kern_condvar.c revision 1.48 1 1.48 riastrad /* $NetBSD: kern_condvar.c,v 1.48 2020/05/03 01:19:47 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.43 ad * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.24 ad * Kernel condition variable implementation.
34 1.2 ad */
35 1.2 ad
36 1.2 ad #include <sys/cdefs.h>
37 1.48 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.48 2020/05/03 01:19:47 riastradh Exp $");
38 1.2 ad
39 1.2 ad #include <sys/param.h>
40 1.2 ad #include <sys/systm.h>
41 1.35 uebayasi #include <sys/lwp.h>
42 1.2 ad #include <sys/condvar.h>
43 1.2 ad #include <sys/sleepq.h>
44 1.20 ad #include <sys/lockdebug.h>
45 1.24 ad #include <sys/cpu.h>
46 1.37 riastrad #include <sys/kernel.h>
47 1.20 ad
48 1.26 thorpej /*
49 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
50 1.26 thorpej *
51 1.44 ad * cv_opaque[0] sleepq_t
52 1.44 ad * cv_opaque[1] description for ps(1)
53 1.26 thorpej *
54 1.44 ad * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55 1.43 ad * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56 1.26 thorpej * and dequeue).
57 1.26 thorpej *
58 1.44 ad * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59 1.26 thorpej * of the CV.
60 1.26 thorpej */
61 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
62 1.44 ad #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
63 1.44 ad #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
64 1.26 thorpej
65 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
66 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
67 1.2 ad
68 1.36 chs static void cv_unsleep(lwp_t *, bool);
69 1.36 chs static inline void cv_wakeup_one(kcondvar_t *);
70 1.36 chs static inline void cv_wakeup_all(kcondvar_t *);
71 1.2 ad
72 1.43 ad syncobj_t cv_syncobj = {
73 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
74 1.41 ozaki .sobj_unsleep = cv_unsleep,
75 1.41 ozaki .sobj_changepri = sleepq_changepri,
76 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
77 1.41 ozaki .sobj_owner = syncobj_noowner,
78 1.2 ad };
79 1.2 ad
80 1.10 ad static const char deadcv[] = "deadcv";
81 1.10 ad
82 1.2 ad /*
83 1.2 ad * cv_init:
84 1.2 ad *
85 1.2 ad * Initialize a condition variable for use.
86 1.2 ad */
87 1.2 ad void
88 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
89 1.2 ad {
90 1.2 ad
91 1.21 ad KASSERT(wmesg != NULL);
92 1.26 thorpej CV_SET_WMESG(cv, wmesg);
93 1.20 ad sleepq_init(CV_SLEEPQ(cv));
94 1.2 ad }
95 1.2 ad
96 1.2 ad /*
97 1.2 ad * cv_destroy:
98 1.2 ad *
99 1.2 ad * Tear down a condition variable.
100 1.2 ad */
101 1.2 ad void
102 1.2 ad cv_destroy(kcondvar_t *cv)
103 1.2 ad {
104 1.2 ad
105 1.2 ad #ifdef DIAGNOSTIC
106 1.15 ad KASSERT(cv_is_valid(cv));
107 1.45 ad KASSERT(!cv_has_waiters(cv));
108 1.26 thorpej CV_SET_WMESG(cv, deadcv);
109 1.2 ad #endif
110 1.2 ad }
111 1.2 ad
112 1.2 ad /*
113 1.2 ad * cv_enter:
114 1.2 ad *
115 1.2 ad * Look up and lock the sleep queue corresponding to the given
116 1.2 ad * condition variable, and increment the number of waiters.
117 1.2 ad */
118 1.20 ad static inline void
119 1.47 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
120 1.2 ad {
121 1.2 ad sleepq_t *sq;
122 1.18 ad kmutex_t *mp;
123 1.2 ad
124 1.15 ad KASSERT(cv_is_valid(cv));
125 1.24 ad KASSERT(!cpu_intr_p());
126 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
127 1.2 ad
128 1.14 ad l->l_kpriority = true;
129 1.24 ad mp = sleepq_hashlock(cv);
130 1.20 ad sq = CV_SLEEPQ(cv);
131 1.18 ad sleepq_enter(sq, l, mp);
132 1.47 ad sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
133 1.2 ad mutex_exit(mtx);
134 1.24 ad KASSERT(cv_has_waiters(cv));
135 1.2 ad }
136 1.2 ad
137 1.2 ad /*
138 1.2 ad * cv_unsleep:
139 1.2 ad *
140 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
141 1.2 ad * is called when the LWP has not been awoken normally but instead
142 1.2 ad * interrupted: for example, when a signal is received. Must be
143 1.42 ad * called with the LWP locked. Will unlock if "unlock" is true.
144 1.2 ad */
145 1.27 rmind static void
146 1.42 ad cv_unsleep(lwp_t *l, bool unlock)
147 1.2 ad {
148 1.34 martin kcondvar_t *cv __diagused;
149 1.2 ad
150 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
151 1.15 ad
152 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
153 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
154 1.15 ad KASSERT(cv_is_valid(cv));
155 1.24 ad KASSERT(cv_has_waiters(cv));
156 1.2 ad
157 1.42 ad sleepq_unsleep(l, unlock);
158 1.2 ad }
159 1.2 ad
160 1.2 ad /*
161 1.2 ad * cv_wait:
162 1.2 ad *
163 1.2 ad * Wait non-interruptably on a condition variable until awoken.
164 1.2 ad */
165 1.2 ad void
166 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
167 1.2 ad {
168 1.6 ad lwp_t *l = curlwp;
169 1.2 ad
170 1.8 yamt KASSERT(mutex_owned(mtx));
171 1.2 ad
172 1.47 ad cv_enter(cv, mtx, l, false);
173 1.8 yamt (void)sleepq_block(0, false);
174 1.36 chs mutex_enter(mtx);
175 1.2 ad }
176 1.2 ad
177 1.2 ad /*
178 1.2 ad * cv_wait_sig:
179 1.2 ad *
180 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
181 1.2 ad * Will also return early if the process is exiting. Returns zero if
182 1.29 jym * awoken normally, ERESTART if a signal was received and the system
183 1.2 ad * call is restartable, or EINTR otherwise.
184 1.2 ad */
185 1.2 ad int
186 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
187 1.2 ad {
188 1.6 ad lwp_t *l = curlwp;
189 1.2 ad int error;
190 1.2 ad
191 1.8 yamt KASSERT(mutex_owned(mtx));
192 1.2 ad
193 1.47 ad cv_enter(cv, mtx, l, true);
194 1.8 yamt error = sleepq_block(0, true);
195 1.45 ad mutex_enter(mtx);
196 1.45 ad return error;
197 1.2 ad }
198 1.2 ad
199 1.2 ad /*
200 1.2 ad * cv_timedwait:
201 1.2 ad *
202 1.2 ad * Wait on a condition variable until awoken or the specified timeout
203 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
204 1.2 ad * timeout expired.
205 1.31 apb *
206 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
207 1.2 ad */
208 1.2 ad int
209 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
210 1.2 ad {
211 1.6 ad lwp_t *l = curlwp;
212 1.2 ad int error;
213 1.2 ad
214 1.8 yamt KASSERT(mutex_owned(mtx));
215 1.2 ad
216 1.47 ad cv_enter(cv, mtx, l, false);
217 1.8 yamt error = sleepq_block(timo, false);
218 1.45 ad mutex_enter(mtx);
219 1.45 ad return error;
220 1.2 ad }
221 1.2 ad
222 1.2 ad /*
223 1.2 ad * cv_timedwait_sig:
224 1.2 ad *
225 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
226 1.2 ad * signal is received. Will also return early if the process is
227 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
228 1.2 ad * timeout expires, ERESTART if a signal was received and the system
229 1.2 ad * call is restartable, or EINTR otherwise.
230 1.32 apb *
231 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
232 1.2 ad */
233 1.2 ad int
234 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
235 1.2 ad {
236 1.6 ad lwp_t *l = curlwp;
237 1.2 ad int error;
238 1.2 ad
239 1.8 yamt KASSERT(mutex_owned(mtx));
240 1.2 ad
241 1.47 ad cv_enter(cv, mtx, l, true);
242 1.8 yamt error = sleepq_block(timo, true);
243 1.45 ad mutex_enter(mtx);
244 1.45 ad return error;
245 1.2 ad }
246 1.2 ad
247 1.2 ad /*
248 1.37 riastrad * Given a number of seconds, sec, and 2^64ths of a second, frac, we
249 1.37 riastrad * want a number of ticks for a timeout:
250 1.37 riastrad *
251 1.37 riastrad * timo = hz*(sec + frac/2^64)
252 1.37 riastrad * = hz*sec + hz*frac/2^64
253 1.37 riastrad * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
254 1.37 riastrad * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
255 1.37 riastrad *
256 1.37 riastrad * where frachi is the high 32 bits of frac and fraclo is the
257 1.37 riastrad * low 32 bits.
258 1.37 riastrad *
259 1.37 riastrad * We assume hz < INT_MAX/2 < UINT32_MAX, so
260 1.37 riastrad *
261 1.37 riastrad * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
262 1.37 riastrad *
263 1.37 riastrad * since fraclo < 2^32.
264 1.37 riastrad *
265 1.37 riastrad * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
266 1.37 riastrad * can't represent timeouts higher than INT_MAX in cv_timedwait, and
267 1.37 riastrad * spurious wakeup is OK. Moreover, we don't want to wrap around,
268 1.37 riastrad * because we compute end - start in ticks in order to compute the
269 1.37 riastrad * remaining timeout, and that difference cannot wrap around, so we use
270 1.37 riastrad * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
271 1.37 riastrad * margin for paranoia and will exceed most waits in practice by far.
272 1.37 riastrad */
273 1.37 riastrad static unsigned
274 1.37 riastrad bintime2timo(const struct bintime *bt)
275 1.37 riastrad {
276 1.37 riastrad
277 1.37 riastrad KASSERT(hz < INT_MAX/2);
278 1.37 riastrad CTASSERT(INT_MAX/2 < UINT32_MAX);
279 1.37 riastrad if (bt->sec > ((INT_MAX/2)/hz))
280 1.37 riastrad return INT_MAX/2;
281 1.37 riastrad if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
282 1.37 riastrad return INT_MAX/2;
283 1.37 riastrad
284 1.37 riastrad return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
285 1.37 riastrad }
286 1.37 riastrad
287 1.37 riastrad /*
288 1.37 riastrad * timo is in units of ticks. We want units of seconds and 2^64ths of
289 1.37 riastrad * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
290 1.37 riastrad * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
291 1.37 riastrad * second)/tick. So for the fractional part, we compute
292 1.37 riastrad *
293 1.37 riastrad * frac = rem * 2^64 / hz
294 1.37 riastrad * = ((rem * 2^32) / hz) * 2^32
295 1.37 riastrad *
296 1.37 riastrad * Using truncating integer division instead of real division will
297 1.37 riastrad * leave us with only about 32 bits of precision, which means about
298 1.37 riastrad * 1/4-nanosecond resolution, which is good enough for our purposes.
299 1.37 riastrad */
300 1.37 riastrad static struct bintime
301 1.37 riastrad timo2bintime(unsigned timo)
302 1.37 riastrad {
303 1.37 riastrad
304 1.37 riastrad return (struct bintime) {
305 1.37 riastrad .sec = timo / hz,
306 1.37 riastrad .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
307 1.37 riastrad };
308 1.37 riastrad }
309 1.37 riastrad
310 1.37 riastrad /*
311 1.37 riastrad * cv_timedwaitbt:
312 1.37 riastrad *
313 1.37 riastrad * Wait on a condition variable until awoken or the specified
314 1.37 riastrad * timeout expires. Returns zero if awoken normally or
315 1.37 riastrad * EWOULDBLOCK if the timeout expires.
316 1.37 riastrad *
317 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
318 1.37 riastrad * the time slept, so on exit, bt is the time remaining after
319 1.38 riastrad * sleeping, possibly negative if the complete time has elapsed.
320 1.38 riastrad * No infinite timeout; use cv_wait_sig instead.
321 1.37 riastrad *
322 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
323 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
324 1.37 riastrad * future to choose between low- and high-resolution timers.
325 1.38 riastrad * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
326 1.38 riastrad * where r is the finest resolution of clock available and s is
327 1.38 riastrad * scheduling delays for scheduler overhead and competing threads.
328 1.38 riastrad * Time is measured by the interrupt source implementing the
329 1.38 riastrad * timeout, not by another timecounter.
330 1.37 riastrad */
331 1.37 riastrad int
332 1.37 riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
333 1.38 riastrad const struct bintime *epsilon __diagused)
334 1.37 riastrad {
335 1.37 riastrad struct bintime slept;
336 1.37 riastrad unsigned start, end;
337 1.48 riastrad int timo;
338 1.37 riastrad int error;
339 1.37 riastrad
340 1.38 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
341 1.38 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
342 1.38 riastrad
343 1.48 riastrad /* If there's nothing left to wait, time out. */
344 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
345 1.48 riastrad return EWOULDBLOCK;
346 1.48 riastrad
347 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
348 1.48 riastrad timo = bintime2timo(bt);
349 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
350 1.48 riastrad if (timo == 0)
351 1.48 riastrad timo = 1;
352 1.48 riastrad
353 1.37 riastrad /*
354 1.46 maxv * getticks() is technically int, but nothing special
355 1.37 riastrad * happens instead of overflow, so we assume two's-complement
356 1.37 riastrad * wraparound and just treat it as unsigned.
357 1.37 riastrad */
358 1.46 maxv start = getticks();
359 1.48 riastrad error = cv_timedwait(cv, mtx, timo);
360 1.46 maxv end = getticks();
361 1.37 riastrad
362 1.48 riastrad /*
363 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
364 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
365 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
366 1.48 riastrad * give up or else cv_signal would be lost.
367 1.48 riastrad */
368 1.37 riastrad slept = timo2bintime(end - start);
369 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
370 1.48 riastrad bt->sec = 0;
371 1.48 riastrad bt->frac = 0;
372 1.48 riastrad } else {
373 1.48 riastrad /* bt := bt - slept */
374 1.48 riastrad bintime_sub(bt, &slept);
375 1.48 riastrad }
376 1.37 riastrad
377 1.37 riastrad return error;
378 1.37 riastrad }
379 1.37 riastrad
380 1.37 riastrad /*
381 1.37 riastrad * cv_timedwaitbt_sig:
382 1.37 riastrad *
383 1.37 riastrad * Wait on a condition variable until awoken, the specified
384 1.37 riastrad * timeout expires, or interrupted by a signal. Returns zero if
385 1.37 riastrad * awoken normally, EWOULDBLOCK if the timeout expires, or
386 1.37 riastrad * EINTR/ERESTART if interrupted by a signal.
387 1.37 riastrad *
388 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
389 1.37 riastrad * subtracts the time slept, so on exit, bt is the time remaining
390 1.37 riastrad * after sleeping. No infinite timeout; use cv_wait instead.
391 1.37 riastrad *
392 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
393 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
394 1.37 riastrad * future to choose between low- and high-resolution timers.
395 1.37 riastrad */
396 1.37 riastrad int
397 1.37 riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
398 1.39 riastrad const struct bintime *epsilon __diagused)
399 1.37 riastrad {
400 1.37 riastrad struct bintime slept;
401 1.37 riastrad unsigned start, end;
402 1.48 riastrad int timo;
403 1.37 riastrad int error;
404 1.37 riastrad
405 1.39 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
406 1.39 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
407 1.39 riastrad
408 1.48 riastrad /* If there's nothing left to wait, time out. */
409 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
410 1.48 riastrad return EWOULDBLOCK;
411 1.48 riastrad
412 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
413 1.48 riastrad timo = bintime2timo(bt);
414 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
415 1.48 riastrad if (timo == 0)
416 1.48 riastrad timo = 1;
417 1.48 riastrad
418 1.37 riastrad /*
419 1.46 maxv * getticks() is technically int, but nothing special
420 1.37 riastrad * happens instead of overflow, so we assume two's-complement
421 1.37 riastrad * wraparound and just treat it as unsigned.
422 1.37 riastrad */
423 1.46 maxv start = getticks();
424 1.48 riastrad error = cv_timedwait_sig(cv, mtx, timo);
425 1.46 maxv end = getticks();
426 1.37 riastrad
427 1.48 riastrad /*
428 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
429 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
430 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
431 1.48 riastrad * give up or else cv_signal would be lost.
432 1.48 riastrad */
433 1.37 riastrad slept = timo2bintime(end - start);
434 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
435 1.48 riastrad bt->sec = 0;
436 1.48 riastrad bt->frac = 0;
437 1.48 riastrad } else {
438 1.48 riastrad /* bt := bt - slept */
439 1.48 riastrad bintime_sub(bt, &slept);
440 1.48 riastrad }
441 1.37 riastrad
442 1.37 riastrad return error;
443 1.37 riastrad }
444 1.37 riastrad
445 1.37 riastrad /*
446 1.2 ad * cv_signal:
447 1.2 ad *
448 1.2 ad * Wake the highest priority LWP waiting on a condition variable.
449 1.2 ad * Must be called with the interlocking mutex held.
450 1.2 ad */
451 1.2 ad void
452 1.2 ad cv_signal(kcondvar_t *cv)
453 1.2 ad {
454 1.20 ad
455 1.20 ad KASSERT(cv_is_valid(cv));
456 1.20 ad
457 1.44 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
458 1.24 ad cv_wakeup_one(cv);
459 1.20 ad }
460 1.20 ad
461 1.42 ad /*
462 1.42 ad * cv_wakeup_one:
463 1.42 ad *
464 1.42 ad * Slow path for cv_signal(). Deliberately marked __noinline to
465 1.42 ad * prevent the compiler pulling it in to cv_signal(), which adds
466 1.42 ad * extra prologue and epilogue code.
467 1.42 ad */
468 1.42 ad static __noinline void
469 1.20 ad cv_wakeup_one(kcondvar_t *cv)
470 1.20 ad {
471 1.2 ad sleepq_t *sq;
472 1.18 ad kmutex_t *mp;
473 1.20 ad lwp_t *l;
474 1.2 ad
475 1.45 ad /*
476 1.45 ad * Keep waking LWPs until a non-interruptable waiter is found. An
477 1.45 ad * interruptable waiter could fail to do something useful with the
478 1.45 ad * wakeup due to an error return from cv_[timed]wait_sig(), and the
479 1.45 ad * caller of cv_signal() may not expect such a scenario.
480 1.45 ad *
481 1.45 ad * This isn't a problem for non-interruptable waits (untimed and
482 1.45 ad * timed), because if such a waiter is woken here it will not return
483 1.45 ad * an error.
484 1.45 ad */
485 1.24 ad mp = sleepq_hashlock(cv);
486 1.20 ad sq = CV_SLEEPQ(cv);
487 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
488 1.45 ad KASSERT(l->l_sleepq == sq);
489 1.45 ad KASSERT(l->l_mutex == mp);
490 1.45 ad KASSERT(l->l_wchan == cv);
491 1.45 ad if ((l->l_flag & LW_SINTR) == 0) {
492 1.45 ad sleepq_remove(sq, l);
493 1.45 ad break;
494 1.45 ad } else
495 1.45 ad sleepq_remove(sq, l);
496 1.20 ad }
497 1.20 ad mutex_spin_exit(mp);
498 1.2 ad }
499 1.2 ad
500 1.2 ad /*
501 1.2 ad * cv_broadcast:
502 1.2 ad *
503 1.2 ad * Wake all LWPs waiting on a condition variable. Must be called
504 1.2 ad * with the interlocking mutex held.
505 1.2 ad */
506 1.2 ad void
507 1.2 ad cv_broadcast(kcondvar_t *cv)
508 1.2 ad {
509 1.20 ad
510 1.20 ad KASSERT(cv_is_valid(cv));
511 1.20 ad
512 1.44 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
513 1.24 ad cv_wakeup_all(cv);
514 1.20 ad }
515 1.20 ad
516 1.42 ad /*
517 1.42 ad * cv_wakeup_all:
518 1.42 ad *
519 1.42 ad * Slow path for cv_broadcast(). Deliberately marked __noinline to
520 1.42 ad * prevent the compiler pulling it in to cv_broadcast(), which adds
521 1.42 ad * extra prologue and epilogue code.
522 1.42 ad */
523 1.42 ad static __noinline void
524 1.20 ad cv_wakeup_all(kcondvar_t *cv)
525 1.20 ad {
526 1.2 ad sleepq_t *sq;
527 1.18 ad kmutex_t *mp;
528 1.45 ad lwp_t *l;
529 1.15 ad
530 1.24 ad mp = sleepq_hashlock(cv);
531 1.20 ad sq = CV_SLEEPQ(cv);
532 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
533 1.20 ad KASSERT(l->l_sleepq == sq);
534 1.20 ad KASSERT(l->l_mutex == mp);
535 1.20 ad KASSERT(l->l_wchan == cv);
536 1.27 rmind sleepq_remove(sq, l);
537 1.20 ad }
538 1.20 ad mutex_spin_exit(mp);
539 1.2 ad }
540 1.2 ad
541 1.2 ad /*
542 1.2 ad * cv_has_waiters:
543 1.2 ad *
544 1.2 ad * For diagnostic assertions: return non-zero if a condition
545 1.2 ad * variable has waiters.
546 1.2 ad */
547 1.7 ad bool
548 1.2 ad cv_has_waiters(kcondvar_t *cv)
549 1.2 ad {
550 1.23 chris
551 1.44 ad return !LIST_EMPTY(CV_SLEEPQ(cv));
552 1.2 ad }
553 1.15 ad
554 1.15 ad /*
555 1.15 ad * cv_is_valid:
556 1.15 ad *
557 1.15 ad * For diagnostic assertions: return non-zero if a condition
558 1.15 ad * variable appears to be valid. No locks need be held.
559 1.15 ad */
560 1.15 ad bool
561 1.15 ad cv_is_valid(kcondvar_t *cv)
562 1.15 ad {
563 1.15 ad
564 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
565 1.15 ad }
566