.24 ad cv_wakeup_one(cv);
302 1.20 ad }
303 1.20 ad
304 1.20 ad static void __noinline
305 1.20 ad cv_wakeup_one(kcondvar_t *cv)
306 1.20 ad {
307 1.2 ad sleepq_t *sq;
308 1.18 ad kmutex_t *mp;
309 1.20 ad lwp_t *l;
310 1.2 ad
311 1.15 ad KASSERT(cv_is_valid(cv));
312 1.15 ad
313 1.24 ad mp = sleepq_hashlock(cv);
314 1.20 ad sq = CV_SLEEPQ(cv);
315 1.20 ad l = TAILQ_FIRST(sq);
316 1.20 ad if (l == NULL) {
317 1.20 ad mutex_spin_exit(mp);
318 1.2 ad return;
319 1.20 ad }
320 1.20 ad KASSERT(l->l_sleepq == sq);
321 1.20 ad KASSERT(l->l_mutex == mp);
322 1.20 ad KASSERT(l->l_wchan == cv);
323 1.27 rmind sleepq_remove(sq, l);
324 1.20 ad mutex_spin_exit(mp);
325 1.2 ad
326 1.15 ad KASSERT(cv_is_valid(cv));
327 1.2 ad }
328 1.2 ad
329 1.2 ad /*
330 1.2 ad * cv_broadcast:
331 1.2 ad *
332 1.2 ad * Wake all LWPs waiting on a condition variable. Must be called
333 1.2 ad * with the interlocking mutex held.
334 1.2 ad */
335 1.2 ad void
336 1.2 ad cv_broadcast(kcondvar_t *cv)
337 1.2 ad {
338 1.20 ad
339 1.22 ad /* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
340 1.20 ad KASSERT(cv_is_valid(cv));
341 1.20 ad
342 1.24 ad if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
343 1.24 ad cv_wakeup_all(cv);
344 1.20 ad }
345 1.20 ad
346 1.20 ad static void __noinline
347 1.20 ad cv_wakeup_all(kcondvar_t *cv)
348 1.20 ad {
349 1.2 ad sleepq_t *sq;
350 1.18 ad kmutex_t *mp;
351 1.20 ad lwp_t *l, *next;
352 1.2 ad
353 1.15 ad KASSERT(cv_is_valid(cv));
354 1.15 ad
355 1.24 ad mp = sleepq_hashlock(cv);
356 1.20 ad sq = CV_SLEEPQ(cv);
357 1.20 ad for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
358 1.20 ad KASSERT(l->l_sleepq == sq);
359 1.20 ad KASSERT(l->l_mutex == mp);
360 1.20 ad KASSERT(l->l_wchan == cv);
361 1.20 ad next = TAILQ_NEXT(l, l_sleepchain);
362 1.27 rmind sleepq_remove(sq, l);
363 1.20 ad }
364 1.20 ad mutex_spin_exit(mp);
365 1.2 ad
366 1.15 ad KASSERT(cv_is_valid(cv));
367 1.2 ad }
368 1.2 ad
369 1.2 ad /*
370 1.2 ad * cv_has_waiters:
371 1.2 ad *
372 1.2 ad * For diagnostic assertions: return non-zero if a condition
373 1.2 ad * variable has waiters.
374 1.2 ad */
375 1.7 ad bool
376 1.2 ad cv_has_waiters(kcondvar_t *cv)
377 1.2 ad {
378 1.23 chris
379 1.25 ad return !TAILQ_EMPTY(CV_SLEEPQ(cv));
380 1.2 ad }
381 1.15 ad
382 1.15 ad /*
383 1.15 ad * cv_is_valid:
384 1.15 ad *
385 1.15 ad * For diagnostic assertions: return non-zero if a condition
386 1.15 ad * variable appears to be valid. No locks need be held.
387 1.15 ad */
388 1.15 ad bool
389 1.15 ad cv_is_valid(kcondvar_t *cv)
390 1.15 ad {
391 1.15 ad
392 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
393 1.15 ad }
394