Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.52.2.1
      1  1.52.2.1   thorpej /*	$NetBSD: kern_condvar.c,v 1.52.2.1 2020/12/14 14:38:13 thorpej Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.43        ad  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33      1.24        ad  * Kernel condition variable implementation.
     34       1.2        ad  */
     35       1.2        ad 
     36       1.2        ad #include <sys/cdefs.h>
     37  1.52.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.52.2.1 2020/12/14 14:38:13 thorpej Exp $");
     38       1.2        ad 
     39       1.2        ad #include <sys/param.h>
     40       1.2        ad #include <sys/systm.h>
     41      1.35  uebayasi #include <sys/lwp.h>
     42       1.2        ad #include <sys/condvar.h>
     43       1.2        ad #include <sys/sleepq.h>
     44      1.20        ad #include <sys/lockdebug.h>
     45      1.24        ad #include <sys/cpu.h>
     46      1.37  riastrad #include <sys/kernel.h>
     47      1.20        ad 
     48      1.26   thorpej /*
     49      1.26   thorpej  * Accessors for the private contents of the kcondvar_t data type.
     50      1.26   thorpej  *
     51      1.44        ad  *	cv_opaque[0]	sleepq_t
     52      1.44        ad  *	cv_opaque[1]	description for ps(1)
     53      1.26   thorpej  *
     54      1.44        ad  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55      1.43        ad  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56      1.26   thorpej  * and dequeue).
     57      1.26   thorpej  *
     58      1.44        ad  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59      1.26   thorpej  * of the CV.
     60      1.26   thorpej  */
     61      1.26   thorpej #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62      1.44        ad #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63      1.44        ad #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64      1.26   thorpej 
     65      1.26   thorpej #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66      1.20        ad #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67       1.2        ad 
     68      1.36       chs static void		cv_unsleep(lwp_t *, bool);
     69      1.36       chs static inline void	cv_wakeup_one(kcondvar_t *);
     70      1.36       chs static inline void	cv_wakeup_all(kcondvar_t *);
     71       1.2        ad 
     72      1.43        ad syncobj_t cv_syncobj = {
     73      1.41     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74      1.41     ozaki 	.sobj_unsleep	= cv_unsleep,
     75      1.41     ozaki 	.sobj_changepri	= sleepq_changepri,
     76      1.41     ozaki 	.sobj_lendpri	= sleepq_lendpri,
     77      1.41     ozaki 	.sobj_owner	= syncobj_noowner,
     78       1.2        ad };
     79       1.2        ad 
     80      1.10        ad static const char deadcv[] = "deadcv";
     81      1.10        ad 
     82       1.2        ad /*
     83       1.2        ad  * cv_init:
     84       1.2        ad  *
     85       1.2        ad  *	Initialize a condition variable for use.
     86       1.2        ad  */
     87       1.2        ad void
     88       1.2        ad cv_init(kcondvar_t *cv, const char *wmesg)
     89       1.2        ad {
     90       1.2        ad 
     91      1.21        ad 	KASSERT(wmesg != NULL);
     92      1.26   thorpej 	CV_SET_WMESG(cv, wmesg);
     93      1.20        ad 	sleepq_init(CV_SLEEPQ(cv));
     94       1.2        ad }
     95       1.2        ad 
     96       1.2        ad /*
     97       1.2        ad  * cv_destroy:
     98       1.2        ad  *
     99       1.2        ad  *	Tear down a condition variable.
    100       1.2        ad  */
    101       1.2        ad void
    102       1.2        ad cv_destroy(kcondvar_t *cv)
    103       1.2        ad {
    104       1.2        ad 
    105  1.52.2.1   thorpej 	sleepq_destroy(CV_SLEEPQ(cv));
    106       1.2        ad #ifdef DIAGNOSTIC
    107      1.15        ad 	KASSERT(cv_is_valid(cv));
    108      1.45        ad 	KASSERT(!cv_has_waiters(cv));
    109      1.26   thorpej 	CV_SET_WMESG(cv, deadcv);
    110       1.2        ad #endif
    111       1.2        ad }
    112       1.2        ad 
    113       1.2        ad /*
    114       1.2        ad  * cv_enter:
    115       1.2        ad  *
    116       1.2        ad  *	Look up and lock the sleep queue corresponding to the given
    117       1.2        ad  *	condition variable, and increment the number of waiters.
    118       1.2        ad  */
    119      1.20        ad static inline void
    120      1.47        ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    121       1.2        ad {
    122       1.2        ad 	sleepq_t *sq;
    123      1.18        ad 	kmutex_t *mp;
    124       1.2        ad 
    125      1.15        ad 	KASSERT(cv_is_valid(cv));
    126      1.24        ad 	KASSERT(!cpu_intr_p());
    127      1.14        ad 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    128       1.2        ad 
    129      1.14        ad 	l->l_kpriority = true;
    130      1.24        ad 	mp = sleepq_hashlock(cv);
    131      1.20        ad 	sq = CV_SLEEPQ(cv);
    132      1.18        ad 	sleepq_enter(sq, l, mp);
    133      1.47        ad 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    134       1.2        ad 	mutex_exit(mtx);
    135      1.24        ad 	KASSERT(cv_has_waiters(cv));
    136       1.2        ad }
    137       1.2        ad 
    138       1.2        ad /*
    139       1.2        ad  * cv_unsleep:
    140       1.2        ad  *
    141       1.2        ad  *	Remove an LWP from the condition variable and sleep queue.  This
    142       1.2        ad  *	is called when the LWP has not been awoken normally but instead
    143       1.2        ad  *	interrupted: for example, when a signal is received.  Must be
    144      1.42        ad  *	called with the LWP locked.  Will unlock if "unlock" is true.
    145       1.2        ad  */
    146      1.27     rmind static void
    147      1.42        ad cv_unsleep(lwp_t *l, bool unlock)
    148       1.2        ad {
    149      1.34    martin 	kcondvar_t *cv __diagused;
    150       1.2        ad 
    151      1.15        ad 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    152      1.15        ad 
    153      1.20        ad 	KASSERT(l->l_wchan == (wchan_t)cv);
    154      1.20        ad 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    155      1.15        ad 	KASSERT(cv_is_valid(cv));
    156      1.24        ad 	KASSERT(cv_has_waiters(cv));
    157       1.2        ad 
    158      1.42        ad 	sleepq_unsleep(l, unlock);
    159       1.2        ad }
    160       1.2        ad 
    161       1.2        ad /*
    162       1.2        ad  * cv_wait:
    163       1.2        ad  *
    164       1.2        ad  *	Wait non-interruptably on a condition variable until awoken.
    165       1.2        ad  */
    166       1.2        ad void
    167       1.2        ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    168       1.2        ad {
    169       1.6        ad 	lwp_t *l = curlwp;
    170       1.2        ad 
    171       1.8      yamt 	KASSERT(mutex_owned(mtx));
    172       1.2        ad 
    173      1.47        ad 	cv_enter(cv, mtx, l, false);
    174       1.8      yamt 	(void)sleepq_block(0, false);
    175      1.36       chs 	mutex_enter(mtx);
    176       1.2        ad }
    177       1.2        ad 
    178       1.2        ad /*
    179       1.2        ad  * cv_wait_sig:
    180       1.2        ad  *
    181       1.2        ad  *	Wait on a condition variable until a awoken or a signal is received.
    182       1.2        ad  *	Will also return early if the process is exiting.  Returns zero if
    183      1.29       jym  *	awoken normally, ERESTART if a signal was received and the system
    184       1.2        ad  *	call is restartable, or EINTR otherwise.
    185       1.2        ad  */
    186       1.2        ad int
    187       1.2        ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    188       1.2        ad {
    189       1.6        ad 	lwp_t *l = curlwp;
    190       1.2        ad 	int error;
    191       1.2        ad 
    192       1.8      yamt 	KASSERT(mutex_owned(mtx));
    193       1.2        ad 
    194      1.47        ad 	cv_enter(cv, mtx, l, true);
    195       1.8      yamt 	error = sleepq_block(0, true);
    196      1.45        ad 	mutex_enter(mtx);
    197      1.45        ad 	return error;
    198       1.2        ad }
    199       1.2        ad 
    200       1.2        ad /*
    201       1.2        ad  * cv_timedwait:
    202       1.2        ad  *
    203       1.2        ad  *	Wait on a condition variable until awoken or the specified timeout
    204       1.2        ad  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    205       1.2        ad  *	timeout expired.
    206      1.31       apb  *
    207      1.31       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    208       1.2        ad  */
    209       1.2        ad int
    210       1.2        ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    211       1.2        ad {
    212       1.6        ad 	lwp_t *l = curlwp;
    213       1.2        ad 	int error;
    214       1.2        ad 
    215       1.8      yamt 	KASSERT(mutex_owned(mtx));
    216       1.2        ad 
    217      1.47        ad 	cv_enter(cv, mtx, l, false);
    218       1.8      yamt 	error = sleepq_block(timo, false);
    219      1.45        ad 	mutex_enter(mtx);
    220      1.45        ad 	return error;
    221       1.2        ad }
    222       1.2        ad 
    223       1.2        ad /*
    224       1.2        ad  * cv_timedwait_sig:
    225       1.2        ad  *
    226       1.2        ad  *	Wait on a condition variable until a timeout expires, awoken or a
    227       1.2        ad  *	signal is received.  Will also return early if the process is
    228      1.29       jym  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    229       1.2        ad  *	timeout expires, ERESTART if a signal was received and the system
    230       1.2        ad  *	call is restartable, or EINTR otherwise.
    231      1.32       apb  *
    232      1.32       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    233       1.2        ad  */
    234       1.2        ad int
    235       1.2        ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    236       1.2        ad {
    237       1.6        ad 	lwp_t *l = curlwp;
    238       1.2        ad 	int error;
    239       1.2        ad 
    240       1.8      yamt 	KASSERT(mutex_owned(mtx));
    241       1.2        ad 
    242      1.47        ad 	cv_enter(cv, mtx, l, true);
    243       1.8      yamt 	error = sleepq_block(timo, true);
    244      1.45        ad 	mutex_enter(mtx);
    245      1.45        ad 	return error;
    246       1.2        ad }
    247       1.2        ad 
    248      1.49  riastrad /*
    249      1.37  riastrad  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    250      1.37  riastrad  * want a number of ticks for a timeout:
    251      1.37  riastrad  *
    252      1.37  riastrad  *	timo = hz*(sec + frac/2^64)
    253      1.37  riastrad  *	     = hz*sec + hz*frac/2^64
    254      1.37  riastrad  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    255      1.37  riastrad  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    256      1.37  riastrad  *
    257      1.37  riastrad  * where frachi is the high 32 bits of frac and fraclo is the
    258      1.37  riastrad  * low 32 bits.
    259      1.37  riastrad  *
    260      1.37  riastrad  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    261      1.37  riastrad  *
    262      1.37  riastrad  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    263      1.37  riastrad  *
    264      1.37  riastrad  * since fraclo < 2^32.
    265      1.37  riastrad  *
    266      1.37  riastrad  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    267      1.37  riastrad  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    268      1.37  riastrad  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    269      1.37  riastrad  * because we compute end - start in ticks in order to compute the
    270      1.37  riastrad  * remaining timeout, and that difference cannot wrap around, so we use
    271      1.37  riastrad  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    272      1.37  riastrad  * margin for paranoia and will exceed most waits in practice by far.
    273      1.37  riastrad  */
    274      1.37  riastrad static unsigned
    275      1.37  riastrad bintime2timo(const struct bintime *bt)
    276      1.37  riastrad {
    277      1.37  riastrad 
    278      1.37  riastrad 	KASSERT(hz < INT_MAX/2);
    279      1.37  riastrad 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    280      1.37  riastrad 	if (bt->sec > ((INT_MAX/2)/hz))
    281      1.37  riastrad 		return INT_MAX/2;
    282      1.37  riastrad 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    283      1.37  riastrad 		return INT_MAX/2;
    284      1.37  riastrad 
    285      1.37  riastrad 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    286      1.37  riastrad }
    287      1.37  riastrad 
    288      1.37  riastrad /*
    289      1.37  riastrad  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    290      1.37  riastrad  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    291      1.37  riastrad  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    292      1.37  riastrad  * second)/tick.  So for the fractional part, we compute
    293      1.37  riastrad  *
    294      1.37  riastrad  *	frac = rem * 2^64 / hz
    295      1.37  riastrad  *	     = ((rem * 2^32) / hz) * 2^32
    296      1.37  riastrad  *
    297      1.37  riastrad  * Using truncating integer division instead of real division will
    298      1.37  riastrad  * leave us with only about 32 bits of precision, which means about
    299      1.37  riastrad  * 1/4-nanosecond resolution, which is good enough for our purposes.
    300      1.37  riastrad  */
    301      1.37  riastrad static struct bintime
    302      1.37  riastrad timo2bintime(unsigned timo)
    303      1.37  riastrad {
    304      1.37  riastrad 
    305      1.37  riastrad 	return (struct bintime) {
    306      1.37  riastrad 		.sec = timo / hz,
    307      1.37  riastrad 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    308      1.37  riastrad 	};
    309      1.37  riastrad }
    310      1.37  riastrad 
    311      1.37  riastrad /*
    312      1.37  riastrad  * cv_timedwaitbt:
    313      1.37  riastrad  *
    314      1.37  riastrad  *	Wait on a condition variable until awoken or the specified
    315      1.37  riastrad  *	timeout expires.  Returns zero if awoken normally or
    316      1.37  riastrad  *	EWOULDBLOCK if the timeout expires.
    317      1.37  riastrad  *
    318      1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    319      1.37  riastrad  *	the time slept, so on exit, bt is the time remaining after
    320      1.38  riastrad  *	sleeping, possibly negative if the complete time has elapsed.
    321      1.38  riastrad  *	No infinite timeout; use cv_wait_sig instead.
    322      1.37  riastrad  *
    323      1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    324      1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    325      1.37  riastrad  *	future to choose between low- and high-resolution timers.
    326      1.38  riastrad  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    327      1.38  riastrad  *	where r is the finest resolution of clock available and s is
    328      1.38  riastrad  *	scheduling delays for scheduler overhead and competing threads.
    329      1.38  riastrad  *	Time is measured by the interrupt source implementing the
    330      1.38  riastrad  *	timeout, not by another timecounter.
    331      1.37  riastrad  */
    332      1.37  riastrad int
    333      1.37  riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    334      1.38  riastrad     const struct bintime *epsilon __diagused)
    335      1.37  riastrad {
    336      1.37  riastrad 	struct bintime slept;
    337      1.37  riastrad 	unsigned start, end;
    338      1.48  riastrad 	int timo;
    339      1.37  riastrad 	int error;
    340      1.37  riastrad 
    341      1.38  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    342      1.38  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    343      1.38  riastrad 
    344      1.48  riastrad 	/* If there's nothing left to wait, time out.  */
    345      1.48  riastrad 	if (bt->sec == 0 && bt->frac == 0)
    346      1.48  riastrad 		return EWOULDBLOCK;
    347      1.48  riastrad 
    348      1.48  riastrad 	/* Convert to ticks, but clamp to be >=1.  */
    349      1.48  riastrad 	timo = bintime2timo(bt);
    350      1.48  riastrad 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    351      1.48  riastrad 	if (timo == 0)
    352      1.48  riastrad 		timo = 1;
    353      1.48  riastrad 
    354      1.37  riastrad 	/*
    355      1.46      maxv 	 * getticks() is technically int, but nothing special
    356      1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    357      1.37  riastrad 	 * wraparound and just treat it as unsigned.
    358      1.37  riastrad 	 */
    359      1.46      maxv 	start = getticks();
    360      1.48  riastrad 	error = cv_timedwait(cv, mtx, timo);
    361      1.46      maxv 	end = getticks();
    362      1.37  riastrad 
    363      1.48  riastrad 	/*
    364      1.48  riastrad 	 * Set it to the time left, or zero, whichever is larger.  We
    365      1.48  riastrad 	 * do not fail with EWOULDBLOCK here because this may have been
    366      1.48  riastrad 	 * an explicit wakeup, so the caller needs to check before they
    367      1.48  riastrad 	 * give up or else cv_signal would be lost.
    368      1.48  riastrad 	 */
    369      1.37  riastrad 	slept = timo2bintime(end - start);
    370      1.48  riastrad 	if (bintimecmp(bt, &slept, <=)) {
    371      1.48  riastrad 		bt->sec = 0;
    372      1.48  riastrad 		bt->frac = 0;
    373      1.48  riastrad 	} else {
    374      1.48  riastrad 		/* bt := bt - slept */
    375      1.48  riastrad 		bintime_sub(bt, &slept);
    376      1.48  riastrad 	}
    377      1.37  riastrad 
    378      1.37  riastrad 	return error;
    379      1.37  riastrad }
    380      1.37  riastrad 
    381      1.37  riastrad /*
    382      1.37  riastrad  * cv_timedwaitbt_sig:
    383      1.37  riastrad  *
    384      1.37  riastrad  *	Wait on a condition variable until awoken, the specified
    385      1.37  riastrad  *	timeout expires, or interrupted by a signal.  Returns zero if
    386      1.37  riastrad  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    387      1.37  riastrad  *	EINTR/ERESTART if interrupted by a signal.
    388      1.37  riastrad  *
    389      1.37  riastrad  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    390      1.37  riastrad  *	subtracts the time slept, so on exit, bt is the time remaining
    391      1.37  riastrad  *	after sleeping.  No infinite timeout; use cv_wait instead.
    392      1.37  riastrad  *
    393      1.37  riastrad  *	epsilon is a requested maximum error in timeout (excluding
    394      1.37  riastrad  *	spurious wakeups).  Currently not used, will be used in the
    395      1.37  riastrad  *	future to choose between low- and high-resolution timers.
    396      1.37  riastrad  */
    397      1.37  riastrad int
    398      1.37  riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    399      1.39  riastrad     const struct bintime *epsilon __diagused)
    400      1.37  riastrad {
    401      1.37  riastrad 	struct bintime slept;
    402      1.37  riastrad 	unsigned start, end;
    403      1.48  riastrad 	int timo;
    404      1.37  riastrad 	int error;
    405      1.37  riastrad 
    406      1.39  riastrad 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    407      1.39  riastrad 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    408      1.39  riastrad 
    409      1.48  riastrad 	/* If there's nothing left to wait, time out.  */
    410      1.48  riastrad 	if (bt->sec == 0 && bt->frac == 0)
    411      1.48  riastrad 		return EWOULDBLOCK;
    412      1.48  riastrad 
    413      1.48  riastrad 	/* Convert to ticks, but clamp to be >=1.  */
    414      1.48  riastrad 	timo = bintime2timo(bt);
    415      1.48  riastrad 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    416      1.48  riastrad 	if (timo == 0)
    417      1.48  riastrad 		timo = 1;
    418      1.48  riastrad 
    419      1.37  riastrad 	/*
    420      1.46      maxv 	 * getticks() is technically int, but nothing special
    421      1.37  riastrad 	 * happens instead of overflow, so we assume two's-complement
    422      1.37  riastrad 	 * wraparound and just treat it as unsigned.
    423      1.37  riastrad 	 */
    424      1.46      maxv 	start = getticks();
    425      1.48  riastrad 	error = cv_timedwait_sig(cv, mtx, timo);
    426      1.46      maxv 	end = getticks();
    427      1.37  riastrad 
    428      1.48  riastrad 	/*
    429      1.48  riastrad 	 * Set it to the time left, or zero, whichever is larger.  We
    430      1.48  riastrad 	 * do not fail with EWOULDBLOCK here because this may have been
    431      1.48  riastrad 	 * an explicit wakeup, so the caller needs to check before they
    432      1.48  riastrad 	 * give up or else cv_signal would be lost.
    433      1.48  riastrad 	 */
    434      1.37  riastrad 	slept = timo2bintime(end - start);
    435      1.48  riastrad 	if (bintimecmp(bt, &slept, <=)) {
    436      1.48  riastrad 		bt->sec = 0;
    437      1.48  riastrad 		bt->frac = 0;
    438      1.48  riastrad 	} else {
    439      1.48  riastrad 		/* bt := bt - slept */
    440      1.48  riastrad 		bintime_sub(bt, &slept);
    441      1.48  riastrad 	}
    442      1.37  riastrad 
    443      1.37  riastrad 	return error;
    444      1.37  riastrad }
    445      1.37  riastrad 
    446      1.37  riastrad /*
    447       1.2        ad  * cv_signal:
    448       1.2        ad  *
    449       1.2        ad  *	Wake the highest priority LWP waiting on a condition variable.
    450       1.2        ad  *	Must be called with the interlocking mutex held.
    451       1.2        ad  */
    452       1.2        ad void
    453       1.2        ad cv_signal(kcondvar_t *cv)
    454       1.2        ad {
    455      1.20        ad 
    456      1.20        ad 	KASSERT(cv_is_valid(cv));
    457      1.20        ad 
    458      1.44        ad 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    459      1.24        ad 		cv_wakeup_one(cv);
    460      1.20        ad }
    461      1.20        ad 
    462      1.42        ad /*
    463      1.42        ad  * cv_wakeup_one:
    464      1.42        ad  *
    465      1.42        ad  *	Slow path for cv_signal().  Deliberately marked __noinline to
    466      1.42        ad  *	prevent the compiler pulling it in to cv_signal(), which adds
    467      1.42        ad  *	extra prologue and epilogue code.
    468      1.42        ad  */
    469      1.42        ad static __noinline void
    470      1.20        ad cv_wakeup_one(kcondvar_t *cv)
    471      1.20        ad {
    472       1.2        ad 	sleepq_t *sq;
    473      1.18        ad 	kmutex_t *mp;
    474      1.20        ad 	lwp_t *l;
    475       1.2        ad 
    476      1.45        ad 	/*
    477      1.45        ad 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
    478      1.45        ad 	 * interruptable waiter could fail to do something useful with the
    479      1.45        ad 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
    480      1.45        ad 	 * caller of cv_signal() may not expect such a scenario.
    481      1.45        ad 	 *
    482      1.45        ad 	 * This isn't a problem for non-interruptable waits (untimed and
    483      1.45        ad 	 * timed), because if such a waiter is woken here it will not return
    484      1.45        ad 	 * an error.
    485      1.45        ad 	 */
    486      1.24        ad 	mp = sleepq_hashlock(cv);
    487      1.20        ad 	sq = CV_SLEEPQ(cv);
    488      1.45        ad 	while ((l = LIST_FIRST(sq)) != NULL) {
    489      1.45        ad 		KASSERT(l->l_sleepq == sq);
    490      1.45        ad 		KASSERT(l->l_mutex == mp);
    491      1.45        ad 		KASSERT(l->l_wchan == cv);
    492      1.45        ad 		if ((l->l_flag & LW_SINTR) == 0) {
    493      1.45        ad 			sleepq_remove(sq, l);
    494      1.45        ad 			break;
    495      1.45        ad 		} else
    496      1.45        ad 			sleepq_remove(sq, l);
    497      1.20        ad 	}
    498      1.20        ad 	mutex_spin_exit(mp);
    499       1.2        ad }
    500       1.2        ad 
    501       1.2        ad /*
    502       1.2        ad  * cv_broadcast:
    503       1.2        ad  *
    504       1.2        ad  *	Wake all LWPs waiting on a condition variable.  Must be called
    505       1.2        ad  *	with the interlocking mutex held.
    506       1.2        ad  */
    507       1.2        ad void
    508       1.2        ad cv_broadcast(kcondvar_t *cv)
    509       1.2        ad {
    510      1.20        ad 
    511      1.20        ad 	KASSERT(cv_is_valid(cv));
    512      1.20        ad 
    513      1.44        ad 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    514      1.24        ad 		cv_wakeup_all(cv);
    515      1.20        ad }
    516      1.20        ad 
    517      1.42        ad /*
    518      1.42        ad  * cv_wakeup_all:
    519      1.42        ad  *
    520      1.42        ad  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    521      1.42        ad  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    522      1.42        ad  *	extra prologue and epilogue code.
    523      1.42        ad  */
    524      1.42        ad static __noinline void
    525      1.20        ad cv_wakeup_all(kcondvar_t *cv)
    526      1.20        ad {
    527       1.2        ad 	sleepq_t *sq;
    528      1.18        ad 	kmutex_t *mp;
    529      1.45        ad 	lwp_t *l;
    530      1.15        ad 
    531      1.24        ad 	mp = sleepq_hashlock(cv);
    532      1.20        ad 	sq = CV_SLEEPQ(cv);
    533      1.45        ad 	while ((l = LIST_FIRST(sq)) != NULL) {
    534      1.20        ad 		KASSERT(l->l_sleepq == sq);
    535      1.20        ad 		KASSERT(l->l_mutex == mp);
    536      1.20        ad 		KASSERT(l->l_wchan == cv);
    537      1.27     rmind 		sleepq_remove(sq, l);
    538      1.20        ad 	}
    539      1.20        ad 	mutex_spin_exit(mp);
    540       1.2        ad }
    541       1.2        ad 
    542       1.2        ad /*
    543       1.2        ad  * cv_has_waiters:
    544       1.2        ad  *
    545       1.2        ad  *	For diagnostic assertions: return non-zero if a condition
    546       1.2        ad  *	variable has waiters.
    547       1.2        ad  */
    548       1.7        ad bool
    549       1.2        ad cv_has_waiters(kcondvar_t *cv)
    550       1.2        ad {
    551      1.23     chris 
    552      1.44        ad 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    553       1.2        ad }
    554      1.15        ad 
    555      1.15        ad /*
    556      1.15        ad  * cv_is_valid:
    557      1.15        ad  *
    558      1.15        ad  *	For diagnostic assertions: return non-zero if a condition
    559      1.15        ad  *	variable appears to be valid.  No locks need be held.
    560      1.15        ad  */
    561      1.15        ad bool
    562      1.15        ad cv_is_valid(kcondvar_t *cv)
    563      1.15        ad {
    564      1.15        ad 
    565      1.26   thorpej 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    566      1.15        ad }
    567