Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.34.6.2
      1  1.34.6.2    skrll /*	$NetBSD: kern_condvar.c,v 1.34.6.2 2017/08/28 17:53:07 skrll Exp $	*/
      2       1.2       ad 
      3       1.2       ad /*-
      4      1.15       ad  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2       ad  * All rights reserved.
      6       1.2       ad  *
      7       1.2       ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2       ad  * by Andrew Doran.
      9       1.2       ad  *
     10       1.2       ad  * Redistribution and use in source and binary forms, with or without
     11       1.2       ad  * modification, are permitted provided that the following conditions
     12       1.2       ad  * are met:
     13       1.2       ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2       ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2       ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2       ad  *    documentation and/or other materials provided with the distribution.
     18       1.2       ad  *
     19       1.2       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2       ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2       ad  */
     31       1.2       ad 
     32       1.2       ad /*
     33      1.24       ad  * Kernel condition variable implementation.
     34       1.2       ad  */
     35       1.2       ad 
     36       1.2       ad #include <sys/cdefs.h>
     37  1.34.6.2    skrll __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.34.6.2 2017/08/28 17:53:07 skrll Exp $");
     38       1.2       ad 
     39       1.2       ad #include <sys/param.h>
     40       1.2       ad #include <sys/systm.h>
     41  1.34.6.1    skrll #include <sys/lwp.h>
     42       1.2       ad #include <sys/condvar.h>
     43       1.2       ad #include <sys/sleepq.h>
     44      1.20       ad #include <sys/lockdebug.h>
     45      1.24       ad #include <sys/cpu.h>
     46  1.34.6.2    skrll #include <sys/kernel.h>
     47      1.20       ad 
     48      1.26  thorpej /*
     49      1.26  thorpej  * Accessors for the private contents of the kcondvar_t data type.
     50      1.26  thorpej  *
     51      1.26  thorpej  *	cv_opaque[0]	sleepq...
     52      1.26  thorpej  *	cv_opaque[1]	...pointers
     53      1.26  thorpej  *	cv_opaque[2]	description for ps(1)
     54      1.26  thorpej  *
     55      1.26  thorpej  * cv_opaque[0..1] is protected by the interlock passed to cv_wait() (enqueue
     56      1.26  thorpej  * only), and the sleep queue lock acquired with sleeptab_lookup() (enqueue
     57      1.26  thorpej  * and dequeue).
     58      1.26  thorpej  *
     59      1.26  thorpej  * cv_opaque[2] (the wmesg) is static and does not change throughout the life
     60      1.26  thorpej  * of the CV.
     61      1.26  thorpej  */
     62      1.26  thorpej #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     63      1.26  thorpej #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[2])
     64      1.26  thorpej #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[2] = __UNCONST(v)
     65      1.26  thorpej 
     66      1.26  thorpej #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     67      1.20       ad #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     68       1.2       ad 
     69  1.34.6.2    skrll static void		cv_unsleep(lwp_t *, bool);
     70  1.34.6.2    skrll static inline void	cv_wakeup_one(kcondvar_t *);
     71  1.34.6.2    skrll static inline void	cv_wakeup_all(kcondvar_t *);
     72       1.2       ad 
     73      1.10       ad static syncobj_t cv_syncobj = {
     74       1.2       ad 	SOBJ_SLEEPQ_SORTED,
     75       1.2       ad 	cv_unsleep,
     76      1.14       ad 	sleepq_changepri,
     77       1.4     yamt 	sleepq_lendpri,
     78       1.4     yamt 	syncobj_noowner,
     79       1.2       ad };
     80       1.2       ad 
     81      1.20       ad lockops_t cv_lockops = {
     82      1.20       ad 	"Condition variable",
     83      1.20       ad 	LOCKOPS_CV,
     84      1.20       ad 	NULL
     85      1.20       ad };
     86      1.20       ad 
     87      1.10       ad static const char deadcv[] = "deadcv";
     88      1.33    joerg #ifdef LOCKDEBUG
     89      1.20       ad static const char nodebug[] = "nodebug";
     90  1.34.6.2    skrll 
     91  1.34.6.2    skrll #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
     92  1.34.6.2    skrll #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
     93  1.34.6.2    skrll 
     94  1.34.6.2    skrll static inline void
     95  1.34.6.2    skrll cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
     96  1.34.6.2    skrll {
     97  1.34.6.2    skrll 
     98  1.34.6.2    skrll 	if (CV_DEBUG_P(cv))
     99  1.34.6.2    skrll 		l->l_flag |= LW_CVLOCKDEBUG;
    100  1.34.6.2    skrll }
    101  1.34.6.2    skrll 
    102  1.34.6.2    skrll static inline void
    103  1.34.6.2    skrll cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
    104  1.34.6.2    skrll {
    105  1.34.6.2    skrll 
    106  1.34.6.2    skrll 	if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
    107  1.34.6.2    skrll 		return;
    108  1.34.6.2    skrll 
    109  1.34.6.2    skrll 	l->l_flag &= ~LW_CVLOCKDEBUG;
    110  1.34.6.2    skrll 	LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
    111  1.34.6.2    skrll }
    112  1.34.6.2    skrll #else
    113  1.34.6.2    skrll #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
    114  1.34.6.2    skrll #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
    115      1.33    joerg #endif
    116      1.10       ad 
    117       1.2       ad /*
    118       1.2       ad  * cv_init:
    119       1.2       ad  *
    120       1.2       ad  *	Initialize a condition variable for use.
    121       1.2       ad  */
    122       1.2       ad void
    123       1.2       ad cv_init(kcondvar_t *cv, const char *wmesg)
    124       1.2       ad {
    125      1.21       ad #ifdef LOCKDEBUG
    126      1.20       ad 	bool dodebug;
    127       1.2       ad 
    128      1.20       ad 	dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
    129      1.20       ad 	    (uintptr_t)__builtin_return_address(0));
    130      1.21       ad 	if (!dodebug) {
    131      1.20       ad 		/* XXX This will break vfs_lockf. */
    132      1.21       ad 		wmesg = nodebug;
    133      1.20       ad 	}
    134      1.21       ad #endif
    135      1.21       ad 	KASSERT(wmesg != NULL);
    136      1.26  thorpej 	CV_SET_WMESG(cv, wmesg);
    137      1.20       ad 	sleepq_init(CV_SLEEPQ(cv));
    138       1.2       ad }
    139       1.2       ad 
    140       1.2       ad /*
    141       1.2       ad  * cv_destroy:
    142       1.2       ad  *
    143       1.2       ad  *	Tear down a condition variable.
    144       1.2       ad  */
    145       1.2       ad void
    146       1.2       ad cv_destroy(kcondvar_t *cv)
    147       1.2       ad {
    148       1.2       ad 
    149      1.20       ad 	LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
    150       1.2       ad #ifdef DIAGNOSTIC
    151      1.15       ad 	KASSERT(cv_is_valid(cv));
    152      1.26  thorpej 	CV_SET_WMESG(cv, deadcv);
    153       1.2       ad #endif
    154       1.2       ad }
    155       1.2       ad 
    156       1.2       ad /*
    157       1.2       ad  * cv_enter:
    158       1.2       ad  *
    159       1.2       ad  *	Look up and lock the sleep queue corresponding to the given
    160       1.2       ad  *	condition variable, and increment the number of waiters.
    161       1.2       ad  */
    162      1.20       ad static inline void
    163       1.6       ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
    164       1.2       ad {
    165       1.2       ad 	sleepq_t *sq;
    166      1.18       ad 	kmutex_t *mp;
    167       1.2       ad 
    168      1.15       ad 	KASSERT(cv_is_valid(cv));
    169      1.24       ad 	KASSERT(!cpu_intr_p());
    170      1.14       ad 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    171       1.2       ad 
    172      1.20       ad 	LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
    173      1.20       ad 
    174      1.14       ad 	l->l_kpriority = true;
    175      1.24       ad 	mp = sleepq_hashlock(cv);
    176      1.20       ad 	sq = CV_SLEEPQ(cv);
    177      1.18       ad 	sleepq_enter(sq, l, mp);
    178      1.26  thorpej 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
    179       1.2       ad 	mutex_exit(mtx);
    180      1.24       ad 	KASSERT(cv_has_waiters(cv));
    181       1.2       ad }
    182       1.2       ad 
    183       1.2       ad /*
    184       1.6       ad  * cv_exit:
    185       1.6       ad  *
    186       1.6       ad  *	After resuming execution, check to see if we have been restarted
    187       1.6       ad  *	as a result of cv_signal().  If we have, but cannot take the
    188       1.6       ad  *	wakeup (because of eg a pending Unix signal or timeout) then try
    189       1.6       ad  *	to ensure that another LWP sees it.  This is necessary because
    190       1.6       ad  *	there may be multiple waiters, and at least one should take the
    191       1.6       ad  *	wakeup if possible.
    192       1.6       ad  */
    193       1.6       ad static inline int
    194       1.6       ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
    195       1.6       ad {
    196       1.6       ad 
    197       1.6       ad 	mutex_enter(mtx);
    198      1.20       ad 	if (__predict_false(error != 0))
    199       1.6       ad 		cv_signal(cv);
    200       1.6       ad 
    201      1.20       ad 	LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
    202      1.15       ad 	KASSERT(cv_is_valid(cv));
    203      1.10       ad 
    204       1.6       ad 	return error;
    205       1.6       ad }
    206       1.6       ad 
    207       1.6       ad /*
    208       1.2       ad  * cv_unsleep:
    209       1.2       ad  *
    210       1.2       ad  *	Remove an LWP from the condition variable and sleep queue.  This
    211       1.2       ad  *	is called when the LWP has not been awoken normally but instead
    212       1.2       ad  *	interrupted: for example, when a signal is received.  Must be
    213       1.2       ad  *	called with the LWP locked, and must return it unlocked.
    214       1.2       ad  */
    215      1.27    rmind static void
    216      1.16       ad cv_unsleep(lwp_t *l, bool cleanup)
    217       1.2       ad {
    218      1.34   martin 	kcondvar_t *cv __diagused;
    219       1.2       ad 
    220      1.15       ad 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    221      1.15       ad 
    222      1.20       ad 	KASSERT(l->l_wchan == (wchan_t)cv);
    223      1.20       ad 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    224      1.15       ad 	KASSERT(cv_is_valid(cv));
    225      1.24       ad 	KASSERT(cv_has_waiters(cv));
    226       1.2       ad 
    227      1.27    rmind 	sleepq_unsleep(l, cleanup);
    228       1.2       ad }
    229       1.2       ad 
    230       1.2       ad /*
    231       1.2       ad  * cv_wait:
    232       1.2       ad  *
    233       1.2       ad  *	Wait non-interruptably on a condition variable until awoken.
    234       1.2       ad  */
    235       1.2       ad void
    236       1.2       ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    237       1.2       ad {
    238       1.6       ad 	lwp_t *l = curlwp;
    239       1.2       ad 
    240       1.8     yamt 	KASSERT(mutex_owned(mtx));
    241       1.2       ad 
    242      1.20       ad 	cv_enter(cv, mtx, l);
    243  1.34.6.2    skrll 
    244  1.34.6.2    skrll 	/*
    245  1.34.6.2    skrll 	 * We can't use cv_exit() here since the cv might be destroyed before
    246  1.34.6.2    skrll 	 * this thread gets a chance to run.  Instead, hand off the lockdebug
    247  1.34.6.2    skrll 	 * responsibility to the thread that wakes us up.
    248  1.34.6.2    skrll 	 */
    249  1.34.6.2    skrll 
    250  1.34.6.2    skrll 	CV_LOCKDEBUG_HANDOFF(l, cv);
    251       1.8     yamt 	(void)sleepq_block(0, false);
    252  1.34.6.2    skrll 	mutex_enter(mtx);
    253       1.2       ad }
    254       1.2       ad 
    255       1.2       ad /*
    256       1.2       ad  * cv_wait_sig:
    257       1.2       ad  *
    258       1.2       ad  *	Wait on a condition variable until a awoken or a signal is received.
    259       1.2       ad  *	Will also return early if the process is exiting.  Returns zero if
    260      1.29      jym  *	awoken normally, ERESTART if a signal was received and the system
    261       1.2       ad  *	call is restartable, or EINTR otherwise.
    262       1.2       ad  */
    263       1.2       ad int
    264       1.2       ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    265       1.2       ad {
    266       1.6       ad 	lwp_t *l = curlwp;
    267       1.2       ad 	int error;
    268       1.2       ad 
    269       1.8     yamt 	KASSERT(mutex_owned(mtx));
    270       1.2       ad 
    271      1.20       ad 	cv_enter(cv, mtx, l);
    272       1.8     yamt 	error = sleepq_block(0, true);
    273       1.6       ad 	return cv_exit(cv, mtx, l, error);
    274       1.2       ad }
    275       1.2       ad 
    276       1.2       ad /*
    277       1.2       ad  * cv_timedwait:
    278       1.2       ad  *
    279       1.2       ad  *	Wait on a condition variable until awoken or the specified timeout
    280       1.2       ad  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    281       1.2       ad  *	timeout expired.
    282      1.31      apb  *
    283      1.31      apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    284       1.2       ad  */
    285       1.2       ad int
    286       1.2       ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    287       1.2       ad {
    288       1.6       ad 	lwp_t *l = curlwp;
    289       1.2       ad 	int error;
    290       1.2       ad 
    291       1.8     yamt 	KASSERT(mutex_owned(mtx));
    292       1.2       ad 
    293      1.20       ad 	cv_enter(cv, mtx, l);
    294       1.8     yamt 	error = sleepq_block(timo, false);
    295       1.6       ad 	return cv_exit(cv, mtx, l, error);
    296       1.2       ad }
    297       1.2       ad 
    298       1.2       ad /*
    299       1.2       ad  * cv_timedwait_sig:
    300       1.2       ad  *
    301       1.2       ad  *	Wait on a condition variable until a timeout expires, awoken or a
    302       1.2       ad  *	signal is received.  Will also return early if the process is
    303      1.29      jym  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    304       1.2       ad  *	timeout expires, ERESTART if a signal was received and the system
    305       1.2       ad  *	call is restartable, or EINTR otherwise.
    306      1.32      apb  *
    307      1.32      apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    308       1.2       ad  */
    309       1.2       ad int
    310       1.2       ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    311       1.2       ad {
    312       1.6       ad 	lwp_t *l = curlwp;
    313       1.2       ad 	int error;
    314       1.2       ad 
    315       1.8     yamt 	KASSERT(mutex_owned(mtx));
    316       1.2       ad 
    317      1.20       ad 	cv_enter(cv, mtx, l);
    318       1.8     yamt 	error = sleepq_block(timo, true);
    319       1.6       ad 	return cv_exit(cv, mtx, l, error);
    320       1.2       ad }
    321       1.2       ad 
    322       1.2       ad /*
    323  1.34.6.2    skrll  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    324  1.34.6.2    skrll  * want a number of ticks for a timeout:
    325  1.34.6.2    skrll  *
    326  1.34.6.2    skrll  *	timo = hz*(sec + frac/2^64)
    327  1.34.6.2    skrll  *	     = hz*sec + hz*frac/2^64
    328  1.34.6.2    skrll  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    329  1.34.6.2    skrll  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    330  1.34.6.2    skrll  *
    331  1.34.6.2    skrll  * where frachi is the high 32 bits of frac and fraclo is the
    332  1.34.6.2    skrll  * low 32 bits.
    333  1.34.6.2    skrll  *
    334  1.34.6.2    skrll  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    335  1.34.6.2    skrll  *
    336  1.34.6.2    skrll  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    337  1.34.6.2    skrll  *
    338  1.34.6.2    skrll  * since fraclo < 2^32.
    339  1.34.6.2    skrll  *
    340  1.34.6.2    skrll  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    341  1.34.6.2    skrll  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    342  1.34.6.2    skrll  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    343  1.34.6.2    skrll  * because we compute end - start in ticks in order to compute the
    344  1.34.6.2    skrll  * remaining timeout, and that difference cannot wrap around, so we use
    345  1.34.6.2    skrll  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    346  1.34.6.2    skrll  * margin for paranoia and will exceed most waits in practice by far.
    347  1.34.6.2    skrll  */
    348  1.34.6.2    skrll static unsigned
    349  1.34.6.2    skrll bintime2timo(const struct bintime *bt)
    350  1.34.6.2    skrll {
    351  1.34.6.2    skrll 
    352  1.34.6.2    skrll 	KASSERT(hz < INT_MAX/2);
    353  1.34.6.2    skrll 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    354  1.34.6.2    skrll 	if (bt->sec > ((INT_MAX/2)/hz))
    355  1.34.6.2    skrll 		return INT_MAX/2;
    356  1.34.6.2    skrll 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    357  1.34.6.2    skrll 		return INT_MAX/2;
    358  1.34.6.2    skrll 
    359  1.34.6.2    skrll 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    360  1.34.6.2    skrll }
    361  1.34.6.2    skrll 
    362  1.34.6.2    skrll /*
    363  1.34.6.2    skrll  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    364  1.34.6.2    skrll  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    365  1.34.6.2    skrll  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    366  1.34.6.2    skrll  * second)/tick.  So for the fractional part, we compute
    367  1.34.6.2    skrll  *
    368  1.34.6.2    skrll  *	frac = rem * 2^64 / hz
    369  1.34.6.2    skrll  *	     = ((rem * 2^32) / hz) * 2^32
    370  1.34.6.2    skrll  *
    371  1.34.6.2    skrll  * Using truncating integer division instead of real division will
    372  1.34.6.2    skrll  * leave us with only about 32 bits of precision, which means about
    373  1.34.6.2    skrll  * 1/4-nanosecond resolution, which is good enough for our purposes.
    374  1.34.6.2    skrll  */
    375  1.34.6.2    skrll static struct bintime
    376  1.34.6.2    skrll timo2bintime(unsigned timo)
    377  1.34.6.2    skrll {
    378  1.34.6.2    skrll 
    379  1.34.6.2    skrll 	return (struct bintime) {
    380  1.34.6.2    skrll 		.sec = timo / hz,
    381  1.34.6.2    skrll 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    382  1.34.6.2    skrll 	};
    383  1.34.6.2    skrll }
    384  1.34.6.2    skrll 
    385  1.34.6.2    skrll /*
    386  1.34.6.2    skrll  * cv_timedwaitbt:
    387  1.34.6.2    skrll  *
    388  1.34.6.2    skrll  *	Wait on a condition variable until awoken or the specified
    389  1.34.6.2    skrll  *	timeout expires.  Returns zero if awoken normally or
    390  1.34.6.2    skrll  *	EWOULDBLOCK if the timeout expires.
    391  1.34.6.2    skrll  *
    392  1.34.6.2    skrll  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    393  1.34.6.2    skrll  *	the time slept, so on exit, bt is the time remaining after
    394  1.34.6.2    skrll  *	sleeping.  No infinite timeout; use cv_wait_sig instead.
    395  1.34.6.2    skrll  *
    396  1.34.6.2    skrll  *	epsilon is a requested maximum error in timeout (excluding
    397  1.34.6.2    skrll  *	spurious wakeups).  Currently not used, will be used in the
    398  1.34.6.2    skrll  *	future to choose between low- and high-resolution timers.
    399  1.34.6.2    skrll  */
    400  1.34.6.2    skrll int
    401  1.34.6.2    skrll cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    402  1.34.6.2    skrll     const struct bintime *epsilon __unused)
    403  1.34.6.2    skrll {
    404  1.34.6.2    skrll 	struct bintime slept;
    405  1.34.6.2    skrll 	unsigned start, end;
    406  1.34.6.2    skrll 	int error;
    407  1.34.6.2    skrll 
    408  1.34.6.2    skrll 	/*
    409  1.34.6.2    skrll 	 * hardclock_ticks is technically int, but nothing special
    410  1.34.6.2    skrll 	 * happens instead of overflow, so we assume two's-complement
    411  1.34.6.2    skrll 	 * wraparound and just treat it as unsigned.
    412  1.34.6.2    skrll 	 */
    413  1.34.6.2    skrll 	start = hardclock_ticks;
    414  1.34.6.2    skrll 	error = cv_timedwait(cv, mtx, bintime2timo(bt));
    415  1.34.6.2    skrll 	end = hardclock_ticks;
    416  1.34.6.2    skrll 
    417  1.34.6.2    skrll 	slept = timo2bintime(end - start);
    418  1.34.6.2    skrll 	/* bt := bt - slept */
    419  1.34.6.2    skrll 	bintime_sub(bt, &slept);
    420  1.34.6.2    skrll 
    421  1.34.6.2    skrll 	return error;
    422  1.34.6.2    skrll }
    423  1.34.6.2    skrll 
    424  1.34.6.2    skrll /*
    425  1.34.6.2    skrll  * cv_timedwaitbt_sig:
    426  1.34.6.2    skrll  *
    427  1.34.6.2    skrll  *	Wait on a condition variable until awoken, the specified
    428  1.34.6.2    skrll  *	timeout expires, or interrupted by a signal.  Returns zero if
    429  1.34.6.2    skrll  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    430  1.34.6.2    skrll  *	EINTR/ERESTART if interrupted by a signal.
    431  1.34.6.2    skrll  *
    432  1.34.6.2    skrll  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    433  1.34.6.2    skrll  *	subtracts the time slept, so on exit, bt is the time remaining
    434  1.34.6.2    skrll  *	after sleeping.  No infinite timeout; use cv_wait instead.
    435  1.34.6.2    skrll  *
    436  1.34.6.2    skrll  *	epsilon is a requested maximum error in timeout (excluding
    437  1.34.6.2    skrll  *	spurious wakeups).  Currently not used, will be used in the
    438  1.34.6.2    skrll  *	future to choose between low- and high-resolution timers.
    439  1.34.6.2    skrll  */
    440  1.34.6.2    skrll int
    441  1.34.6.2    skrll cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    442  1.34.6.2    skrll     const struct bintime *epsilon __unused)
    443  1.34.6.2    skrll {
    444  1.34.6.2    skrll 	struct bintime slept;
    445  1.34.6.2    skrll 	unsigned start, end;
    446  1.34.6.2    skrll 	int error;
    447  1.34.6.2    skrll 
    448  1.34.6.2    skrll 	/*
    449  1.34.6.2    skrll 	 * hardclock_ticks is technically int, but nothing special
    450  1.34.6.2    skrll 	 * happens instead of overflow, so we assume two's-complement
    451  1.34.6.2    skrll 	 * wraparound and just treat it as unsigned.
    452  1.34.6.2    skrll 	 */
    453  1.34.6.2    skrll 	start = hardclock_ticks;
    454  1.34.6.2    skrll 	error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
    455  1.34.6.2    skrll 	end = hardclock_ticks;
    456  1.34.6.2    skrll 
    457  1.34.6.2    skrll 	slept = timo2bintime(end - start);
    458  1.34.6.2    skrll 	/* bt := bt - slept */
    459  1.34.6.2    skrll 	bintime_sub(bt, &slept);
    460  1.34.6.2    skrll 
    461  1.34.6.2    skrll 	return error;
    462  1.34.6.2    skrll }
    463  1.34.6.2    skrll 
    464  1.34.6.2    skrll /*
    465       1.2       ad  * cv_signal:
    466       1.2       ad  *
    467       1.2       ad  *	Wake the highest priority LWP waiting on a condition variable.
    468       1.2       ad  *	Must be called with the interlocking mutex held.
    469       1.2       ad  */
    470       1.2       ad void
    471       1.2       ad cv_signal(kcondvar_t *cv)
    472       1.2       ad {
    473      1.20       ad 
    474      1.22       ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    475      1.20       ad 	KASSERT(cv_is_valid(cv));
    476      1.20       ad 
    477      1.24       ad 	if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
    478      1.24       ad 		cv_wakeup_one(cv);
    479      1.20       ad }
    480      1.20       ad 
    481  1.34.6.2    skrll static inline void
    482      1.20       ad cv_wakeup_one(kcondvar_t *cv)
    483      1.20       ad {
    484       1.2       ad 	sleepq_t *sq;
    485      1.18       ad 	kmutex_t *mp;
    486      1.20       ad 	lwp_t *l;
    487       1.2       ad 
    488      1.15       ad 	KASSERT(cv_is_valid(cv));
    489      1.15       ad 
    490      1.24       ad 	mp = sleepq_hashlock(cv);
    491      1.20       ad 	sq = CV_SLEEPQ(cv);
    492      1.20       ad 	l = TAILQ_FIRST(sq);
    493      1.20       ad 	if (l == NULL) {
    494      1.20       ad 		mutex_spin_exit(mp);
    495       1.2       ad 		return;
    496      1.20       ad 	}
    497      1.20       ad 	KASSERT(l->l_sleepq == sq);
    498      1.20       ad 	KASSERT(l->l_mutex == mp);
    499      1.20       ad 	KASSERT(l->l_wchan == cv);
    500  1.34.6.2    skrll 	CV_LOCKDEBUG_PROCESS(l, cv);
    501      1.27    rmind 	sleepq_remove(sq, l);
    502      1.20       ad 	mutex_spin_exit(mp);
    503       1.2       ad 
    504      1.15       ad 	KASSERT(cv_is_valid(cv));
    505       1.2       ad }
    506       1.2       ad 
    507       1.2       ad /*
    508       1.2       ad  * cv_broadcast:
    509       1.2       ad  *
    510       1.2       ad  *	Wake all LWPs waiting on a condition variable.  Must be called
    511       1.2       ad  *	with the interlocking mutex held.
    512       1.2       ad  */
    513       1.2       ad void
    514       1.2       ad cv_broadcast(kcondvar_t *cv)
    515       1.2       ad {
    516      1.20       ad 
    517      1.22       ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    518      1.20       ad 	KASSERT(cv_is_valid(cv));
    519      1.20       ad 
    520      1.24       ad 	if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
    521      1.24       ad 		cv_wakeup_all(cv);
    522      1.20       ad }
    523      1.20       ad 
    524  1.34.6.2    skrll static inline void
    525      1.20       ad cv_wakeup_all(kcondvar_t *cv)
    526      1.20       ad {
    527       1.2       ad 	sleepq_t *sq;
    528      1.18       ad 	kmutex_t *mp;
    529      1.20       ad 	lwp_t *l, *next;
    530       1.2       ad 
    531      1.15       ad 	KASSERT(cv_is_valid(cv));
    532      1.15       ad 
    533      1.24       ad 	mp = sleepq_hashlock(cv);
    534      1.20       ad 	sq = CV_SLEEPQ(cv);
    535      1.20       ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    536      1.20       ad 		KASSERT(l->l_sleepq == sq);
    537      1.20       ad 		KASSERT(l->l_mutex == mp);
    538      1.20       ad 		KASSERT(l->l_wchan == cv);
    539      1.20       ad 		next = TAILQ_NEXT(l, l_sleepchain);
    540  1.34.6.2    skrll 		CV_LOCKDEBUG_PROCESS(l, cv);
    541      1.27    rmind 		sleepq_remove(sq, l);
    542      1.20       ad 	}
    543      1.20       ad 	mutex_spin_exit(mp);
    544       1.2       ad 
    545      1.15       ad 	KASSERT(cv_is_valid(cv));
    546       1.2       ad }
    547       1.2       ad 
    548       1.2       ad /*
    549       1.2       ad  * cv_has_waiters:
    550       1.2       ad  *
    551       1.2       ad  *	For diagnostic assertions: return non-zero if a condition
    552       1.2       ad  *	variable has waiters.
    553       1.2       ad  */
    554       1.7       ad bool
    555       1.2       ad cv_has_waiters(kcondvar_t *cv)
    556       1.2       ad {
    557      1.23    chris 
    558      1.25       ad 	return !TAILQ_EMPTY(CV_SLEEPQ(cv));
    559       1.2       ad }
    560      1.15       ad 
    561      1.15       ad /*
    562      1.15       ad  * cv_is_valid:
    563      1.15       ad  *
    564      1.15       ad  *	For diagnostic assertions: return non-zero if a condition
    565      1.15       ad  *	variable appears to be valid.  No locks need be held.
    566      1.15       ad  */
    567      1.15       ad bool
    568      1.15       ad cv_is_valid(kcondvar_t *cv)
    569      1.15       ad {
    570      1.15       ad 
    571      1.26  thorpej 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    572      1.15       ad }
    573