kern_condvar.c revision 1.53 1 1.53 christos /* $NetBSD: kern_condvar.c,v 1.53 2020/11/01 20:55:15 christos Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.43 ad * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.24 ad * Kernel condition variable implementation.
34 1.2 ad */
35 1.2 ad
36 1.2 ad #include <sys/cdefs.h>
37 1.53 christos __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.53 2020/11/01 20:55:15 christos Exp $");
38 1.2 ad
39 1.2 ad #include <sys/param.h>
40 1.2 ad #include <sys/systm.h>
41 1.35 uebayasi #include <sys/lwp.h>
42 1.2 ad #include <sys/condvar.h>
43 1.2 ad #include <sys/sleepq.h>
44 1.20 ad #include <sys/lockdebug.h>
45 1.24 ad #include <sys/cpu.h>
46 1.37 riastrad #include <sys/kernel.h>
47 1.20 ad
48 1.26 thorpej /*
49 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
50 1.26 thorpej *
51 1.44 ad * cv_opaque[0] sleepq_t
52 1.44 ad * cv_opaque[1] description for ps(1)
53 1.26 thorpej *
54 1.44 ad * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55 1.43 ad * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56 1.26 thorpej * and dequeue).
57 1.26 thorpej *
58 1.44 ad * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59 1.26 thorpej * of the CV.
60 1.26 thorpej */
61 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
62 1.44 ad #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
63 1.44 ad #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
64 1.26 thorpej
65 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
66 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
67 1.2 ad
68 1.36 chs static void cv_unsleep(lwp_t *, bool);
69 1.36 chs static inline void cv_wakeup_one(kcondvar_t *);
70 1.36 chs static inline void cv_wakeup_all(kcondvar_t *);
71 1.2 ad
72 1.43 ad syncobj_t cv_syncobj = {
73 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
74 1.41 ozaki .sobj_unsleep = cv_unsleep,
75 1.41 ozaki .sobj_changepri = sleepq_changepri,
76 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
77 1.41 ozaki .sobj_owner = syncobj_noowner,
78 1.2 ad };
79 1.2 ad
80 1.10 ad static const char deadcv[] = "deadcv";
81 1.10 ad
82 1.2 ad /*
83 1.2 ad * cv_init:
84 1.2 ad *
85 1.2 ad * Initialize a condition variable for use.
86 1.2 ad */
87 1.2 ad void
88 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
89 1.2 ad {
90 1.2 ad
91 1.21 ad KASSERT(wmesg != NULL);
92 1.26 thorpej CV_SET_WMESG(cv, wmesg);
93 1.20 ad sleepq_init(CV_SLEEPQ(cv));
94 1.2 ad }
95 1.2 ad
96 1.2 ad /*
97 1.2 ad * cv_destroy:
98 1.2 ad *
99 1.2 ad * Tear down a condition variable.
100 1.2 ad */
101 1.2 ad void
102 1.2 ad cv_destroy(kcondvar_t *cv)
103 1.2 ad {
104 1.2 ad
105 1.53 christos sleepq_destroy(CV_SLEEPQ(cv));
106 1.2 ad #ifdef DIAGNOSTIC
107 1.15 ad KASSERT(cv_is_valid(cv));
108 1.45 ad KASSERT(!cv_has_waiters(cv));
109 1.26 thorpej CV_SET_WMESG(cv, deadcv);
110 1.2 ad #endif
111 1.2 ad }
112 1.2 ad
113 1.2 ad /*
114 1.2 ad * cv_enter:
115 1.2 ad *
116 1.2 ad * Look up and lock the sleep queue corresponding to the given
117 1.2 ad * condition variable, and increment the number of waiters.
118 1.2 ad */
119 1.20 ad static inline void
120 1.47 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
121 1.2 ad {
122 1.2 ad sleepq_t *sq;
123 1.18 ad kmutex_t *mp;
124 1.2 ad
125 1.15 ad KASSERT(cv_is_valid(cv));
126 1.24 ad KASSERT(!cpu_intr_p());
127 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
128 1.2 ad
129 1.14 ad l->l_kpriority = true;
130 1.24 ad mp = sleepq_hashlock(cv);
131 1.20 ad sq = CV_SLEEPQ(cv);
132 1.18 ad sleepq_enter(sq, l, mp);
133 1.47 ad sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
134 1.2 ad mutex_exit(mtx);
135 1.24 ad KASSERT(cv_has_waiters(cv));
136 1.2 ad }
137 1.2 ad
138 1.2 ad /*
139 1.2 ad * cv_unsleep:
140 1.2 ad *
141 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
142 1.2 ad * is called when the LWP has not been awoken normally but instead
143 1.2 ad * interrupted: for example, when a signal is received. Must be
144 1.42 ad * called with the LWP locked. Will unlock if "unlock" is true.
145 1.2 ad */
146 1.27 rmind static void
147 1.42 ad cv_unsleep(lwp_t *l, bool unlock)
148 1.2 ad {
149 1.34 martin kcondvar_t *cv __diagused;
150 1.2 ad
151 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
152 1.15 ad
153 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
154 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
155 1.15 ad KASSERT(cv_is_valid(cv));
156 1.24 ad KASSERT(cv_has_waiters(cv));
157 1.2 ad
158 1.42 ad sleepq_unsleep(l, unlock);
159 1.2 ad }
160 1.2 ad
161 1.2 ad /*
162 1.2 ad * cv_wait:
163 1.2 ad *
164 1.2 ad * Wait non-interruptably on a condition variable until awoken.
165 1.2 ad */
166 1.2 ad void
167 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
168 1.2 ad {
169 1.6 ad lwp_t *l = curlwp;
170 1.2 ad
171 1.8 yamt KASSERT(mutex_owned(mtx));
172 1.2 ad
173 1.47 ad cv_enter(cv, mtx, l, false);
174 1.8 yamt (void)sleepq_block(0, false);
175 1.36 chs mutex_enter(mtx);
176 1.2 ad }
177 1.2 ad
178 1.2 ad /*
179 1.2 ad * cv_wait_sig:
180 1.2 ad *
181 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
182 1.2 ad * Will also return early if the process is exiting. Returns zero if
183 1.29 jym * awoken normally, ERESTART if a signal was received and the system
184 1.2 ad * call is restartable, or EINTR otherwise.
185 1.2 ad */
186 1.2 ad int
187 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
188 1.2 ad {
189 1.6 ad lwp_t *l = curlwp;
190 1.2 ad int error;
191 1.2 ad
192 1.8 yamt KASSERT(mutex_owned(mtx));
193 1.2 ad
194 1.47 ad cv_enter(cv, mtx, l, true);
195 1.8 yamt error = sleepq_block(0, true);
196 1.45 ad mutex_enter(mtx);
197 1.45 ad return error;
198 1.2 ad }
199 1.2 ad
200 1.2 ad /*
201 1.2 ad * cv_timedwait:
202 1.2 ad *
203 1.2 ad * Wait on a condition variable until awoken or the specified timeout
204 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
205 1.2 ad * timeout expired.
206 1.31 apb *
207 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
208 1.2 ad */
209 1.2 ad int
210 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
211 1.2 ad {
212 1.6 ad lwp_t *l = curlwp;
213 1.2 ad int error;
214 1.2 ad
215 1.8 yamt KASSERT(mutex_owned(mtx));
216 1.2 ad
217 1.47 ad cv_enter(cv, mtx, l, false);
218 1.8 yamt error = sleepq_block(timo, false);
219 1.45 ad mutex_enter(mtx);
220 1.45 ad return error;
221 1.2 ad }
222 1.2 ad
223 1.2 ad /*
224 1.2 ad * cv_timedwait_sig:
225 1.2 ad *
226 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
227 1.2 ad * signal is received. Will also return early if the process is
228 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
229 1.2 ad * timeout expires, ERESTART if a signal was received and the system
230 1.2 ad * call is restartable, or EINTR otherwise.
231 1.32 apb *
232 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
233 1.2 ad */
234 1.2 ad int
235 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
236 1.2 ad {
237 1.6 ad lwp_t *l = curlwp;
238 1.2 ad int error;
239 1.2 ad
240 1.8 yamt KASSERT(mutex_owned(mtx));
241 1.2 ad
242 1.47 ad cv_enter(cv, mtx, l, true);
243 1.8 yamt error = sleepq_block(timo, true);
244 1.45 ad mutex_enter(mtx);
245 1.45 ad return error;
246 1.2 ad }
247 1.2 ad
248 1.49 riastrad /*
249 1.37 riastrad * Given a number of seconds, sec, and 2^64ths of a second, frac, we
250 1.37 riastrad * want a number of ticks for a timeout:
251 1.37 riastrad *
252 1.37 riastrad * timo = hz*(sec + frac/2^64)
253 1.37 riastrad * = hz*sec + hz*frac/2^64
254 1.37 riastrad * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
255 1.37 riastrad * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
256 1.37 riastrad *
257 1.37 riastrad * where frachi is the high 32 bits of frac and fraclo is the
258 1.37 riastrad * low 32 bits.
259 1.37 riastrad *
260 1.37 riastrad * We assume hz < INT_MAX/2 < UINT32_MAX, so
261 1.37 riastrad *
262 1.37 riastrad * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
263 1.37 riastrad *
264 1.37 riastrad * since fraclo < 2^32.
265 1.37 riastrad *
266 1.37 riastrad * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
267 1.37 riastrad * can't represent timeouts higher than INT_MAX in cv_timedwait, and
268 1.37 riastrad * spurious wakeup is OK. Moreover, we don't want to wrap around,
269 1.37 riastrad * because we compute end - start in ticks in order to compute the
270 1.37 riastrad * remaining timeout, and that difference cannot wrap around, so we use
271 1.37 riastrad * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
272 1.37 riastrad * margin for paranoia and will exceed most waits in practice by far.
273 1.37 riastrad */
274 1.37 riastrad static unsigned
275 1.37 riastrad bintime2timo(const struct bintime *bt)
276 1.37 riastrad {
277 1.37 riastrad
278 1.37 riastrad KASSERT(hz < INT_MAX/2);
279 1.37 riastrad CTASSERT(INT_MAX/2 < UINT32_MAX);
280 1.37 riastrad if (bt->sec > ((INT_MAX/2)/hz))
281 1.37 riastrad return INT_MAX/2;
282 1.37 riastrad if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
283 1.37 riastrad return INT_MAX/2;
284 1.37 riastrad
285 1.37 riastrad return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
286 1.37 riastrad }
287 1.37 riastrad
288 1.37 riastrad /*
289 1.37 riastrad * timo is in units of ticks. We want units of seconds and 2^64ths of
290 1.37 riastrad * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
291 1.37 riastrad * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
292 1.37 riastrad * second)/tick. So for the fractional part, we compute
293 1.37 riastrad *
294 1.37 riastrad * frac = rem * 2^64 / hz
295 1.37 riastrad * = ((rem * 2^32) / hz) * 2^32
296 1.37 riastrad *
297 1.37 riastrad * Using truncating integer division instead of real division will
298 1.37 riastrad * leave us with only about 32 bits of precision, which means about
299 1.37 riastrad * 1/4-nanosecond resolution, which is good enough for our purposes.
300 1.37 riastrad */
301 1.37 riastrad static struct bintime
302 1.37 riastrad timo2bintime(unsigned timo)
303 1.37 riastrad {
304 1.37 riastrad
305 1.37 riastrad return (struct bintime) {
306 1.37 riastrad .sec = timo / hz,
307 1.37 riastrad .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
308 1.37 riastrad };
309 1.37 riastrad }
310 1.37 riastrad
311 1.37 riastrad /*
312 1.37 riastrad * cv_timedwaitbt:
313 1.37 riastrad *
314 1.37 riastrad * Wait on a condition variable until awoken or the specified
315 1.37 riastrad * timeout expires. Returns zero if awoken normally or
316 1.37 riastrad * EWOULDBLOCK if the timeout expires.
317 1.37 riastrad *
318 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
319 1.37 riastrad * the time slept, so on exit, bt is the time remaining after
320 1.38 riastrad * sleeping, possibly negative if the complete time has elapsed.
321 1.38 riastrad * No infinite timeout; use cv_wait_sig instead.
322 1.37 riastrad *
323 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
324 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
325 1.37 riastrad * future to choose between low- and high-resolution timers.
326 1.38 riastrad * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
327 1.38 riastrad * where r is the finest resolution of clock available and s is
328 1.38 riastrad * scheduling delays for scheduler overhead and competing threads.
329 1.38 riastrad * Time is measured by the interrupt source implementing the
330 1.38 riastrad * timeout, not by another timecounter.
331 1.37 riastrad */
332 1.37 riastrad int
333 1.37 riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
334 1.38 riastrad const struct bintime *epsilon __diagused)
335 1.37 riastrad {
336 1.37 riastrad struct bintime slept;
337 1.37 riastrad unsigned start, end;
338 1.48 riastrad int timo;
339 1.37 riastrad int error;
340 1.37 riastrad
341 1.38 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
342 1.38 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
343 1.38 riastrad
344 1.48 riastrad /* If there's nothing left to wait, time out. */
345 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
346 1.48 riastrad return EWOULDBLOCK;
347 1.48 riastrad
348 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
349 1.48 riastrad timo = bintime2timo(bt);
350 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
351 1.48 riastrad if (timo == 0)
352 1.48 riastrad timo = 1;
353 1.48 riastrad
354 1.37 riastrad /*
355 1.46 maxv * getticks() is technically int, but nothing special
356 1.37 riastrad * happens instead of overflow, so we assume two's-complement
357 1.37 riastrad * wraparound and just treat it as unsigned.
358 1.37 riastrad */
359 1.46 maxv start = getticks();
360 1.48 riastrad error = cv_timedwait(cv, mtx, timo);
361 1.46 maxv end = getticks();
362 1.37 riastrad
363 1.48 riastrad /*
364 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
365 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
366 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
367 1.48 riastrad * give up or else cv_signal would be lost.
368 1.48 riastrad */
369 1.37 riastrad slept = timo2bintime(end - start);
370 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
371 1.48 riastrad bt->sec = 0;
372 1.48 riastrad bt->frac = 0;
373 1.48 riastrad } else {
374 1.48 riastrad /* bt := bt - slept */
375 1.48 riastrad bintime_sub(bt, &slept);
376 1.48 riastrad }
377 1.37 riastrad
378 1.37 riastrad return error;
379 1.37 riastrad }
380 1.37 riastrad
381 1.37 riastrad /*
382 1.37 riastrad * cv_timedwaitbt_sig:
383 1.37 riastrad *
384 1.37 riastrad * Wait on a condition variable until awoken, the specified
385 1.37 riastrad * timeout expires, or interrupted by a signal. Returns zero if
386 1.37 riastrad * awoken normally, EWOULDBLOCK if the timeout expires, or
387 1.37 riastrad * EINTR/ERESTART if interrupted by a signal.
388 1.37 riastrad *
389 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
390 1.37 riastrad * subtracts the time slept, so on exit, bt is the time remaining
391 1.37 riastrad * after sleeping. No infinite timeout; use cv_wait instead.
392 1.37 riastrad *
393 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
394 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
395 1.37 riastrad * future to choose between low- and high-resolution timers.
396 1.37 riastrad */
397 1.37 riastrad int
398 1.37 riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
399 1.39 riastrad const struct bintime *epsilon __diagused)
400 1.37 riastrad {
401 1.37 riastrad struct bintime slept;
402 1.37 riastrad unsigned start, end;
403 1.48 riastrad int timo;
404 1.37 riastrad int error;
405 1.37 riastrad
406 1.39 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
407 1.39 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
408 1.39 riastrad
409 1.48 riastrad /* If there's nothing left to wait, time out. */
410 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
411 1.48 riastrad return EWOULDBLOCK;
412 1.48 riastrad
413 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
414 1.48 riastrad timo = bintime2timo(bt);
415 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
416 1.48 riastrad if (timo == 0)
417 1.48 riastrad timo = 1;
418 1.48 riastrad
419 1.37 riastrad /*
420 1.46 maxv * getticks() is technically int, but nothing special
421 1.37 riastrad * happens instead of overflow, so we assume two's-complement
422 1.37 riastrad * wraparound and just treat it as unsigned.
423 1.37 riastrad */
424 1.46 maxv start = getticks();
425 1.48 riastrad error = cv_timedwait_sig(cv, mtx, timo);
426 1.46 maxv end = getticks();
427 1.37 riastrad
428 1.48 riastrad /*
429 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
430 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
431 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
432 1.48 riastrad * give up or else cv_signal would be lost.
433 1.48 riastrad */
434 1.37 riastrad slept = timo2bintime(end - start);
435 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
436 1.48 riastrad bt->sec = 0;
437 1.48 riastrad bt->frac = 0;
438 1.48 riastrad } else {
439 1.48 riastrad /* bt := bt - slept */
440 1.48 riastrad bintime_sub(bt, &slept);
441 1.48 riastrad }
442 1.37 riastrad
443 1.37 riastrad return error;
444 1.37 riastrad }
445 1.37 riastrad
446 1.37 riastrad /*
447 1.2 ad * cv_signal:
448 1.2 ad *
449 1.2 ad * Wake the highest priority LWP waiting on a condition variable.
450 1.2 ad * Must be called with the interlocking mutex held.
451 1.2 ad */
452 1.2 ad void
453 1.2 ad cv_signal(kcondvar_t *cv)
454 1.2 ad {
455 1.20 ad
456 1.20 ad KASSERT(cv_is_valid(cv));
457 1.20 ad
458 1.44 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
459 1.24 ad cv_wakeup_one(cv);
460 1.20 ad }
461 1.20 ad
462 1.42 ad /*
463 1.42 ad * cv_wakeup_one:
464 1.42 ad *
465 1.42 ad * Slow path for cv_signal(). Deliberately marked __noinline to
466 1.42 ad * prevent the compiler pulling it in to cv_signal(), which adds
467 1.42 ad * extra prologue and epilogue code.
468 1.42 ad */
469 1.42 ad static __noinline void
470 1.20 ad cv_wakeup_one(kcondvar_t *cv)
471 1.20 ad {
472 1.2 ad sleepq_t *sq;
473 1.18 ad kmutex_t *mp;
474 1.20 ad lwp_t *l;
475 1.2 ad
476 1.45 ad /*
477 1.45 ad * Keep waking LWPs until a non-interruptable waiter is found. An
478 1.45 ad * interruptable waiter could fail to do something useful with the
479 1.45 ad * wakeup due to an error return from cv_[timed]wait_sig(), and the
480 1.45 ad * caller of cv_signal() may not expect such a scenario.
481 1.45 ad *
482 1.45 ad * This isn't a problem for non-interruptable waits (untimed and
483 1.45 ad * timed), because if such a waiter is woken here it will not return
484 1.45 ad * an error.
485 1.45 ad */
486 1.24 ad mp = sleepq_hashlock(cv);
487 1.20 ad sq = CV_SLEEPQ(cv);
488 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
489 1.45 ad KASSERT(l->l_sleepq == sq);
490 1.45 ad KASSERT(l->l_mutex == mp);
491 1.45 ad KASSERT(l->l_wchan == cv);
492 1.45 ad if ((l->l_flag & LW_SINTR) == 0) {
493 1.45 ad sleepq_remove(sq, l);
494 1.45 ad break;
495 1.45 ad } else
496 1.45 ad sleepq_remove(sq, l);
497 1.20 ad }
498 1.20 ad mutex_spin_exit(mp);
499 1.2 ad }
500 1.2 ad
501 1.2 ad /*
502 1.2 ad * cv_broadcast:
503 1.2 ad *
504 1.2 ad * Wake all LWPs waiting on a condition variable. Must be called
505 1.2 ad * with the interlocking mutex held.
506 1.2 ad */
507 1.2 ad void
508 1.2 ad cv_broadcast(kcondvar_t *cv)
509 1.2 ad {
510 1.20 ad
511 1.20 ad KASSERT(cv_is_valid(cv));
512 1.20 ad
513 1.44 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
514 1.24 ad cv_wakeup_all(cv);
515 1.20 ad }
516 1.20 ad
517 1.42 ad /*
518 1.42 ad * cv_wakeup_all:
519 1.42 ad *
520 1.42 ad * Slow path for cv_broadcast(). Deliberately marked __noinline to
521 1.42 ad * prevent the compiler pulling it in to cv_broadcast(), which adds
522 1.42 ad * extra prologue and epilogue code.
523 1.42 ad */
524 1.42 ad static __noinline void
525 1.20 ad cv_wakeup_all(kcondvar_t *cv)
526 1.20 ad {
527 1.2 ad sleepq_t *sq;
528 1.18 ad kmutex_t *mp;
529 1.45 ad lwp_t *l;
530 1.15 ad
531 1.24 ad mp = sleepq_hashlock(cv);
532 1.20 ad sq = CV_SLEEPQ(cv);
533 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
534 1.20 ad KASSERT(l->l_sleepq == sq);
535 1.20 ad KASSERT(l->l_mutex == mp);
536 1.20 ad KASSERT(l->l_wchan == cv);
537 1.27 rmind sleepq_remove(sq, l);
538 1.20 ad }
539 1.20 ad mutex_spin_exit(mp);
540 1.2 ad }
541 1.2 ad
542 1.2 ad /*
543 1.2 ad * cv_has_waiters:
544 1.2 ad *
545 1.2 ad * For diagnostic assertions: return non-zero if a condition
546 1.2 ad * variable has waiters.
547 1.2 ad */
548 1.7 ad bool
549 1.2 ad cv_has_waiters(kcondvar_t *cv)
550 1.2 ad {
551 1.23 chris
552 1.44 ad return !LIST_EMPTY(CV_SLEEPQ(cv));
553 1.2 ad }
554 1.15 ad
555 1.15 ad /*
556 1.15 ad * cv_is_valid:
557 1.15 ad *
558 1.15 ad * For diagnostic assertions: return non-zero if a condition
559 1.15 ad * variable appears to be valid. No locks need be held.
560 1.15 ad */
561 1.15 ad bool
562 1.15 ad cv_is_valid(kcondvar_t *cv)
563 1.15 ad {
564 1.15 ad
565 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
566 1.15 ad }
567