Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.42.2.1
      1  1.42.2.1        ad /*	$NetBSD: kern_condvar.c,v 1.42.2.1 2020/02/29 20:21:02 ad Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4  1.42.2.1        ad  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33      1.24        ad  * Kernel condition variable implementation.
     34       1.2        ad  */
     35       1.2        ad 
     36       1.2        ad #include <sys/cdefs.h>
     37  1.42.2.1        ad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.42.2.1 2020/02/29 20:21:02 ad Exp $");
     38       1.2        ad 
     39       1.2        ad #include <sys/param.h>
     40       1.2        ad #include <sys/systm.h>
     41      1.35  uebayasi #include <sys/lwp.h>
     42       1.2        ad #include <sys/condvar.h>
     43       1.2        ad #include <sys/sleepq.h>
     44      1.20        ad #include <sys/lockdebug.h>
     45      1.24        ad #include <sys/cpu.h>
     46      1.37  riastrad #include <sys/kernel.h>
     47      1.20        ad 
     48      1.26   thorpej /*
     49      1.26   thorpej  * Accessors for the private contents of the kcondvar_t data type.
     50      1.26   thorpej  *
     51      1.26   thorpej  *	cv_opaque[0]	sleepq...
     52      1.26   thorpej  *	cv_opaque[1]	...pointers
     53      1.26   thorpej  *	cv_opaque[2]	description for ps(1)
     54      1.26   thorpej  *
     55      1.26   thorpej  * cv_opaque[0..1] is protected by the interlock passed to cv_wait() (enqueue
     56  1.42.2.1        ad  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     57      1.26   thorpej  * and dequeue).
     58      1.26   thorpej  *
     59      1.26   thorpej  * cv_opaque[2] (the wmesg) is static and does not change throughout the life
     60      1.26   thorpej  * of the CV.
     61      1.26   thorpej  */
     62      1.26   thorpej #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     63      1.26   thorpej #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[2])
     64      1.26   thorpej #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[2] = __UNCONST(v)
     65      1.26   thorpej 
     66      1.26   thorpej #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     67      1.20        ad #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     68       1.2        ad 
     69      1.36       chs static void		cv_unsleep(lwp_t *, bool);
     70      1.36       chs static inline void	cv_wakeup_one(kcondvar_t *);
     71      1.36       chs static inline void	cv_wakeup_all(kcondvar_t *);
     72       1.2        ad 
     73  1.42.2.1        ad syncobj_t cv_syncobj = {
     74      1.41     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     75      1.41     ozaki 	.sobj_unsleep	= cv_unsleep,
     76      1.41     ozaki 	.sobj_changepri	= sleepq_changepri,
     77      1.41     ozaki 	.sobj_lendpri	= sleepq_lendpri,
     78      1.41     ozaki 	.sobj_owner	= syncobj_noowner,
     79       1.2        ad };
     80       1.2        ad 
     81      1.20        ad lockops_t cv_lockops = {
     82      1.40     ozaki 	.lo_name = "Condition variable",
     83      1.40     ozaki 	.lo_type = LOCKOPS_CV,
     84      1.40     ozaki 	.lo_dump = NULL,
     85      1.20        ad };
     86      1.20        ad 
     87      1.10        ad static const char deadcv[] = "deadcv";
     88      1.33     joerg #ifdef LOCKDEBUG
     89      1.20        ad static const char nodebug[] = "nodebug";
     90      1.36       chs 
     91      1.36       chs #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
     92      1.36       chs #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
     93      1.36       chs 
     94      1.36       chs static inline void
     95      1.36       chs cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
     96      1.36       chs {
     97      1.36       chs 
     98      1.36       chs 	if (CV_DEBUG_P(cv))
     99      1.36       chs 		l->l_flag |= LW_CVLOCKDEBUG;
    100      1.36       chs }
    101      1.36       chs 
    102      1.36       chs static inline void
    103      1.36       chs cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
    104      1.36       chs {
    105      1.36       chs 
    106      1.36       chs 	if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
    107      1.36       chs 		return;
    108      1.36       chs 
    109      1.36       chs 	l->l_flag &= ~LW_CVLOCKDEBUG;
    110      1.36       chs 	LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
    111      1.36       chs }
    112      1.36       chs #else
    113      1.36       chs #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
    114      1.36       chs #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
    115      1.33     joerg #endif
    116      1.10        ad 
    117       1.2        ad /*
    118       1.2        ad  * cv_init:
    119       1.2        ad  *
    120       1.2        ad  *	Initialize a condition variable for use.
    121       1.2        ad  */
    122       1.2        ad void
    123       1.2        ad cv_init(kcondvar_t *cv, const char *wmesg)
    124       1.2        ad {
    125      1.21        ad #ifdef LOCKDEBUG
    126      1.20        ad 	bool dodebug;
    127       1.2        ad 
    128      1.20        ad 	dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
    129      1.20        ad 	    (uintptr_t)__builtin_return_address(0));
    130      1.21        ad 	if (!dodebug) {
    131      1.20        ad 		/* XXX This will break vfs_lockf. */
    132      1.21        ad 		wmesg = nodebug;
    133      1.20        ad 	}
    134      1.21        ad #endif
    135      1.21        ad 	KASSERT(wmesg != NULL);
    136      1.26   thorpej 	CV_SET_WMESG(cv, wmesg);
    137      1.20        ad 	sleepq_init(CV_SLEEPQ(cv));
    138       1.2        ad }
    139       1.2        ad 
    140       1.2        ad /*
    141       1.2        ad  * cv_destroy:
    142       1.2        ad  *
    143       1.2        ad  *	Tear down a condition variable.
    144       1.2        ad  */
    145       1.2        ad void
    146       1.2        ad cv_destroy(kcondvar_t *cv)
    147       1.2        ad {
    148       1.2        ad 
    149      1.20        ad 	LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
    150       1.2        ad #ifdef DIAGNOSTIC
    151      1.15        ad 	KASSERT(cv_is_valid(cv));
    152      1.26   thorpej 	CV_SET_WMESG(cv, deadcv);
    153       1.2        ad #endif
    154       1.2        ad }
    155       1.2        ad 
    156       1.2        ad /*
    157       1.2        ad  * cv_enter:
    158       1.2        ad  *
    159       1.2        ad  *	Look up and lock the sleep queue corresponding to the given
    160       1.2        ad  *	condition variable, and increment the number of waiters.
    161       1.2        ad  */
    162      1.20        ad static inline void
    163       1.6        ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
    164       1.2        ad {
    165       1.2        ad 	sleepq_t *sq;
    166      1.18        ad 	kmutex_t *mp;
    167       1.2        ad 
    168      1.15        ad 	KASSERT(cv_is_valid(cv));
    169      1.24        ad 	KASSERT(!cpu_intr_p());
    170      1.14        ad 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    171       1.2        ad 
    172      1.20        ad 	LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
    173      1.20        ad 
    174      1.14        ad 	l->l_kpriority = true;
    175      1.24        ad 	mp = sleepq_hashlock(cv);
    176      1.20        ad 	sq = CV_SLEEPQ(cv);
    177      1.18        ad 	sleepq_enter(sq, l, mp);
    178      1.26   thorpej 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
    179       1.2        ad 	mutex_exit(mtx);
    180      1.24        ad 	KASSERT(cv_has_waiters(cv));
    181       1.2        ad }
    182       1.2        ad 
    183       1.2        ad /*
    184       1.6        ad  * cv_exit:
    185       1.6        ad  *
    186       1.6        ad  *	After resuming execution, check to see if we have been restarted
    187       1.6        ad  *	as a result of cv_signal().  If we have, but cannot take the
    188       1.6        ad  *	wakeup (because of eg a pending Unix signal or timeout) then try
    189       1.6        ad  *	to ensure that another LWP sees it.  This is necessary because
    190       1.6        ad  *	there may be multiple waiters, and at least one should take the
    191       1.6        ad  *	wakeup if possible.
    192       1.6        ad  */
    193       1.6        ad static inline int
    194       1.6        ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
    195       1.6        ad {
    196       1.6        ad 
    197       1.6        ad 	mutex_enter(mtx);
    198      1.20        ad 	if (__predict_false(error != 0))
    199       1.6        ad 		cv_signal(cv);
    200       1.6        ad 
    201      1.20        ad 	LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
    202      1.15        ad 	KASSERT(cv_is_valid(cv));
    203      1.10        ad 
    204       1.6        ad 	return error;
    205       1.6        ad }
    206       1.6        ad 
    207       1.6        ad /*
    208       1.2        ad  * cv_unsleep:
    209       1.2        ad  *
    210       1.2        ad  *	Remove an LWP from the condition variable and sleep queue.  This
    211       1.2        ad  *	is called when the LWP has not been awoken normally but instead
    212       1.2        ad  *	interrupted: for example, when a signal is received.  Must be
    213      1.42        ad  *	called with the LWP locked.  Will unlock if "unlock" is true.
    214       1.2        ad  */
    215      1.27     rmind static void
    216      1.42        ad cv_unsleep(lwp_t *l, bool unlock)
    217       1.2        ad {
    218      1.34    martin 	kcondvar_t *cv __diagused;
    219       1.2        ad 
    220      1.15        ad 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    221      1.15        ad 
    222      1.20        ad 	KASSERT(l->l_wchan == (wchan_t)cv);
    223      1.20        ad 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    224      1.15        ad 	KASSERT(cv_is_valid(cv));
    225      1.24        ad 	KASSERT(cv_has_waiters(cv));
    226       1.2        ad 
    227      1.42        ad 	sleepq_unsleep(l, unlock);
    228       1.2        ad }
    229       1.2        ad 
    230       1.2        ad /*
    231       1.2        ad  * cv_wait:
    232       1.2        ad  *
    233       1.2        ad  *	Wait non-interruptably on a condition variable until awoken.
    234       1.2        ad  */
    235       1.2        ad void
    236       1.2        ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    237       1.2        ad {
    238       1.6        ad 	lwp_t *l = curlwp;
    239       1.2        ad 
    240       1.8      yamt 	KASSERT(mutex_owned(mtx));
    241       1.2        ad 
    242      1.20        ad 	cv_enter(cv, mtx, l);
    243      1.36       chs 
    244      1.36       chs 	/*
    245      1.36       chs 	 * We can't use cv_exit() here since the cv might be destroyed before
    246      1.36       chs 	 * this thread gets a chance to run.  Instead, hand off the lockdebug
    247      1.36       chs 	 * responsibility to the thread that wakes us up.
    248      1.36       chs 	 */
    249      1.36       chs 
    250      1.36       chs 	CV_LOCKDEBUG_HANDOFF(l, cv);
    251       1.8      yamt 	(void)sleepq_block(0, false);
    252      1.36       chs 	mutex_enter(mtx);
    253       1.2        ad }
    254       1.2        ad 
    255       1.2        ad /*
    256       1.2        ad  * cv_wait_sig:
    257       1.2        ad  *
    258       1.2        ad  *	Wait on a condition variable until a awoken or a signal is received.
    259       1.2        ad  *	Will also return early if the process is exiting.  Returns zero if
    260      1.29       jym  *	awoken normally, ERESTART if a signal was received and the system
    261       1.2        ad  *	call is restartable, or EINTR otherwise.
    262       1.2        ad  */
    263       1.2        ad int
    264       1.2        ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    265       1.2        ad {
    266       1.6        ad 	lwp_t *l = curlwp;
    267       1.2        ad 	int error;
    268       1.2        ad 
    269       1.8      yamt 	KASSERT(mutex_owned(mtx));
    270       1.2        ad 
    271      1.20        ad 	cv_enter(cv, mtx, l);
    272       1.8      yamt 	error = sleepq_block(0, true);
    273       1.6        ad 	return cv_exit(cv, mtx, l, error);
    274       1.2        ad }
    275       1.2        ad 
    276       1.2        ad /*
    277       1.2        ad  * cv_timedwait:
    278       1.2        ad  *
    279       1.2        ad  *	Wait on a condition variable until awoken or the specified timeout
    280       1.2        ad  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    281       1.2        ad  *	timeout expired.
    282      1.31       apb  *
    283      1.31       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    284       1.2        ad  */
    285       1.2        ad int
    286       1.2        ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    287       1.2        ad {
    288       1.6        ad 	lwp_t *l = curlwp;
    289       1.2        ad 	int error;
    290       1.2        ad 
    291       1.8      yamt 	KASSERT(mutex_owned(mtx));
    292       1.2        ad 
    293      1.20        ad 	cv_enter(cv, mtx, l);
    294       1.8      yamt 	error = sleepq_block(timo, false);
    295       1.6        ad 	return cv_exit(cv, mtx, l, error);
    296       1.2        ad }
    297       1.2        ad 
    298       1.2        ad /*
    299       1.2        ad  * cv_timedwait_sig:
    300       1.2        ad  *
    301       1.2        ad  *	Wait on a condition variable until a timeout expires, awoken or a
    302       1.2        ad  *	signal is received.  Will also return early if the process is
    303      1.29       jym  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    304       1.2        ad  *	timeout expires, ERESTART if a signal was received and the system
    305       1.2        ad  *	call is restartable, or EINTR otherwise.
    306      1.32       apb  *
    307      1.32       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    308       1.2        ad  */
    309       1.2        ad int
    310       1.2        ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    311       1.2        ad {
    312       1.6        ad 	lwp_t *l = curlwp;
    313       1.2        ad 	int error;
    314       1.2        ad 
    315       1.8      yamt 	KASSERT(mutex_owned(mtx));
    316       1.2        ad 
    317      1.20        ad 	cv_enter(cv, mtx, l);
    318       1.8      yamt 	error = sleepq_block(timo, true);
    319       1.6        ad 	return cv_exit(cv, mtx, l, error);
    320       1.2        ad }
    321       1.2        ad 
    322       1.2        ad /*
    323      1.37  riastrad  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    324      1.37  riastrad  * want a number of ticks for a timeout:
    325      1.37  riastrad  *
    326      1.37  riastrad  *	timo = hz*(sec + frac/2^64)
    327      1.37  riastrad  *	     = hz*sec + hz*frac/2^64
    328      1.37  riastrad  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    329      1.37  riastrad  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    330      1.37  riastrad  *
    331      1.37  riastrad  * where frachi is the high 32 bits of frac and fraclo is the
    332      1.37  riastrad  * low 32 bits.
    333      1.37  riastrad  *
    334      1.37  riastrad  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    335      1.37  riastrad  *
    336      1.37  riastrad  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    337      1.37  riastrad  *
    338      1.37  riastrad  * since fraclo < 2^32.
    339      1.37  riastrad  *
    340      1.37  riastrad  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    341      1.37  riastrad  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    342      1.37  riastrad  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    343      1.37  riastrad  * because we compute end - start in ticks in order to compute the
    344      1.37  riastrad  * remaining timeout, and that difference cannot wrap around, so we use
    345      1.37  riastrad  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    346      1.37  riastrad  * margin for paranoia and will exceed most waits in practice by far.
    347      1.37  riastrad  */
    348      1.37  riastrad static unsigned
    349      1.37  riastrad bintime2timo(const struct bintime *bt)
    350      1.37  riastrad {
    351      1.37  riastrad 
    352      1.37  riastrad 	KASSERT(hz < INT_MAX/2);
    353      1.37  riastrad 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    354      1.37  riastrad 	if (bt->sec > ((INT_MAX/2)/hz))
    355      1.37  riastrad 		return INT_MAX/2;
    356      1.37  riastrad 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    357      1.37  riastrad 		return INT_MAX/2;
    358      1.37  riastrad 
    359      1.37  riastrad 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    360      1.37  riastrad }
    361      1.37  riastrad 
    362      1.37  riastrad /*
    363      1.37  riastrad  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    364      1.37  riastrad  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    365      1.37  riastrad  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    366      1.37  riastrad  * second)/tick.  So for the fractional part, we compute
    367      1.37  riastrad  *
    368      1.37  riastrad  *	frac = rem * 2^64 / hz
    369      1.37  riastrad  *	     = ((rem * 2^32) / hz) * 2^32
    370      1.37  riastrad  *
    371      1.37  riastrad  * Using truncating integer division instead of real division will
    372      1.37  riastrad  * leave us with only about 32 bits of precision, which means about
    373      1.37  riastrad  * 1/4-nanosecond resolution, which is good enough for our purposes.
    374      1.37  riastrad  */
    375      1.37  riastrad static struct bintime
    376      1.37  riastrad timo2bintime(unsigned timo)
    377      1.37  riastrad {
    378      1.37  riastrad 
    379      1.37  riastrad 	return (struct bintime) {
    380      1.37  riastrad 		.sec = timo / hz,
    381      1.37  riastrad 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    382      1.37  riastrad 	};
    383      1.37  riastrad }
    384      1.37  riastrad 
    385      1.37  riastrad /*
    386      1.37  riastrad  * cv_timedwaitbt:
    387      1.37  riastrad  *
    388      1.37  riastrad  *	Wait on a condition variable until awoken or the specified
    389      1.37  riastrad  *	timeout expires.  Returns zero if awoken normally or
    390      1.37  riastrad  *	EWOULDBLOCK if the timeout expires.
    391      1.37  riastrad  *
    392      1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    393      1.37  riastrad  *	the time slept, so on exit, bt is the time remaining after
    394      1.38  riastrad  *	sleeping, possibly negative if the complete time has elapsed.
    395      1.38  riastrad  *	No infinite timeout; use cv_wait_sig instead.
    396      1.37  riastrad  *
    397      1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    398      1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    399      1.37  riastrad  *	future to choose between low- and high-resolution timers.
    400      1.38  riastrad  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    401      1.38  riastrad  *	where r is the finest resolution of clock available and s is
    402      1.38  riastrad  *	scheduling delays for scheduler overhead and competing threads.
    403      1.38  riastrad  *	Time is measured by the interrupt source implementing the
    404      1.38  riastrad  *	timeout, not by another timecounter.
    405      1.37  riastrad  */
    406      1.37  riastrad int
    407      1.37  riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    408      1.38  riastrad     const struct bintime *epsilon __diagused)
    409      1.37  riastrad {
    410      1.37  riastrad 	struct bintime slept;
    411      1.37  riastrad 	unsigned start, end;
    412      1.37  riastrad 	int error;
    413      1.37  riastrad 
    414      1.38  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    415      1.38  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    416      1.38  riastrad 
    417      1.37  riastrad 	/*
    418      1.37  riastrad 	 * hardclock_ticks is technically int, but nothing special
    419      1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    420      1.37  riastrad 	 * wraparound and just treat it as unsigned.
    421      1.37  riastrad 	 */
    422      1.37  riastrad 	start = hardclock_ticks;
    423      1.37  riastrad 	error = cv_timedwait(cv, mtx, bintime2timo(bt));
    424      1.37  riastrad 	end = hardclock_ticks;
    425      1.37  riastrad 
    426      1.37  riastrad 	slept = timo2bintime(end - start);
    427      1.37  riastrad 	/* bt := bt - slept */
    428      1.37  riastrad 	bintime_sub(bt, &slept);
    429      1.37  riastrad 
    430      1.37  riastrad 	return error;
    431      1.37  riastrad }
    432      1.37  riastrad 
    433      1.37  riastrad /*
    434      1.37  riastrad  * cv_timedwaitbt_sig:
    435      1.37  riastrad  *
    436      1.37  riastrad  *	Wait on a condition variable until awoken, the specified
    437      1.37  riastrad  *	timeout expires, or interrupted by a signal.  Returns zero if
    438      1.37  riastrad  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    439      1.37  riastrad  *	EINTR/ERESTART if interrupted by a signal.
    440      1.37  riastrad  *
    441      1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    442      1.37  riastrad  *	subtracts the time slept, so on exit, bt is the time remaining
    443      1.37  riastrad  *	after sleeping.  No infinite timeout; use cv_wait instead.
    444      1.37  riastrad  *
    445      1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    446      1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    447      1.37  riastrad  *	future to choose between low- and high-resolution timers.
    448      1.37  riastrad  */
    449      1.37  riastrad int
    450      1.37  riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    451      1.39  riastrad     const struct bintime *epsilon __diagused)
    452      1.37  riastrad {
    453      1.37  riastrad 	struct bintime slept;
    454      1.37  riastrad 	unsigned start, end;
    455      1.37  riastrad 	int error;
    456      1.37  riastrad 
    457      1.39  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    458      1.39  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    459      1.39  riastrad 
    460      1.37  riastrad 	/*
    461      1.37  riastrad 	 * hardclock_ticks is technically int, but nothing special
    462      1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    463      1.37  riastrad 	 * wraparound and just treat it as unsigned.
    464      1.37  riastrad 	 */
    465      1.37  riastrad 	start = hardclock_ticks;
    466      1.37  riastrad 	error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
    467      1.37  riastrad 	end = hardclock_ticks;
    468      1.37  riastrad 
    469      1.37  riastrad 	slept = timo2bintime(end - start);
    470      1.37  riastrad 	/* bt := bt - slept */
    471      1.37  riastrad 	bintime_sub(bt, &slept);
    472      1.37  riastrad 
    473      1.37  riastrad 	return error;
    474      1.37  riastrad }
    475      1.37  riastrad 
    476      1.37  riastrad /*
    477       1.2        ad  * cv_signal:
    478       1.2        ad  *
    479       1.2        ad  *	Wake the highest priority LWP waiting on a condition variable.
    480       1.2        ad  *	Must be called with the interlocking mutex held.
    481       1.2        ad  */
    482       1.2        ad void
    483       1.2        ad cv_signal(kcondvar_t *cv)
    484       1.2        ad {
    485      1.20        ad 
    486      1.22        ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    487      1.20        ad 	KASSERT(cv_is_valid(cv));
    488      1.20        ad 
    489      1.24        ad 	if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
    490      1.24        ad 		cv_wakeup_one(cv);
    491      1.20        ad }
    492      1.20        ad 
    493      1.42        ad /*
    494      1.42        ad  * cv_wakeup_one:
    495      1.42        ad  *
    496      1.42        ad  *	Slow path for cv_signal().  Deliberately marked __noinline to
    497      1.42        ad  *	prevent the compiler pulling it in to cv_signal(), which adds
    498      1.42        ad  *	extra prologue and epilogue code.
    499      1.42        ad  */
    500      1.42        ad static __noinline void
    501      1.20        ad cv_wakeup_one(kcondvar_t *cv)
    502      1.20        ad {
    503       1.2        ad 	sleepq_t *sq;
    504      1.18        ad 	kmutex_t *mp;
    505      1.20        ad 	lwp_t *l;
    506       1.2        ad 
    507      1.15        ad 	KASSERT(cv_is_valid(cv));
    508      1.15        ad 
    509      1.24        ad 	mp = sleepq_hashlock(cv);
    510      1.20        ad 	sq = CV_SLEEPQ(cv);
    511      1.20        ad 	l = TAILQ_FIRST(sq);
    512      1.42        ad 	if (__predict_false(l == NULL)) {
    513      1.20        ad 		mutex_spin_exit(mp);
    514       1.2        ad 		return;
    515      1.20        ad 	}
    516      1.20        ad 	KASSERT(l->l_sleepq == sq);
    517      1.20        ad 	KASSERT(l->l_mutex == mp);
    518      1.20        ad 	KASSERT(l->l_wchan == cv);
    519      1.36       chs 	CV_LOCKDEBUG_PROCESS(l, cv);
    520      1.27     rmind 	sleepq_remove(sq, l);
    521      1.20        ad 	mutex_spin_exit(mp);
    522       1.2        ad 
    523      1.15        ad 	KASSERT(cv_is_valid(cv));
    524       1.2        ad }
    525       1.2        ad 
    526       1.2        ad /*
    527       1.2        ad  * cv_broadcast:
    528       1.2        ad  *
    529       1.2        ad  *	Wake all LWPs waiting on a condition variable.  Must be called
    530       1.2        ad  *	with the interlocking mutex held.
    531       1.2        ad  */
    532       1.2        ad void
    533       1.2        ad cv_broadcast(kcondvar_t *cv)
    534       1.2        ad {
    535      1.20        ad 
    536      1.22        ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    537      1.20        ad 	KASSERT(cv_is_valid(cv));
    538      1.20        ad 
    539      1.24        ad 	if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
    540      1.24        ad 		cv_wakeup_all(cv);
    541      1.20        ad }
    542      1.20        ad 
    543      1.42        ad /*
    544      1.42        ad  * cv_wakeup_all:
    545      1.42        ad  *
    546      1.42        ad  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    547      1.42        ad  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    548      1.42        ad  *	extra prologue and epilogue code.
    549      1.42        ad  */
    550      1.42        ad static __noinline void
    551      1.20        ad cv_wakeup_all(kcondvar_t *cv)
    552      1.20        ad {
    553       1.2        ad 	sleepq_t *sq;
    554      1.18        ad 	kmutex_t *mp;
    555      1.20        ad 	lwp_t *l, *next;
    556       1.2        ad 
    557      1.15        ad 	KASSERT(cv_is_valid(cv));
    558      1.15        ad 
    559      1.24        ad 	mp = sleepq_hashlock(cv);
    560      1.20        ad 	sq = CV_SLEEPQ(cv);
    561      1.20        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    562      1.20        ad 		KASSERT(l->l_sleepq == sq);
    563      1.20        ad 		KASSERT(l->l_mutex == mp);
    564      1.20        ad 		KASSERT(l->l_wchan == cv);
    565      1.20        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    566      1.36       chs 		CV_LOCKDEBUG_PROCESS(l, cv);
    567      1.27     rmind 		sleepq_remove(sq, l);
    568      1.20        ad 	}
    569      1.20        ad 	mutex_spin_exit(mp);
    570       1.2        ad 
    571      1.15        ad 	KASSERT(cv_is_valid(cv));
    572       1.2        ad }
    573       1.2        ad 
    574       1.2        ad /*
    575       1.2        ad  * cv_has_waiters:
    576       1.2        ad  *
    577       1.2        ad  *	For diagnostic assertions: return non-zero if a condition
    578       1.2        ad  *	variable has waiters.
    579       1.2        ad  */
    580       1.7        ad bool
    581       1.2        ad cv_has_waiters(kcondvar_t *cv)
    582       1.2        ad {
    583      1.23     chris 
    584      1.25        ad 	return !TAILQ_EMPTY(CV_SLEEPQ(cv));
    585       1.2        ad }
    586      1.15        ad 
    587      1.15        ad /*
    588      1.15        ad  * cv_is_valid:
    589      1.15        ad  *
    590      1.15        ad  *	For diagnostic assertions: return non-zero if a condition
    591      1.15        ad  *	variable appears to be valid.  No locks need be held.
    592      1.15        ad  */
    593      1.15        ad bool
    594      1.15        ad cv_is_valid(kcondvar_t *cv)
    595      1.15        ad {
    596      1.15        ad 
    597      1.26   thorpej 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    598      1.15        ad }
    599