kern_condvar.c revision 1.43 1 1.43 ad /* $NetBSD: kern_condvar.c,v 1.43 2020/02/15 17:09:24 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.43 ad * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.24 ad * Kernel condition variable implementation.
34 1.2 ad */
35 1.2 ad
36 1.2 ad #include <sys/cdefs.h>
37 1.43 ad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.43 2020/02/15 17:09:24 ad Exp $");
38 1.2 ad
39 1.2 ad #include <sys/param.h>
40 1.2 ad #include <sys/systm.h>
41 1.35 uebayasi #include <sys/lwp.h>
42 1.2 ad #include <sys/condvar.h>
43 1.2 ad #include <sys/sleepq.h>
44 1.20 ad #include <sys/lockdebug.h>
45 1.24 ad #include <sys/cpu.h>
46 1.37 riastrad #include <sys/kernel.h>
47 1.20 ad
48 1.26 thorpej /*
49 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
50 1.26 thorpej *
51 1.26 thorpej * cv_opaque[0] sleepq...
52 1.26 thorpej * cv_opaque[1] ...pointers
53 1.26 thorpej * cv_opaque[2] description for ps(1)
54 1.26 thorpej *
55 1.26 thorpej * cv_opaque[0..1] is protected by the interlock passed to cv_wait() (enqueue
56 1.43 ad * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
57 1.26 thorpej * and dequeue).
58 1.26 thorpej *
59 1.26 thorpej * cv_opaque[2] (the wmesg) is static and does not change throughout the life
60 1.26 thorpej * of the CV.
61 1.26 thorpej */
62 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
63 1.26 thorpej #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[2])
64 1.26 thorpej #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[2] = __UNCONST(v)
65 1.26 thorpej
66 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
67 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
68 1.2 ad
69 1.36 chs static void cv_unsleep(lwp_t *, bool);
70 1.36 chs static inline void cv_wakeup_one(kcondvar_t *);
71 1.36 chs static inline void cv_wakeup_all(kcondvar_t *);
72 1.2 ad
73 1.43 ad syncobj_t cv_syncobj = {
74 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
75 1.41 ozaki .sobj_unsleep = cv_unsleep,
76 1.41 ozaki .sobj_changepri = sleepq_changepri,
77 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
78 1.41 ozaki .sobj_owner = syncobj_noowner,
79 1.2 ad };
80 1.2 ad
81 1.20 ad lockops_t cv_lockops = {
82 1.40 ozaki .lo_name = "Condition variable",
83 1.40 ozaki .lo_type = LOCKOPS_CV,
84 1.40 ozaki .lo_dump = NULL,
85 1.20 ad };
86 1.20 ad
87 1.10 ad static const char deadcv[] = "deadcv";
88 1.33 joerg #ifdef LOCKDEBUG
89 1.20 ad static const char nodebug[] = "nodebug";
90 1.36 chs
91 1.36 chs #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
92 1.36 chs #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
93 1.36 chs
94 1.36 chs static inline void
95 1.36 chs cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
96 1.36 chs {
97 1.36 chs
98 1.36 chs if (CV_DEBUG_P(cv))
99 1.36 chs l->l_flag |= LW_CVLOCKDEBUG;
100 1.36 chs }
101 1.36 chs
102 1.36 chs static inline void
103 1.36 chs cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
104 1.36 chs {
105 1.36 chs
106 1.36 chs if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
107 1.36 chs return;
108 1.36 chs
109 1.36 chs l->l_flag &= ~LW_CVLOCKDEBUG;
110 1.36 chs LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
111 1.36 chs }
112 1.36 chs #else
113 1.36 chs #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
114 1.36 chs #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
115 1.33 joerg #endif
116 1.10 ad
117 1.2 ad /*
118 1.2 ad * cv_init:
119 1.2 ad *
120 1.2 ad * Initialize a condition variable for use.
121 1.2 ad */
122 1.2 ad void
123 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
124 1.2 ad {
125 1.21 ad #ifdef LOCKDEBUG
126 1.20 ad bool dodebug;
127 1.2 ad
128 1.20 ad dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
129 1.20 ad (uintptr_t)__builtin_return_address(0));
130 1.21 ad if (!dodebug) {
131 1.20 ad /* XXX This will break vfs_lockf. */
132 1.21 ad wmesg = nodebug;
133 1.20 ad }
134 1.21 ad #endif
135 1.21 ad KASSERT(wmesg != NULL);
136 1.26 thorpej CV_SET_WMESG(cv, wmesg);
137 1.20 ad sleepq_init(CV_SLEEPQ(cv));
138 1.2 ad }
139 1.2 ad
140 1.2 ad /*
141 1.2 ad * cv_destroy:
142 1.2 ad *
143 1.2 ad * Tear down a condition variable.
144 1.2 ad */
145 1.2 ad void
146 1.2 ad cv_destroy(kcondvar_t *cv)
147 1.2 ad {
148 1.2 ad
149 1.20 ad LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
150 1.2 ad #ifdef DIAGNOSTIC
151 1.15 ad KASSERT(cv_is_valid(cv));
152 1.26 thorpej CV_SET_WMESG(cv, deadcv);
153 1.2 ad #endif
154 1.2 ad }
155 1.2 ad
156 1.2 ad /*
157 1.2 ad * cv_enter:
158 1.2 ad *
159 1.2 ad * Look up and lock the sleep queue corresponding to the given
160 1.2 ad * condition variable, and increment the number of waiters.
161 1.2 ad */
162 1.20 ad static inline void
163 1.6 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
164 1.2 ad {
165 1.2 ad sleepq_t *sq;
166 1.18 ad kmutex_t *mp;
167 1.2 ad
168 1.15 ad KASSERT(cv_is_valid(cv));
169 1.24 ad KASSERT(!cpu_intr_p());
170 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
171 1.2 ad
172 1.20 ad LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
173 1.20 ad
174 1.14 ad l->l_kpriority = true;
175 1.24 ad mp = sleepq_hashlock(cv);
176 1.20 ad sq = CV_SLEEPQ(cv);
177 1.18 ad sleepq_enter(sq, l, mp);
178 1.26 thorpej sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
179 1.2 ad mutex_exit(mtx);
180 1.24 ad KASSERT(cv_has_waiters(cv));
181 1.2 ad }
182 1.2 ad
183 1.2 ad /*
184 1.6 ad * cv_exit:
185 1.6 ad *
186 1.6 ad * After resuming execution, check to see if we have been restarted
187 1.6 ad * as a result of cv_signal(). If we have, but cannot take the
188 1.6 ad * wakeup (because of eg a pending Unix signal or timeout) then try
189 1.6 ad * to ensure that another LWP sees it. This is necessary because
190 1.6 ad * there may be multiple waiters, and at least one should take the
191 1.6 ad * wakeup if possible.
192 1.6 ad */
193 1.6 ad static inline int
194 1.6 ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
195 1.6 ad {
196 1.6 ad
197 1.6 ad mutex_enter(mtx);
198 1.20 ad if (__predict_false(error != 0))
199 1.6 ad cv_signal(cv);
200 1.6 ad
201 1.20 ad LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
202 1.15 ad KASSERT(cv_is_valid(cv));
203 1.10 ad
204 1.6 ad return error;
205 1.6 ad }
206 1.6 ad
207 1.6 ad /*
208 1.2 ad * cv_unsleep:
209 1.2 ad *
210 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
211 1.2 ad * is called when the LWP has not been awoken normally but instead
212 1.2 ad * interrupted: for example, when a signal is received. Must be
213 1.42 ad * called with the LWP locked. Will unlock if "unlock" is true.
214 1.2 ad */
215 1.27 rmind static void
216 1.42 ad cv_unsleep(lwp_t *l, bool unlock)
217 1.2 ad {
218 1.34 martin kcondvar_t *cv __diagused;
219 1.2 ad
220 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
221 1.15 ad
222 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
223 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
224 1.15 ad KASSERT(cv_is_valid(cv));
225 1.24 ad KASSERT(cv_has_waiters(cv));
226 1.2 ad
227 1.42 ad sleepq_unsleep(l, unlock);
228 1.2 ad }
229 1.2 ad
230 1.2 ad /*
231 1.2 ad * cv_wait:
232 1.2 ad *
233 1.2 ad * Wait non-interruptably on a condition variable until awoken.
234 1.2 ad */
235 1.2 ad void
236 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
237 1.2 ad {
238 1.6 ad lwp_t *l = curlwp;
239 1.2 ad
240 1.8 yamt KASSERT(mutex_owned(mtx));
241 1.2 ad
242 1.20 ad cv_enter(cv, mtx, l);
243 1.36 chs
244 1.36 chs /*
245 1.36 chs * We can't use cv_exit() here since the cv might be destroyed before
246 1.36 chs * this thread gets a chance to run. Instead, hand off the lockdebug
247 1.36 chs * responsibility to the thread that wakes us up.
248 1.36 chs */
249 1.36 chs
250 1.36 chs CV_LOCKDEBUG_HANDOFF(l, cv);
251 1.8 yamt (void)sleepq_block(0, false);
252 1.36 chs mutex_enter(mtx);
253 1.2 ad }
254 1.2 ad
255 1.2 ad /*
256 1.2 ad * cv_wait_sig:
257 1.2 ad *
258 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
259 1.2 ad * Will also return early if the process is exiting. Returns zero if
260 1.29 jym * awoken normally, ERESTART if a signal was received and the system
261 1.2 ad * call is restartable, or EINTR otherwise.
262 1.2 ad */
263 1.2 ad int
264 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
265 1.2 ad {
266 1.6 ad lwp_t *l = curlwp;
267 1.2 ad int error;
268 1.2 ad
269 1.8 yamt KASSERT(mutex_owned(mtx));
270 1.2 ad
271 1.20 ad cv_enter(cv, mtx, l);
272 1.8 yamt error = sleepq_block(0, true);
273 1.6 ad return cv_exit(cv, mtx, l, error);
274 1.2 ad }
275 1.2 ad
276 1.2 ad /*
277 1.2 ad * cv_timedwait:
278 1.2 ad *
279 1.2 ad * Wait on a condition variable until awoken or the specified timeout
280 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
281 1.2 ad * timeout expired.
282 1.31 apb *
283 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
284 1.2 ad */
285 1.2 ad int
286 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
287 1.2 ad {
288 1.6 ad lwp_t *l = curlwp;
289 1.2 ad int error;
290 1.2 ad
291 1.8 yamt KASSERT(mutex_owned(mtx));
292 1.2 ad
293 1.20 ad cv_enter(cv, mtx, l);
294 1.8 yamt error = sleepq_block(timo, false);
295 1.6 ad return cv_exit(cv, mtx, l, error);
296 1.2 ad }
297 1.2 ad
298 1.2 ad /*
299 1.2 ad * cv_timedwait_sig:
300 1.2 ad *
301 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
302 1.2 ad * signal is received. Will also return early if the process is
303 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
304 1.2 ad * timeout expires, ERESTART if a signal was received and the system
305 1.2 ad * call is restartable, or EINTR otherwise.
306 1.32 apb *
307 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
308 1.2 ad */
309 1.2 ad int
310 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
311 1.2 ad {
312 1.6 ad lwp_t *l = curlwp;
313 1.2 ad int error;
314 1.2 ad
315 1.8 yamt KASSERT(mutex_owned(mtx));
316 1.2 ad
317 1.20 ad cv_enter(cv, mtx, l);
318 1.8 yamt error = sleepq_block(timo, true);
319 1.6 ad return cv_exit(cv, mtx, l, error);
320 1.2 ad }
321 1.2 ad
322 1.2 ad /*
323 1.37 riastrad * Given a number of seconds, sec, and 2^64ths of a second, frac, we
324 1.37 riastrad * want a number of ticks for a timeout:
325 1.37 riastrad *
326 1.37 riastrad * timo = hz*(sec + frac/2^64)
327 1.37 riastrad * = hz*sec + hz*frac/2^64
328 1.37 riastrad * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
329 1.37 riastrad * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
330 1.37 riastrad *
331 1.37 riastrad * where frachi is the high 32 bits of frac and fraclo is the
332 1.37 riastrad * low 32 bits.
333 1.37 riastrad *
334 1.37 riastrad * We assume hz < INT_MAX/2 < UINT32_MAX, so
335 1.37 riastrad *
336 1.37 riastrad * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
337 1.37 riastrad *
338 1.37 riastrad * since fraclo < 2^32.
339 1.37 riastrad *
340 1.37 riastrad * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
341 1.37 riastrad * can't represent timeouts higher than INT_MAX in cv_timedwait, and
342 1.37 riastrad * spurious wakeup is OK. Moreover, we don't want to wrap around,
343 1.37 riastrad * because we compute end - start in ticks in order to compute the
344 1.37 riastrad * remaining timeout, and that difference cannot wrap around, so we use
345 1.37 riastrad * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
346 1.37 riastrad * margin for paranoia and will exceed most waits in practice by far.
347 1.37 riastrad */
348 1.37 riastrad static unsigned
349 1.37 riastrad bintime2timo(const struct bintime *bt)
350 1.37 riastrad {
351 1.37 riastrad
352 1.37 riastrad KASSERT(hz < INT_MAX/2);
353 1.37 riastrad CTASSERT(INT_MAX/2 < UINT32_MAX);
354 1.37 riastrad if (bt->sec > ((INT_MAX/2)/hz))
355 1.37 riastrad return INT_MAX/2;
356 1.37 riastrad if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
357 1.37 riastrad return INT_MAX/2;
358 1.37 riastrad
359 1.37 riastrad return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
360 1.37 riastrad }
361 1.37 riastrad
362 1.37 riastrad /*
363 1.37 riastrad * timo is in units of ticks. We want units of seconds and 2^64ths of
364 1.37 riastrad * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
365 1.37 riastrad * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
366 1.37 riastrad * second)/tick. So for the fractional part, we compute
367 1.37 riastrad *
368 1.37 riastrad * frac = rem * 2^64 / hz
369 1.37 riastrad * = ((rem * 2^32) / hz) * 2^32
370 1.37 riastrad *
371 1.37 riastrad * Using truncating integer division instead of real division will
372 1.37 riastrad * leave us with only about 32 bits of precision, which means about
373 1.37 riastrad * 1/4-nanosecond resolution, which is good enough for our purposes.
374 1.37 riastrad */
375 1.37 riastrad static struct bintime
376 1.37 riastrad timo2bintime(unsigned timo)
377 1.37 riastrad {
378 1.37 riastrad
379 1.37 riastrad return (struct bintime) {
380 1.37 riastrad .sec = timo / hz,
381 1.37 riastrad .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
382 1.37 riastrad };
383 1.37 riastrad }
384 1.37 riastrad
385 1.37 riastrad /*
386 1.37 riastrad * cv_timedwaitbt:
387 1.37 riastrad *
388 1.37 riastrad * Wait on a condition variable until awoken or the specified
389 1.37 riastrad * timeout expires. Returns zero if awoken normally or
390 1.37 riastrad * EWOULDBLOCK if the timeout expires.
391 1.37 riastrad *
392 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
393 1.37 riastrad * the time slept, so on exit, bt is the time remaining after
394 1.38 riastrad * sleeping, possibly negative if the complete time has elapsed.
395 1.38 riastrad * No infinite timeout; use cv_wait_sig instead.
396 1.37 riastrad *
397 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
398 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
399 1.37 riastrad * future to choose between low- and high-resolution timers.
400 1.38 riastrad * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
401 1.38 riastrad * where r is the finest resolution of clock available and s is
402 1.38 riastrad * scheduling delays for scheduler overhead and competing threads.
403 1.38 riastrad * Time is measured by the interrupt source implementing the
404 1.38 riastrad * timeout, not by another timecounter.
405 1.37 riastrad */
406 1.37 riastrad int
407 1.37 riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
408 1.38 riastrad const struct bintime *epsilon __diagused)
409 1.37 riastrad {
410 1.37 riastrad struct bintime slept;
411 1.37 riastrad unsigned start, end;
412 1.37 riastrad int error;
413 1.37 riastrad
414 1.38 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
415 1.38 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
416 1.38 riastrad
417 1.37 riastrad /*
418 1.37 riastrad * hardclock_ticks is technically int, but nothing special
419 1.37 riastrad * happens instead of overflow, so we assume two's-complement
420 1.37 riastrad * wraparound and just treat it as unsigned.
421 1.37 riastrad */
422 1.37 riastrad start = hardclock_ticks;
423 1.37 riastrad error = cv_timedwait(cv, mtx, bintime2timo(bt));
424 1.37 riastrad end = hardclock_ticks;
425 1.37 riastrad
426 1.37 riastrad slept = timo2bintime(end - start);
427 1.37 riastrad /* bt := bt - slept */
428 1.37 riastrad bintime_sub(bt, &slept);
429 1.37 riastrad
430 1.37 riastrad return error;
431 1.37 riastrad }
432 1.37 riastrad
433 1.37 riastrad /*
434 1.37 riastrad * cv_timedwaitbt_sig:
435 1.37 riastrad *
436 1.37 riastrad * Wait on a condition variable until awoken, the specified
437 1.37 riastrad * timeout expires, or interrupted by a signal. Returns zero if
438 1.37 riastrad * awoken normally, EWOULDBLOCK if the timeout expires, or
439 1.37 riastrad * EINTR/ERESTART if interrupted by a signal.
440 1.37 riastrad *
441 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
442 1.37 riastrad * subtracts the time slept, so on exit, bt is the time remaining
443 1.37 riastrad * after sleeping. No infinite timeout; use cv_wait instead.
444 1.37 riastrad *
445 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
446 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
447 1.37 riastrad * future to choose between low- and high-resolution timers.
448 1.37 riastrad */
449 1.37 riastrad int
450 1.37 riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
451 1.39 riastrad const struct bintime *epsilon __diagused)
452 1.37 riastrad {
453 1.37 riastrad struct bintime slept;
454 1.37 riastrad unsigned start, end;
455 1.37 riastrad int error;
456 1.37 riastrad
457 1.39 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
458 1.39 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
459 1.39 riastrad
460 1.37 riastrad /*
461 1.37 riastrad * hardclock_ticks is technically int, but nothing special
462 1.37 riastrad * happens instead of overflow, so we assume two's-complement
463 1.37 riastrad * wraparound and just treat it as unsigned.
464 1.37 riastrad */
465 1.37 riastrad start = hardclock_ticks;
466 1.37 riastrad error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
467 1.37 riastrad end = hardclock_ticks;
468 1.37 riastrad
469 1.37 riastrad slept = timo2bintime(end - start);
470 1.37 riastrad /* bt := bt - slept */
471 1.37 riastrad bintime_sub(bt, &slept);
472 1.37 riastrad
473 1.37 riastrad return error;
474 1.37 riastrad }
475 1.37 riastrad
476 1.37 riastrad /*
477 1.2 ad * cv_signal:
478 1.2 ad *
479 1.2 ad * Wake the highest priority LWP waiting on a condition variable.
480 1.2 ad * Must be called with the interlocking mutex held.
481 1.2 ad */
482 1.2 ad void
483 1.2 ad cv_signal(kcondvar_t *cv)
484 1.2 ad {
485 1.20 ad
486 1.22 ad /* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
487 1.20 ad KASSERT(cv_is_valid(cv));
488 1.20 ad
489 1.24 ad if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
490 1.24 ad cv_wakeup_one(cv);
491 1.20 ad }
492 1.20 ad
493 1.42 ad /*
494 1.42 ad * cv_wakeup_one:
495 1.42 ad *
496 1.42 ad * Slow path for cv_signal(). Deliberately marked __noinline to
497 1.42 ad * prevent the compiler pulling it in to cv_signal(), which adds
498 1.42 ad * extra prologue and epilogue code.
499 1.42 ad */
500 1.42 ad static __noinline void
501 1.20 ad cv_wakeup_one(kcondvar_t *cv)
502 1.20 ad {
503 1.2 ad sleepq_t *sq;
504 1.18 ad kmutex_t *mp;
505 1.20 ad lwp_t *l;
506 1.2 ad
507 1.15 ad KASSERT(cv_is_valid(cv));
508 1.15 ad
509 1.24 ad mp = sleepq_hashlock(cv);
510 1.20 ad sq = CV_SLEEPQ(cv);
511 1.20 ad l = TAILQ_FIRST(sq);
512 1.42 ad if (__predict_false(l == NULL)) {
513 1.20 ad mutex_spin_exit(mp);
514 1.2 ad return;
515 1.20 ad }
516 1.20 ad KASSERT(l->l_sleepq == sq);
517 1.20 ad KASSERT(l->l_mutex == mp);
518 1.20 ad KASSERT(l->l_wchan == cv);
519 1.36 chs CV_LOCKDEBUG_PROCESS(l, cv);
520 1.27 rmind sleepq_remove(sq, l);
521 1.20 ad mutex_spin_exit(mp);
522 1.2 ad
523 1.15 ad KASSERT(cv_is_valid(cv));
524 1.2 ad }
525 1.2 ad
526 1.2 ad /*
527 1.2 ad * cv_broadcast:
528 1.2 ad *
529 1.2 ad * Wake all LWPs waiting on a condition variable. Must be called
530 1.2 ad * with the interlocking mutex held.
531 1.2 ad */
532 1.2 ad void
533 1.2 ad cv_broadcast(kcondvar_t *cv)
534 1.2 ad {
535 1.20 ad
536 1.22 ad /* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
537 1.20 ad KASSERT(cv_is_valid(cv));
538 1.20 ad
539 1.24 ad if (__predict_false(!TAILQ_EMPTY(CV_SLEEPQ(cv))))
540 1.24 ad cv_wakeup_all(cv);
541 1.20 ad }
542 1.20 ad
543 1.42 ad /*
544 1.42 ad * cv_wakeup_all:
545 1.42 ad *
546 1.42 ad * Slow path for cv_broadcast(). Deliberately marked __noinline to
547 1.42 ad * prevent the compiler pulling it in to cv_broadcast(), which adds
548 1.42 ad * extra prologue and epilogue code.
549 1.42 ad */
550 1.42 ad static __noinline void
551 1.20 ad cv_wakeup_all(kcondvar_t *cv)
552 1.20 ad {
553 1.2 ad sleepq_t *sq;
554 1.18 ad kmutex_t *mp;
555 1.20 ad lwp_t *l, *next;
556 1.2 ad
557 1.15 ad KASSERT(cv_is_valid(cv));
558 1.15 ad
559 1.24 ad mp = sleepq_hashlock(cv);
560 1.20 ad sq = CV_SLEEPQ(cv);
561 1.20 ad for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
562 1.20 ad KASSERT(l->l_sleepq == sq);
563 1.20 ad KASSERT(l->l_mutex == mp);
564 1.20 ad KASSERT(l->l_wchan == cv);
565 1.20 ad next = TAILQ_NEXT(l, l_sleepchain);
566 1.36 chs CV_LOCKDEBUG_PROCESS(l, cv);
567 1.27 rmind sleepq_remove(sq, l);
568 1.20 ad }
569 1.20 ad mutex_spin_exit(mp);
570 1.2 ad
571 1.15 ad KASSERT(cv_is_valid(cv));
572 1.2 ad }
573 1.2 ad
574 1.2 ad /*
575 1.2 ad * cv_has_waiters:
576 1.2 ad *
577 1.2 ad * For diagnostic assertions: return non-zero if a condition
578 1.2 ad * variable has waiters.
579 1.2 ad */
580 1.7 ad bool
581 1.2 ad cv_has_waiters(kcondvar_t *cv)
582 1.2 ad {
583 1.23 chris
584 1.25 ad return !TAILQ_EMPTY(CV_SLEEPQ(cv));
585 1.2 ad }
586 1.15 ad
587 1.15 ad /*
588 1.15 ad * cv_is_valid:
589 1.15 ad *
590 1.15 ad * For diagnostic assertions: return non-zero if a condition
591 1.15 ad * variable appears to be valid. No locks need be held.
592 1.15 ad */
593 1.15 ad bool
594 1.15 ad cv_is_valid(kcondvar_t *cv)
595 1.15 ad {
596 1.15 ad
597 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
598 1.15 ad }
599