Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.44
      1  1.44        ad /*	$NetBSD: kern_condvar.c,v 1.44 2020/03/26 19:46:42 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.43        ad  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33  1.24        ad  * Kernel condition variable implementation.
     34   1.2        ad  */
     35   1.2        ad 
     36   1.2        ad #include <sys/cdefs.h>
     37  1.44        ad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.44 2020/03/26 19:46:42 ad Exp $");
     38   1.2        ad 
     39   1.2        ad #include <sys/param.h>
     40   1.2        ad #include <sys/systm.h>
     41  1.35  uebayasi #include <sys/lwp.h>
     42   1.2        ad #include <sys/condvar.h>
     43   1.2        ad #include <sys/sleepq.h>
     44  1.20        ad #include <sys/lockdebug.h>
     45  1.24        ad #include <sys/cpu.h>
     46  1.37  riastrad #include <sys/kernel.h>
     47  1.20        ad 
     48  1.26   thorpej /*
     49  1.26   thorpej  * Accessors for the private contents of the kcondvar_t data type.
     50  1.26   thorpej  *
     51  1.44        ad  *	cv_opaque[0]	sleepq_t
     52  1.44        ad  *	cv_opaque[1]	description for ps(1)
     53  1.26   thorpej  *
     54  1.44        ad  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55  1.43        ad  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56  1.26   thorpej  * and dequeue).
     57  1.26   thorpej  *
     58  1.44        ad  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59  1.26   thorpej  * of the CV.
     60  1.26   thorpej  */
     61  1.26   thorpej #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62  1.44        ad #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63  1.44        ad #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64  1.26   thorpej 
     65  1.26   thorpej #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66  1.20        ad #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67   1.2        ad 
     68  1.36       chs static void		cv_unsleep(lwp_t *, bool);
     69  1.36       chs static inline void	cv_wakeup_one(kcondvar_t *);
     70  1.36       chs static inline void	cv_wakeup_all(kcondvar_t *);
     71   1.2        ad 
     72  1.43        ad syncobj_t cv_syncobj = {
     73  1.41     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74  1.41     ozaki 	.sobj_unsleep	= cv_unsleep,
     75  1.41     ozaki 	.sobj_changepri	= sleepq_changepri,
     76  1.41     ozaki 	.sobj_lendpri	= sleepq_lendpri,
     77  1.41     ozaki 	.sobj_owner	= syncobj_noowner,
     78   1.2        ad };
     79   1.2        ad 
     80  1.20        ad lockops_t cv_lockops = {
     81  1.40     ozaki 	.lo_name = "Condition variable",
     82  1.40     ozaki 	.lo_type = LOCKOPS_CV,
     83  1.40     ozaki 	.lo_dump = NULL,
     84  1.20        ad };
     85  1.20        ad 
     86  1.10        ad static const char deadcv[] = "deadcv";
     87  1.33     joerg #ifdef LOCKDEBUG
     88  1.20        ad static const char nodebug[] = "nodebug";
     89  1.36       chs 
     90  1.36       chs #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
     91  1.36       chs #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
     92  1.36       chs 
     93  1.36       chs static inline void
     94  1.36       chs cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
     95  1.36       chs {
     96  1.36       chs 
     97  1.36       chs 	if (CV_DEBUG_P(cv))
     98  1.36       chs 		l->l_flag |= LW_CVLOCKDEBUG;
     99  1.36       chs }
    100  1.36       chs 
    101  1.36       chs static inline void
    102  1.36       chs cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
    103  1.36       chs {
    104  1.36       chs 
    105  1.36       chs 	if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
    106  1.36       chs 		return;
    107  1.36       chs 
    108  1.36       chs 	l->l_flag &= ~LW_CVLOCKDEBUG;
    109  1.36       chs 	LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
    110  1.36       chs }
    111  1.36       chs #else
    112  1.36       chs #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
    113  1.36       chs #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
    114  1.33     joerg #endif
    115  1.10        ad 
    116   1.2        ad /*
    117   1.2        ad  * cv_init:
    118   1.2        ad  *
    119   1.2        ad  *	Initialize a condition variable for use.
    120   1.2        ad  */
    121   1.2        ad void
    122   1.2        ad cv_init(kcondvar_t *cv, const char *wmesg)
    123   1.2        ad {
    124  1.21        ad #ifdef LOCKDEBUG
    125  1.20        ad 	bool dodebug;
    126   1.2        ad 
    127  1.20        ad 	dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
    128  1.20        ad 	    (uintptr_t)__builtin_return_address(0));
    129  1.21        ad 	if (!dodebug) {
    130  1.20        ad 		/* XXX This will break vfs_lockf. */
    131  1.21        ad 		wmesg = nodebug;
    132  1.20        ad 	}
    133  1.21        ad #endif
    134  1.21        ad 	KASSERT(wmesg != NULL);
    135  1.26   thorpej 	CV_SET_WMESG(cv, wmesg);
    136  1.20        ad 	sleepq_init(CV_SLEEPQ(cv));
    137   1.2        ad }
    138   1.2        ad 
    139   1.2        ad /*
    140   1.2        ad  * cv_destroy:
    141   1.2        ad  *
    142   1.2        ad  *	Tear down a condition variable.
    143   1.2        ad  */
    144   1.2        ad void
    145   1.2        ad cv_destroy(kcondvar_t *cv)
    146   1.2        ad {
    147   1.2        ad 
    148  1.20        ad 	LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
    149   1.2        ad #ifdef DIAGNOSTIC
    150  1.15        ad 	KASSERT(cv_is_valid(cv));
    151  1.26   thorpej 	CV_SET_WMESG(cv, deadcv);
    152   1.2        ad #endif
    153   1.2        ad }
    154   1.2        ad 
    155   1.2        ad /*
    156   1.2        ad  * cv_enter:
    157   1.2        ad  *
    158   1.2        ad  *	Look up and lock the sleep queue corresponding to the given
    159   1.2        ad  *	condition variable, and increment the number of waiters.
    160   1.2        ad  */
    161  1.20        ad static inline void
    162   1.6        ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
    163   1.2        ad {
    164   1.2        ad 	sleepq_t *sq;
    165  1.18        ad 	kmutex_t *mp;
    166   1.2        ad 
    167  1.15        ad 	KASSERT(cv_is_valid(cv));
    168  1.24        ad 	KASSERT(!cpu_intr_p());
    169  1.14        ad 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    170   1.2        ad 
    171  1.20        ad 	LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
    172  1.20        ad 
    173  1.14        ad 	l->l_kpriority = true;
    174  1.24        ad 	mp = sleepq_hashlock(cv);
    175  1.20        ad 	sq = CV_SLEEPQ(cv);
    176  1.18        ad 	sleepq_enter(sq, l, mp);
    177  1.26   thorpej 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
    178   1.2        ad 	mutex_exit(mtx);
    179  1.24        ad 	KASSERT(cv_has_waiters(cv));
    180   1.2        ad }
    181   1.2        ad 
    182   1.2        ad /*
    183   1.6        ad  * cv_exit:
    184   1.6        ad  *
    185   1.6        ad  *	After resuming execution, check to see if we have been restarted
    186   1.6        ad  *	as a result of cv_signal().  If we have, but cannot take the
    187   1.6        ad  *	wakeup (because of eg a pending Unix signal or timeout) then try
    188   1.6        ad  *	to ensure that another LWP sees it.  This is necessary because
    189   1.6        ad  *	there may be multiple waiters, and at least one should take the
    190   1.6        ad  *	wakeup if possible.
    191   1.6        ad  */
    192   1.6        ad static inline int
    193   1.6        ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
    194   1.6        ad {
    195   1.6        ad 
    196   1.6        ad 	mutex_enter(mtx);
    197  1.20        ad 	if (__predict_false(error != 0))
    198   1.6        ad 		cv_signal(cv);
    199   1.6        ad 
    200  1.20        ad 	LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
    201  1.15        ad 	KASSERT(cv_is_valid(cv));
    202  1.10        ad 
    203   1.6        ad 	return error;
    204   1.6        ad }
    205   1.6        ad 
    206   1.6        ad /*
    207   1.2        ad  * cv_unsleep:
    208   1.2        ad  *
    209   1.2        ad  *	Remove an LWP from the condition variable and sleep queue.  This
    210   1.2        ad  *	is called when the LWP has not been awoken normally but instead
    211   1.2        ad  *	interrupted: for example, when a signal is received.  Must be
    212  1.42        ad  *	called with the LWP locked.  Will unlock if "unlock" is true.
    213   1.2        ad  */
    214  1.27     rmind static void
    215  1.42        ad cv_unsleep(lwp_t *l, bool unlock)
    216   1.2        ad {
    217  1.34    martin 	kcondvar_t *cv __diagused;
    218   1.2        ad 
    219  1.15        ad 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    220  1.15        ad 
    221  1.20        ad 	KASSERT(l->l_wchan == (wchan_t)cv);
    222  1.20        ad 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    223  1.15        ad 	KASSERT(cv_is_valid(cv));
    224  1.24        ad 	KASSERT(cv_has_waiters(cv));
    225   1.2        ad 
    226  1.42        ad 	sleepq_unsleep(l, unlock);
    227   1.2        ad }
    228   1.2        ad 
    229   1.2        ad /*
    230   1.2        ad  * cv_wait:
    231   1.2        ad  *
    232   1.2        ad  *	Wait non-interruptably on a condition variable until awoken.
    233   1.2        ad  */
    234   1.2        ad void
    235   1.2        ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    236   1.2        ad {
    237   1.6        ad 	lwp_t *l = curlwp;
    238   1.2        ad 
    239   1.8      yamt 	KASSERT(mutex_owned(mtx));
    240   1.2        ad 
    241  1.20        ad 	cv_enter(cv, mtx, l);
    242  1.36       chs 
    243  1.36       chs 	/*
    244  1.36       chs 	 * We can't use cv_exit() here since the cv might be destroyed before
    245  1.36       chs 	 * this thread gets a chance to run.  Instead, hand off the lockdebug
    246  1.36       chs 	 * responsibility to the thread that wakes us up.
    247  1.36       chs 	 */
    248  1.36       chs 
    249  1.36       chs 	CV_LOCKDEBUG_HANDOFF(l, cv);
    250   1.8      yamt 	(void)sleepq_block(0, false);
    251  1.36       chs 	mutex_enter(mtx);
    252   1.2        ad }
    253   1.2        ad 
    254   1.2        ad /*
    255   1.2        ad  * cv_wait_sig:
    256   1.2        ad  *
    257   1.2        ad  *	Wait on a condition variable until a awoken or a signal is received.
    258   1.2        ad  *	Will also return early if the process is exiting.  Returns zero if
    259  1.29       jym  *	awoken normally, ERESTART if a signal was received and the system
    260   1.2        ad  *	call is restartable, or EINTR otherwise.
    261   1.2        ad  */
    262   1.2        ad int
    263   1.2        ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    264   1.2        ad {
    265   1.6        ad 	lwp_t *l = curlwp;
    266   1.2        ad 	int error;
    267   1.2        ad 
    268   1.8      yamt 	KASSERT(mutex_owned(mtx));
    269   1.2        ad 
    270  1.20        ad 	cv_enter(cv, mtx, l);
    271   1.8      yamt 	error = sleepq_block(0, true);
    272   1.6        ad 	return cv_exit(cv, mtx, l, error);
    273   1.2        ad }
    274   1.2        ad 
    275   1.2        ad /*
    276   1.2        ad  * cv_timedwait:
    277   1.2        ad  *
    278   1.2        ad  *	Wait on a condition variable until awoken or the specified timeout
    279   1.2        ad  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    280   1.2        ad  *	timeout expired.
    281  1.31       apb  *
    282  1.31       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    283   1.2        ad  */
    284   1.2        ad int
    285   1.2        ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    286   1.2        ad {
    287   1.6        ad 	lwp_t *l = curlwp;
    288   1.2        ad 	int error;
    289   1.2        ad 
    290   1.8      yamt 	KASSERT(mutex_owned(mtx));
    291   1.2        ad 
    292  1.20        ad 	cv_enter(cv, mtx, l);
    293   1.8      yamt 	error = sleepq_block(timo, false);
    294   1.6        ad 	return cv_exit(cv, mtx, l, error);
    295   1.2        ad }
    296   1.2        ad 
    297   1.2        ad /*
    298   1.2        ad  * cv_timedwait_sig:
    299   1.2        ad  *
    300   1.2        ad  *	Wait on a condition variable until a timeout expires, awoken or a
    301   1.2        ad  *	signal is received.  Will also return early if the process is
    302  1.29       jym  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    303   1.2        ad  *	timeout expires, ERESTART if a signal was received and the system
    304   1.2        ad  *	call is restartable, or EINTR otherwise.
    305  1.32       apb  *
    306  1.32       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    307   1.2        ad  */
    308   1.2        ad int
    309   1.2        ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    310   1.2        ad {
    311   1.6        ad 	lwp_t *l = curlwp;
    312   1.2        ad 	int error;
    313   1.2        ad 
    314   1.8      yamt 	KASSERT(mutex_owned(mtx));
    315   1.2        ad 
    316  1.20        ad 	cv_enter(cv, mtx, l);
    317   1.8      yamt 	error = sleepq_block(timo, true);
    318   1.6        ad 	return cv_exit(cv, mtx, l, error);
    319   1.2        ad }
    320   1.2        ad 
    321   1.2        ad /*
    322  1.37  riastrad  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    323  1.37  riastrad  * want a number of ticks for a timeout:
    324  1.37  riastrad  *
    325  1.37  riastrad  *	timo = hz*(sec + frac/2^64)
    326  1.37  riastrad  *	     = hz*sec + hz*frac/2^64
    327  1.37  riastrad  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    328  1.37  riastrad  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    329  1.37  riastrad  *
    330  1.37  riastrad  * where frachi is the high 32 bits of frac and fraclo is the
    331  1.37  riastrad  * low 32 bits.
    332  1.37  riastrad  *
    333  1.37  riastrad  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    334  1.37  riastrad  *
    335  1.37  riastrad  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    336  1.37  riastrad  *
    337  1.37  riastrad  * since fraclo < 2^32.
    338  1.37  riastrad  *
    339  1.37  riastrad  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    340  1.37  riastrad  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    341  1.37  riastrad  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    342  1.37  riastrad  * because we compute end - start in ticks in order to compute the
    343  1.37  riastrad  * remaining timeout, and that difference cannot wrap around, so we use
    344  1.37  riastrad  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    345  1.37  riastrad  * margin for paranoia and will exceed most waits in practice by far.
    346  1.37  riastrad  */
    347  1.37  riastrad static unsigned
    348  1.37  riastrad bintime2timo(const struct bintime *bt)
    349  1.37  riastrad {
    350  1.37  riastrad 
    351  1.37  riastrad 	KASSERT(hz < INT_MAX/2);
    352  1.37  riastrad 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    353  1.37  riastrad 	if (bt->sec > ((INT_MAX/2)/hz))
    354  1.37  riastrad 		return INT_MAX/2;
    355  1.37  riastrad 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    356  1.37  riastrad 		return INT_MAX/2;
    357  1.37  riastrad 
    358  1.37  riastrad 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    359  1.37  riastrad }
    360  1.37  riastrad 
    361  1.37  riastrad /*
    362  1.37  riastrad  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    363  1.37  riastrad  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    364  1.37  riastrad  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    365  1.37  riastrad  * second)/tick.  So for the fractional part, we compute
    366  1.37  riastrad  *
    367  1.37  riastrad  *	frac = rem * 2^64 / hz
    368  1.37  riastrad  *	     = ((rem * 2^32) / hz) * 2^32
    369  1.37  riastrad  *
    370  1.37  riastrad  * Using truncating integer division instead of real division will
    371  1.37  riastrad  * leave us with only about 32 bits of precision, which means about
    372  1.37  riastrad  * 1/4-nanosecond resolution, which is good enough for our purposes.
    373  1.37  riastrad  */
    374  1.37  riastrad static struct bintime
    375  1.37  riastrad timo2bintime(unsigned timo)
    376  1.37  riastrad {
    377  1.37  riastrad 
    378  1.37  riastrad 	return (struct bintime) {
    379  1.37  riastrad 		.sec = timo / hz,
    380  1.37  riastrad 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    381  1.37  riastrad 	};
    382  1.37  riastrad }
    383  1.37  riastrad 
    384  1.37  riastrad /*
    385  1.37  riastrad  * cv_timedwaitbt:
    386  1.37  riastrad  *
    387  1.37  riastrad  *	Wait on a condition variable until awoken or the specified
    388  1.37  riastrad  *	timeout expires.  Returns zero if awoken normally or
    389  1.37  riastrad  *	EWOULDBLOCK if the timeout expires.
    390  1.37  riastrad  *
    391  1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    392  1.37  riastrad  *	the time slept, so on exit, bt is the time remaining after
    393  1.38  riastrad  *	sleeping, possibly negative if the complete time has elapsed.
    394  1.38  riastrad  *	No infinite timeout; use cv_wait_sig instead.
    395  1.37  riastrad  *
    396  1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    397  1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    398  1.37  riastrad  *	future to choose between low- and high-resolution timers.
    399  1.38  riastrad  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    400  1.38  riastrad  *	where r is the finest resolution of clock available and s is
    401  1.38  riastrad  *	scheduling delays for scheduler overhead and competing threads.
    402  1.38  riastrad  *	Time is measured by the interrupt source implementing the
    403  1.38  riastrad  *	timeout, not by another timecounter.
    404  1.37  riastrad  */
    405  1.37  riastrad int
    406  1.37  riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    407  1.38  riastrad     const struct bintime *epsilon __diagused)
    408  1.37  riastrad {
    409  1.37  riastrad 	struct bintime slept;
    410  1.37  riastrad 	unsigned start, end;
    411  1.37  riastrad 	int error;
    412  1.37  riastrad 
    413  1.38  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    414  1.38  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    415  1.38  riastrad 
    416  1.37  riastrad 	/*
    417  1.37  riastrad 	 * hardclock_ticks is technically int, but nothing special
    418  1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    419  1.37  riastrad 	 * wraparound and just treat it as unsigned.
    420  1.37  riastrad 	 */
    421  1.37  riastrad 	start = hardclock_ticks;
    422  1.37  riastrad 	error = cv_timedwait(cv, mtx, bintime2timo(bt));
    423  1.37  riastrad 	end = hardclock_ticks;
    424  1.37  riastrad 
    425  1.37  riastrad 	slept = timo2bintime(end - start);
    426  1.37  riastrad 	/* bt := bt - slept */
    427  1.37  riastrad 	bintime_sub(bt, &slept);
    428  1.37  riastrad 
    429  1.37  riastrad 	return error;
    430  1.37  riastrad }
    431  1.37  riastrad 
    432  1.37  riastrad /*
    433  1.37  riastrad  * cv_timedwaitbt_sig:
    434  1.37  riastrad  *
    435  1.37  riastrad  *	Wait on a condition variable until awoken, the specified
    436  1.37  riastrad  *	timeout expires, or interrupted by a signal.  Returns zero if
    437  1.37  riastrad  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    438  1.37  riastrad  *	EINTR/ERESTART if interrupted by a signal.
    439  1.37  riastrad  *
    440  1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    441  1.37  riastrad  *	subtracts the time slept, so on exit, bt is the time remaining
    442  1.37  riastrad  *	after sleeping.  No infinite timeout; use cv_wait instead.
    443  1.37  riastrad  *
    444  1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    445  1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    446  1.37  riastrad  *	future to choose between low- and high-resolution timers.
    447  1.37  riastrad  */
    448  1.37  riastrad int
    449  1.37  riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    450  1.39  riastrad     const struct bintime *epsilon __diagused)
    451  1.37  riastrad {
    452  1.37  riastrad 	struct bintime slept;
    453  1.37  riastrad 	unsigned start, end;
    454  1.37  riastrad 	int error;
    455  1.37  riastrad 
    456  1.39  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    457  1.39  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    458  1.39  riastrad 
    459  1.37  riastrad 	/*
    460  1.37  riastrad 	 * hardclock_ticks is technically int, but nothing special
    461  1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    462  1.37  riastrad 	 * wraparound and just treat it as unsigned.
    463  1.37  riastrad 	 */
    464  1.37  riastrad 	start = hardclock_ticks;
    465  1.37  riastrad 	error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
    466  1.37  riastrad 	end = hardclock_ticks;
    467  1.37  riastrad 
    468  1.37  riastrad 	slept = timo2bintime(end - start);
    469  1.37  riastrad 	/* bt := bt - slept */
    470  1.37  riastrad 	bintime_sub(bt, &slept);
    471  1.37  riastrad 
    472  1.37  riastrad 	return error;
    473  1.37  riastrad }
    474  1.37  riastrad 
    475  1.37  riastrad /*
    476   1.2        ad  * cv_signal:
    477   1.2        ad  *
    478   1.2        ad  *	Wake the highest priority LWP waiting on a condition variable.
    479   1.2        ad  *	Must be called with the interlocking mutex held.
    480   1.2        ad  */
    481   1.2        ad void
    482   1.2        ad cv_signal(kcondvar_t *cv)
    483   1.2        ad {
    484  1.20        ad 
    485  1.22        ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    486  1.20        ad 	KASSERT(cv_is_valid(cv));
    487  1.20        ad 
    488  1.44        ad 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    489  1.24        ad 		cv_wakeup_one(cv);
    490  1.20        ad }
    491  1.20        ad 
    492  1.42        ad /*
    493  1.42        ad  * cv_wakeup_one:
    494  1.42        ad  *
    495  1.42        ad  *	Slow path for cv_signal().  Deliberately marked __noinline to
    496  1.42        ad  *	prevent the compiler pulling it in to cv_signal(), which adds
    497  1.42        ad  *	extra prologue and epilogue code.
    498  1.42        ad  */
    499  1.42        ad static __noinline void
    500  1.20        ad cv_wakeup_one(kcondvar_t *cv)
    501  1.20        ad {
    502   1.2        ad 	sleepq_t *sq;
    503  1.18        ad 	kmutex_t *mp;
    504  1.20        ad 	lwp_t *l;
    505   1.2        ad 
    506  1.15        ad 	KASSERT(cv_is_valid(cv));
    507  1.15        ad 
    508  1.24        ad 	mp = sleepq_hashlock(cv);
    509  1.20        ad 	sq = CV_SLEEPQ(cv);
    510  1.44        ad 	l = LIST_FIRST(sq);
    511  1.42        ad 	if (__predict_false(l == NULL)) {
    512  1.20        ad 		mutex_spin_exit(mp);
    513   1.2        ad 		return;
    514  1.20        ad 	}
    515  1.20        ad 	KASSERT(l->l_sleepq == sq);
    516  1.20        ad 	KASSERT(l->l_mutex == mp);
    517  1.20        ad 	KASSERT(l->l_wchan == cv);
    518  1.36       chs 	CV_LOCKDEBUG_PROCESS(l, cv);
    519  1.27     rmind 	sleepq_remove(sq, l);
    520  1.20        ad 	mutex_spin_exit(mp);
    521   1.2        ad 
    522  1.15        ad 	KASSERT(cv_is_valid(cv));
    523   1.2        ad }
    524   1.2        ad 
    525   1.2        ad /*
    526   1.2        ad  * cv_broadcast:
    527   1.2        ad  *
    528   1.2        ad  *	Wake all LWPs waiting on a condition variable.  Must be called
    529   1.2        ad  *	with the interlocking mutex held.
    530   1.2        ad  */
    531   1.2        ad void
    532   1.2        ad cv_broadcast(kcondvar_t *cv)
    533   1.2        ad {
    534  1.20        ad 
    535  1.22        ad 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
    536  1.20        ad 	KASSERT(cv_is_valid(cv));
    537  1.20        ad 
    538  1.44        ad 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    539  1.24        ad 		cv_wakeup_all(cv);
    540  1.20        ad }
    541  1.20        ad 
    542  1.42        ad /*
    543  1.42        ad  * cv_wakeup_all:
    544  1.42        ad  *
    545  1.42        ad  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    546  1.42        ad  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    547  1.42        ad  *	extra prologue and epilogue code.
    548  1.42        ad  */
    549  1.42        ad static __noinline void
    550  1.20        ad cv_wakeup_all(kcondvar_t *cv)
    551  1.20        ad {
    552   1.2        ad 	sleepq_t *sq;
    553  1.18        ad 	kmutex_t *mp;
    554  1.20        ad 	lwp_t *l, *next;
    555   1.2        ad 
    556  1.15        ad 	KASSERT(cv_is_valid(cv));
    557  1.15        ad 
    558  1.24        ad 	mp = sleepq_hashlock(cv);
    559  1.20        ad 	sq = CV_SLEEPQ(cv);
    560  1.44        ad 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    561  1.20        ad 		KASSERT(l->l_sleepq == sq);
    562  1.20        ad 		KASSERT(l->l_mutex == mp);
    563  1.20        ad 		KASSERT(l->l_wchan == cv);
    564  1.44        ad 		next = LIST_NEXT(l, l_sleepchain);
    565  1.36       chs 		CV_LOCKDEBUG_PROCESS(l, cv);
    566  1.27     rmind 		sleepq_remove(sq, l);
    567  1.20        ad 	}
    568  1.20        ad 	mutex_spin_exit(mp);
    569   1.2        ad 
    570  1.15        ad 	KASSERT(cv_is_valid(cv));
    571   1.2        ad }
    572   1.2        ad 
    573   1.2        ad /*
    574   1.2        ad  * cv_has_waiters:
    575   1.2        ad  *
    576   1.2        ad  *	For diagnostic assertions: return non-zero if a condition
    577   1.2        ad  *	variable has waiters.
    578   1.2        ad  */
    579   1.7        ad bool
    580   1.2        ad cv_has_waiters(kcondvar_t *cv)
    581   1.2        ad {
    582  1.23     chris 
    583  1.44        ad 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    584   1.2        ad }
    585  1.15        ad 
    586  1.15        ad /*
    587  1.15        ad  * cv_is_valid:
    588  1.15        ad  *
    589  1.15        ad  *	For diagnostic assertions: return non-zero if a condition
    590  1.15        ad  *	variable appears to be valid.  No locks need be held.
    591  1.15        ad  */
    592  1.15        ad bool
    593  1.15        ad cv_is_valid(kcondvar_t *cv)
    594  1.15        ad {
    595  1.15        ad 
    596  1.26   thorpej 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    597  1.15        ad }
    598