Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.41.4.1
      1  1.41.4.1    martin /*	$NetBSD: kern_condvar.c,v 1.41.4.1 2020/04/08 14:08:51 martin Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4  1.41.4.1    martin  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33      1.24        ad  * Kernel condition variable implementation.
     34       1.2        ad  */
     35       1.2        ad 
     36       1.2        ad #include <sys/cdefs.h>
     37  1.41.4.1    martin __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.41.4.1 2020/04/08 14:08:51 martin Exp $");
     38       1.2        ad 
     39       1.2        ad #include <sys/param.h>
     40       1.2        ad #include <sys/systm.h>
     41      1.35  uebayasi #include <sys/lwp.h>
     42       1.2        ad #include <sys/condvar.h>
     43       1.2        ad #include <sys/sleepq.h>
     44      1.20        ad #include <sys/lockdebug.h>
     45      1.24        ad #include <sys/cpu.h>
     46      1.37  riastrad #include <sys/kernel.h>
     47      1.20        ad 
     48      1.26   thorpej /*
     49      1.26   thorpej  * Accessors for the private contents of the kcondvar_t data type.
     50      1.26   thorpej  *
     51  1.41.4.1    martin  *	cv_opaque[0]	sleepq_t
     52  1.41.4.1    martin  *	cv_opaque[1]	description for ps(1)
     53      1.26   thorpej  *
     54  1.41.4.1    martin  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55  1.41.4.1    martin  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56      1.26   thorpej  * and dequeue).
     57      1.26   thorpej  *
     58  1.41.4.1    martin  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59      1.26   thorpej  * of the CV.
     60      1.26   thorpej  */
     61      1.26   thorpej #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62  1.41.4.1    martin #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63  1.41.4.1    martin #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64      1.26   thorpej 
     65      1.26   thorpej #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66      1.20        ad #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67       1.2        ad 
     68      1.36       chs static void		cv_unsleep(lwp_t *, bool);
     69      1.36       chs static inline void	cv_wakeup_one(kcondvar_t *);
     70      1.36       chs static inline void	cv_wakeup_all(kcondvar_t *);
     71       1.2        ad 
     72  1.41.4.1    martin syncobj_t cv_syncobj = {
     73      1.41     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74      1.41     ozaki 	.sobj_unsleep	= cv_unsleep,
     75      1.41     ozaki 	.sobj_changepri	= sleepq_changepri,
     76      1.41     ozaki 	.sobj_lendpri	= sleepq_lendpri,
     77      1.41     ozaki 	.sobj_owner	= syncobj_noowner,
     78       1.2        ad };
     79       1.2        ad 
     80      1.20        ad lockops_t cv_lockops = {
     81      1.40     ozaki 	.lo_name = "Condition variable",
     82      1.40     ozaki 	.lo_type = LOCKOPS_CV,
     83      1.40     ozaki 	.lo_dump = NULL,
     84      1.20        ad };
     85      1.20        ad 
     86      1.10        ad static const char deadcv[] = "deadcv";
     87      1.33     joerg #ifdef LOCKDEBUG
     88      1.20        ad static const char nodebug[] = "nodebug";
     89      1.36       chs 
     90      1.36       chs #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
     91      1.36       chs #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
     92      1.36       chs 
     93      1.36       chs static inline void
     94      1.36       chs cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
     95      1.36       chs {
     96      1.36       chs 
     97      1.36       chs 	if (CV_DEBUG_P(cv))
     98      1.36       chs 		l->l_flag |= LW_CVLOCKDEBUG;
     99      1.36       chs }
    100      1.36       chs 
    101      1.36       chs static inline void
    102      1.36       chs cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
    103      1.36       chs {
    104      1.36       chs 
    105      1.36       chs 	if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
    106      1.36       chs 		return;
    107      1.36       chs 
    108      1.36       chs 	l->l_flag &= ~LW_CVLOCKDEBUG;
    109      1.36       chs 	LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
    110      1.36       chs }
    111      1.36       chs #else
    112      1.36       chs #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
    113      1.36       chs #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
    114      1.33     joerg #endif
    115      1.10        ad 
    116       1.2        ad /*
    117       1.2        ad  * cv_init:
    118       1.2        ad  *
    119       1.2        ad  *	Initialize a condition variable for use.
    120       1.2        ad  */
    121       1.2        ad void
    122       1.2        ad cv_init(kcondvar_t *cv, const char *wmesg)
    123       1.2        ad {
    124      1.21        ad #ifdef LOCKDEBUG
    125      1.20        ad 	bool dodebug;
    126       1.2        ad 
    127      1.20        ad 	dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
    128      1.20        ad 	    (uintptr_t)__builtin_return_address(0));
    129      1.21        ad 	if (!dodebug) {
    130      1.20        ad 		/* XXX This will break vfs_lockf. */
    131      1.21        ad 		wmesg = nodebug;
    132      1.20        ad 	}
    133      1.21        ad #endif
    134      1.21        ad 	KASSERT(wmesg != NULL);
    135      1.26   thorpej 	CV_SET_WMESG(cv, wmesg);
    136      1.20        ad 	sleepq_init(CV_SLEEPQ(cv));
    137       1.2        ad }
    138       1.2        ad 
    139       1.2        ad /*
    140       1.2        ad  * cv_destroy:
    141       1.2        ad  *
    142       1.2        ad  *	Tear down a condition variable.
    143       1.2        ad  */
    144       1.2        ad void
    145       1.2        ad cv_destroy(kcondvar_t *cv)
    146       1.2        ad {
    147       1.2        ad 
    148      1.20        ad 	LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
    149       1.2        ad #ifdef DIAGNOSTIC
    150      1.15        ad 	KASSERT(cv_is_valid(cv));
    151      1.26   thorpej 	CV_SET_WMESG(cv, deadcv);
    152       1.2        ad #endif
    153       1.2        ad }
    154       1.2        ad 
    155       1.2        ad /*
    156       1.2        ad  * cv_enter:
    157       1.2        ad  *
    158       1.2        ad  *	Look up and lock the sleep queue corresponding to the given
    159       1.2        ad  *	condition variable, and increment the number of waiters.
    160       1.2        ad  */
    161      1.20        ad static inline void
    162       1.6        ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
    163       1.2        ad {
    164       1.2        ad 	sleepq_t *sq;
    165      1.18        ad 	kmutex_t *mp;
    166       1.2        ad 
    167      1.15        ad 	KASSERT(cv_is_valid(cv));
    168      1.24        ad 	KASSERT(!cpu_intr_p());
    169      1.14        ad 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    170       1.2        ad 
    171      1.20        ad 	LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
    172      1.20        ad 
    173      1.14        ad 	l->l_kpriority = true;
    174      1.24        ad 	mp = sleepq_hashlock(cv);
    175      1.20        ad 	sq = CV_SLEEPQ(cv);
    176      1.18        ad 	sleepq_enter(sq, l, mp);
    177      1.26   thorpej 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
    178       1.2        ad 	mutex_exit(mtx);
    179      1.24        ad 	KASSERT(cv_has_waiters(cv));
    180       1.2        ad }
    181       1.2        ad 
    182       1.2        ad /*
    183       1.6        ad  * cv_exit:
    184       1.6        ad  *
    185       1.6        ad  *	After resuming execution, check to see if we have been restarted
    186       1.6        ad  *	as a result of cv_signal().  If we have, but cannot take the
    187       1.6        ad  *	wakeup (because of eg a pending Unix signal or timeout) then try
    188       1.6        ad  *	to ensure that another LWP sees it.  This is necessary because
    189       1.6        ad  *	there may be multiple waiters, and at least one should take the
    190       1.6        ad  *	wakeup if possible.
    191       1.6        ad  */
    192       1.6        ad static inline int
    193       1.6        ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
    194       1.6        ad {
    195       1.6        ad 
    196       1.6        ad 	mutex_enter(mtx);
    197      1.20        ad 	if (__predict_false(error != 0))
    198       1.6        ad 		cv_signal(cv);
    199       1.6        ad 
    200      1.20        ad 	LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
    201      1.15        ad 	KASSERT(cv_is_valid(cv));
    202      1.10        ad 
    203       1.6        ad 	return error;
    204       1.6        ad }
    205       1.6        ad 
    206       1.6        ad /*
    207       1.2        ad  * cv_unsleep:
    208       1.2        ad  *
    209       1.2        ad  *	Remove an LWP from the condition variable and sleep queue.  This
    210       1.2        ad  *	is called when the LWP has not been awoken normally but instead
    211       1.2        ad  *	interrupted: for example, when a signal is received.  Must be
    212  1.41.4.1    martin  *	called with the LWP locked.  Will unlock if "unlock" is true.
    213       1.2        ad  */
    214      1.27     rmind static void
    215  1.41.4.1    martin cv_unsleep(lwp_t *l, bool unlock)
    216       1.2        ad {
    217      1.34    martin 	kcondvar_t *cv __diagused;
    218       1.2        ad 
    219      1.15        ad 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    220      1.15        ad 
    221      1.20        ad 	KASSERT(l->l_wchan == (wchan_t)cv);
    222      1.20        ad 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    223      1.15        ad 	KASSERT(cv_is_valid(cv));
    224      1.24        ad 	KASSERT(cv_has_waiters(cv));
    225       1.2        ad 
    226  1.41.4.1    martin 	sleepq_unsleep(l, unlock);
    227       1.2        ad }
    228       1.2        ad 
    229       1.2        ad /*
    230       1.2        ad  * cv_wait:
    231       1.2        ad  *
    232       1.2        ad  *	Wait non-interruptably on a condition variable until awoken.
    233       1.2        ad  */
    234       1.2        ad void
    235       1.2        ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    236       1.2        ad {
    237       1.6        ad 	lwp_t *l = curlwp;
    238       1.2        ad 
    239       1.8      yamt 	KASSERT(mutex_owned(mtx));
    240       1.2        ad 
    241      1.20        ad 	cv_enter(cv, mtx, l);
    242      1.36       chs 
    243      1.36       chs 	/*
    244      1.36       chs 	 * We can't use cv_exit() here since the cv might be destroyed before
    245      1.36       chs 	 * this thread gets a chance to run.  Instead, hand off the lockdebug
    246      1.36       chs 	 * responsibility to the thread that wakes us up.
    247      1.36       chs 	 */
    248      1.36       chs 
    249      1.36       chs 	CV_LOCKDEBUG_HANDOFF(l, cv);
    250       1.8      yamt 	(void)sleepq_block(0, false);
    251      1.36       chs 	mutex_enter(mtx);
    252       1.2        ad }
    253       1.2        ad 
    254       1.2        ad /*
    255       1.2        ad  * cv_wait_sig:
    256       1.2        ad  *
    257       1.2        ad  *	Wait on a condition variable until a awoken or a signal is received.
    258       1.2        ad  *	Will also return early if the process is exiting.  Returns zero if
    259      1.29       jym  *	awoken normally, ERESTART if a signal was received and the system
    260       1.2        ad  *	call is restartable, or EINTR otherwise.
    261       1.2        ad  */
    262       1.2        ad int
    263       1.2        ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    264       1.2        ad {
    265       1.6        ad 	lwp_t *l = curlwp;
    266       1.2        ad 	int error;
    267       1.2        ad 
    268       1.8      yamt 	KASSERT(mutex_owned(mtx));
    269       1.2        ad 
    270      1.20        ad 	cv_enter(cv, mtx, l);
    271       1.8      yamt 	error = sleepq_block(0, true);
    272       1.6        ad 	return cv_exit(cv, mtx, l, error);
    273       1.2        ad }
    274       1.2        ad 
    275       1.2        ad /*
    276       1.2        ad  * cv_timedwait:
    277       1.2        ad  *
    278       1.2        ad  *	Wait on a condition variable until awoken or the specified timeout
    279       1.2        ad  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    280       1.2        ad  *	timeout expired.
    281      1.31       apb  *
    282      1.31       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    283       1.2        ad  */
    284       1.2        ad int
    285       1.2        ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    286       1.2        ad {
    287       1.6        ad 	lwp_t *l = curlwp;
    288       1.2        ad 	int error;
    289       1.2        ad 
    290       1.8      yamt 	KASSERT(mutex_owned(mtx));
    291       1.2        ad 
    292      1.20        ad 	cv_enter(cv, mtx, l);
    293       1.8      yamt 	error = sleepq_block(timo, false);
    294       1.6        ad 	return cv_exit(cv, mtx, l, error);
    295       1.2        ad }
    296       1.2        ad 
    297       1.2        ad /*
    298       1.2        ad  * cv_timedwait_sig:
    299       1.2        ad  *
    300       1.2        ad  *	Wait on a condition variable until a timeout expires, awoken or a
    301       1.2        ad  *	signal is received.  Will also return early if the process is
    302      1.29       jym  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    303       1.2        ad  *	timeout expires, ERESTART if a signal was received and the system
    304       1.2        ad  *	call is restartable, or EINTR otherwise.
    305      1.32       apb  *
    306      1.32       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    307       1.2        ad  */
    308       1.2        ad int
    309       1.2        ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    310       1.2        ad {
    311       1.6        ad 	lwp_t *l = curlwp;
    312       1.2        ad 	int error;
    313       1.2        ad 
    314       1.8      yamt 	KASSERT(mutex_owned(mtx));
    315       1.2        ad 
    316      1.20        ad 	cv_enter(cv, mtx, l);
    317       1.8      yamt 	error = sleepq_block(timo, true);
    318       1.6        ad 	return cv_exit(cv, mtx, l, error);
    319       1.2        ad }
    320       1.2        ad 
    321       1.2        ad /*
    322      1.37  riastrad  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    323      1.37  riastrad  * want a number of ticks for a timeout:
    324      1.37  riastrad  *
    325      1.37  riastrad  *	timo = hz*(sec + frac/2^64)
    326      1.37  riastrad  *	     = hz*sec + hz*frac/2^64
    327      1.37  riastrad  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    328      1.37  riastrad  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    329      1.37  riastrad  *
    330      1.37  riastrad  * where frachi is the high 32 bits of frac and fraclo is the
    331      1.37  riastrad  * low 32 bits.
    332      1.37  riastrad  *
    333      1.37  riastrad  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    334      1.37  riastrad  *
    335      1.37  riastrad  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    336      1.37  riastrad  *
    337      1.37  riastrad  * since fraclo < 2^32.
    338      1.37  riastrad  *
    339      1.37  riastrad  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    340      1.37  riastrad  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    341      1.37  riastrad  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    342      1.37  riastrad  * because we compute end - start in ticks in order to compute the
    343      1.37  riastrad  * remaining timeout, and that difference cannot wrap around, so we use
    344      1.37  riastrad  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    345      1.37  riastrad  * margin for paranoia and will exceed most waits in practice by far.
    346      1.37  riastrad  */
    347      1.37  riastrad static unsigned
    348      1.37  riastrad bintime2timo(const struct bintime *bt)
    349      1.37  riastrad {
    350      1.37  riastrad 
    351      1.37  riastrad 	KASSERT(hz < INT_MAX/2);
    352      1.37  riastrad 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    353      1.37  riastrad 	if (bt->sec > ((INT_MAX/2)/hz))
    354      1.37  riastrad 		return INT_MAX/2;
    355      1.37  riastrad 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    356      1.37  riastrad 		return INT_MAX/2;
    357      1.37  riastrad 
    358      1.37  riastrad 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    359      1.37  riastrad }
    360      1.37  riastrad 
    361      1.37  riastrad /*
    362      1.37  riastrad  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    363      1.37  riastrad  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    364      1.37  riastrad  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    365      1.37  riastrad  * second)/tick.  So for the fractional part, we compute
    366      1.37  riastrad  *
    367      1.37  riastrad  *	frac = rem * 2^64 / hz
    368      1.37  riastrad  *	     = ((rem * 2^32) / hz) * 2^32
    369      1.37  riastrad  *
    370      1.37  riastrad  * Using truncating integer division instead of real division will
    371      1.37  riastrad  * leave us with only about 32 bits of precision, which means about
    372      1.37  riastrad  * 1/4-nanosecond resolution, which is good enough for our purposes.
    373      1.37  riastrad  */
    374      1.37  riastrad static struct bintime
    375      1.37  riastrad timo2bintime(unsigned timo)
    376      1.37  riastrad {
    377      1.37  riastrad 
    378      1.37  riastrad 	return (struct bintime) {
    379      1.37  riastrad 		.sec = timo / hz,
    380      1.37  riastrad 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    381      1.37  riastrad 	};
    382      1.37  riastrad }
    383      1.37  riastrad 
    384      1.37  riastrad /*
    385      1.37  riastrad  * cv_timedwaitbt:
    386      1.37  riastrad  *
    387      1.37  riastrad  *	Wait on a condition variable until awoken or the specified
    388      1.37  riastrad  *	timeout expires.  Returns zero if awoken normally or
    389      1.37  riastrad  *	EWOULDBLOCK if the timeout expires.
    390      1.37  riastrad  *
    391      1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    392      1.37  riastrad  *	the time slept, so on exit, bt is the time remaining after
    393      1.38  riastrad  *	sleeping, possibly negative if the complete time has elapsed.
    394      1.38  riastrad  *	No infinite timeout; use cv_wait_sig instead.
    395      1.37  riastrad  *
    396      1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    397      1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    398      1.37  riastrad  *	future to choose between low- and high-resolution timers.
    399      1.38  riastrad  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    400      1.38  riastrad  *	where r is the finest resolution of clock available and s is
    401      1.38  riastrad  *	scheduling delays for scheduler overhead and competing threads.
    402      1.38  riastrad  *	Time is measured by the interrupt source implementing the
    403      1.38  riastrad  *	timeout, not by another timecounter.
    404      1.37  riastrad  */
    405      1.37  riastrad int
    406      1.37  riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    407      1.38  riastrad     const struct bintime *epsilon __diagused)
    408      1.37  riastrad {
    409      1.37  riastrad 	struct bintime slept;
    410      1.37  riastrad 	unsigned start, end;
    411      1.37  riastrad 	int error;
    412      1.37  riastrad 
    413      1.38  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    414      1.38  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    415      1.38  riastrad 
    416      1.37  riastrad 	/*
    417      1.37  riastrad 	 * hardclock_ticks is technically int, but nothing special
    418      1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    419      1.37  riastrad 	 * wraparound and just treat it as unsigned.
    420      1.37  riastrad 	 */
    421      1.37  riastrad 	start = hardclock_ticks;
    422      1.37  riastrad 	error = cv_timedwait(cv, mtx, bintime2timo(bt));
    423      1.37  riastrad 	end = hardclock_ticks;
    424      1.37  riastrad 
    425      1.37  riastrad 	slept = timo2bintime(end - start);
    426      1.37  riastrad 	/* bt := bt - slept */
    427      1.37  riastrad 	bintime_sub(bt, &slept);
    428      1.37  riastrad 
    429      1.37  riastrad 	return error;
    430      1.37  riastrad }
    431      1.37  riastrad 
    432      1.37  riastrad /*
    433      1.37  riastrad  * cv_timedwaitbt_sig:
    434      1.37  riastrad  *
    435      1.37  riastrad  *	Wait on a condition variable until awoken, the specified
    436      1.37  riastrad  *	timeout expires, or interrupted by a signal.  Returns zero if
    437      1.37  riastrad  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    438      1.37  riastrad  *	EINTR/ERESTART if interrupted by a signal.
    439      1.37  riastrad  *
    440      1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    441      1.37  riastrad  *	subtracts the time slept, so on exit, bt is the time remaining
    442      1.37  riastrad  *	after sleeping.  No infinite timeout; use cv_wait instead.
    443      1.37  riastrad  *
    444      1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    445      1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    446      1.37  riastrad  *	future to choose between low- and high-resolution timers.
    447      1.37  riastrad  */
    448      1.37  riastrad int
    449      1.37  riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    450      1.39  riastrad     const struct bintime *epsilon __diagused)
    451      1.37  riastrad {
    452      1.37  riastrad 	struct bintime slept;
    453      1.37  riastrad 	unsigned start, end;
    454      1.37  riastrad 	int error;
    455      1.37  riastrad 
    456      1.39  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    457      1.39  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    458      1.39  riastrad 
    459      1.37  riastrad 	/*
    460      1.37  riastrad 	 * hardclock_ticks is technically int, but nothing special
    461      1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    462      1.37  riastrad 	 * wraparound and just treat it as unsigned.
    463      1.37  riastrad 	 */
    464      1.37  riastrad 	start = hardclock_ticks;
    465      1.37  riastrad 	error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
    466      1.37  riastrad 	end = hardclock_ticks;
    467      1.37  riastrad 
    468      1.37  riastrad 	slept = timo2bintime(end - start);
    469      1.37  riastrad 	/* bt := bt - slept */
    470      1.37  riastrad 	bintime_sub(bt, &slept);
    471      1.37  riastrad 
    472      1.37  riastrad 	return error;
    473      1.37  riastrad }
    474      1.37  riastrad 
    475      1.37  riastrad /*
    476       1.2        ad  * cv_signal:
    477       1.2        ad  *
    478       1.2        ad  *	Wake the highest priority LWP waiting on a condition variable.
    479       1.2        ad  *	Must be called with the interlocking mutex held.
    480       1.2        ad  */
    481       1.2        ad void
    482       1.2        ad cv_signal(kcondvar_t *cv)
    483       1.2        ad {
    484      1.20        ad 
    485      1.22        ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    486      1.20        ad 	KASSERT(cv_is_valid(cv));
    487      1.20        ad 
    488  1.41.4.1    martin 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    489      1.24        ad 		cv_wakeup_one(cv);
    490      1.20        ad }
    491      1.20        ad 
    492  1.41.4.1    martin /*
    493  1.41.4.1    martin  * cv_wakeup_one:
    494  1.41.4.1    martin  *
    495  1.41.4.1    martin  *	Slow path for cv_signal().  Deliberately marked __noinline to
    496  1.41.4.1    martin  *	prevent the compiler pulling it in to cv_signal(), which adds
    497  1.41.4.1    martin  *	extra prologue and epilogue code.
    498  1.41.4.1    martin  */
    499  1.41.4.1    martin static __noinline void
    500      1.20        ad cv_wakeup_one(kcondvar_t *cv)
    501      1.20        ad {
    502       1.2        ad 	sleepq_t *sq;
    503      1.18        ad 	kmutex_t *mp;
    504      1.20        ad 	lwp_t *l;
    505       1.2        ad 
    506      1.15        ad 	KASSERT(cv_is_valid(cv));
    507      1.15        ad 
    508      1.24        ad 	mp = sleepq_hashlock(cv);
    509      1.20        ad 	sq = CV_SLEEPQ(cv);
    510  1.41.4.1    martin 	l = LIST_FIRST(sq);
    511  1.41.4.1    martin 	if (__predict_false(l == NULL)) {
    512      1.20        ad 		mutex_spin_exit(mp);
    513       1.2        ad 		return;
    514      1.20        ad 	}
    515      1.20        ad 	KASSERT(l->l_sleepq == sq);
    516      1.20        ad 	KASSERT(l->l_mutex == mp);
    517      1.20        ad 	KASSERT(l->l_wchan == cv);
    518      1.36       chs 	CV_LOCKDEBUG_PROCESS(l, cv);
    519      1.27     rmind 	sleepq_remove(sq, l);
    520      1.20        ad 	mutex_spin_exit(mp);
    521       1.2        ad 
    522      1.15        ad 	KASSERT(cv_is_valid(cv));
    523       1.2        ad }
    524       1.2        ad 
    525       1.2        ad /*
    526       1.2        ad  * cv_broadcast:
    527       1.2        ad  *
    528       1.2        ad  *	Wake all LWPs waiting on a condition variable.  Must be called
    529       1.2        ad  *	with the interlocking mutex held.
    530       1.2        ad  */
    531       1.2        ad void
    532       1.2        ad cv_broadcast(kcondvar_t *cv)
    533       1.2        ad {
    534      1.20        ad 
    535      1.22        ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    536      1.20        ad 	KASSERT(cv_is_valid(cv));
    537      1.20        ad 
    538  1.41.4.1    martin 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    539      1.24        ad 		cv_wakeup_all(cv);
    540      1.20        ad }
    541      1.20        ad 
    542  1.41.4.1    martin /*
    543  1.41.4.1    martin  * cv_wakeup_all:
    544  1.41.4.1    martin  *
    545  1.41.4.1    martin  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    546  1.41.4.1    martin  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    547  1.41.4.1    martin  *	extra prologue and epilogue code.
    548  1.41.4.1    martin  */
    549  1.41.4.1    martin static __noinline void
    550      1.20        ad cv_wakeup_all(kcondvar_t *cv)
    551      1.20        ad {
    552       1.2        ad 	sleepq_t *sq;
    553      1.18        ad 	kmutex_t *mp;
    554      1.20        ad 	lwp_t *l, *next;
    555       1.2        ad 
    556      1.15        ad 	KASSERT(cv_is_valid(cv));
    557      1.15        ad 
    558      1.24        ad 	mp = sleepq_hashlock(cv);
    559      1.20        ad 	sq = CV_SLEEPQ(cv);
    560  1.41.4.1    martin 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    561      1.20        ad 		KASSERT(l->l_sleepq == sq);
    562      1.20        ad 		KASSERT(l->l_mutex == mp);
    563      1.20        ad 		KASSERT(l->l_wchan == cv);
    564  1.41.4.1    martin 		next = LIST_NEXT(l, l_sleepchain);
    565      1.36       chs 		CV_LOCKDEBUG_PROCESS(l, cv);
    566      1.27     rmind 		sleepq_remove(sq, l);
    567      1.20        ad 	}
    568      1.20        ad 	mutex_spin_exit(mp);
    569       1.2        ad 
    570      1.15        ad 	KASSERT(cv_is_valid(cv));
    571       1.2        ad }
    572       1.2        ad 
    573       1.2        ad /*
    574       1.2        ad  * cv_has_waiters:
    575       1.2        ad  *
    576       1.2        ad  *	For diagnostic assertions: return non-zero if a condition
    577       1.2        ad  *	variable has waiters.
    578       1.2        ad  */
    579       1.7        ad bool
    580       1.2        ad cv_has_waiters(kcondvar_t *cv)
    581       1.2        ad {
    582      1.23     chris 
    583  1.41.4.1    martin 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    584       1.2        ad }
    585      1.15        ad 
    586      1.15        ad /*
    587      1.15        ad  * cv_is_valid:
    588      1.15        ad  *
    589      1.15        ad  *	For diagnostic assertions: return non-zero if a condition
    590      1.15        ad  *	variable appears to be valid.  No locks need be held.
    591      1.15        ad  */
    592      1.15        ad bool
    593      1.15        ad cv_is_valid(kcondvar_t *cv)
    594      1.15        ad {
    595      1.15        ad 
    596      1.26   thorpej 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    597      1.15        ad }
    598