kern_condvar.c revision 1.57 1 1.57 ad /* $NetBSD: kern_condvar.c,v 1.57 2023/10/04 20:29:18 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.56 ad * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
5 1.56 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.24 ad * Kernel condition variable implementation.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.57 ad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.57 2023/10/04 20:29:18 ad Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/systm.h>
42 1.35 uebayasi #include <sys/lwp.h>
43 1.2 ad #include <sys/condvar.h>
44 1.2 ad #include <sys/sleepq.h>
45 1.20 ad #include <sys/lockdebug.h>
46 1.24 ad #include <sys/cpu.h>
47 1.37 riastrad #include <sys/kernel.h>
48 1.20 ad
49 1.26 thorpej /*
50 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
51 1.26 thorpej *
52 1.44 ad * cv_opaque[0] sleepq_t
53 1.44 ad * cv_opaque[1] description for ps(1)
54 1.26 thorpej *
55 1.44 ad * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
56 1.43 ad * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
57 1.26 thorpej * and dequeue).
58 1.26 thorpej *
59 1.44 ad * cv_opaque[1] (the wmesg) is static and does not change throughout the life
60 1.26 thorpej * of the CV.
61 1.26 thorpej */
62 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
63 1.44 ad #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
64 1.44 ad #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
65 1.26 thorpej
66 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
67 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
68 1.2 ad
69 1.36 chs static void cv_unsleep(lwp_t *, bool);
70 1.36 chs static inline void cv_wakeup_one(kcondvar_t *);
71 1.36 chs static inline void cv_wakeup_all(kcondvar_t *);
72 1.2 ad
73 1.43 ad syncobj_t cv_syncobj = {
74 1.55 riastrad .sobj_name = "cv",
75 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
76 1.56 ad .sobj_boostpri = PRI_KERNEL,
77 1.41 ozaki .sobj_unsleep = cv_unsleep,
78 1.41 ozaki .sobj_changepri = sleepq_changepri,
79 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
80 1.41 ozaki .sobj_owner = syncobj_noowner,
81 1.2 ad };
82 1.2 ad
83 1.10 ad static const char deadcv[] = "deadcv";
84 1.10 ad
85 1.2 ad /*
86 1.2 ad * cv_init:
87 1.2 ad *
88 1.2 ad * Initialize a condition variable for use.
89 1.2 ad */
90 1.2 ad void
91 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
92 1.2 ad {
93 1.2 ad
94 1.21 ad KASSERT(wmesg != NULL);
95 1.26 thorpej CV_SET_WMESG(cv, wmesg);
96 1.20 ad sleepq_init(CV_SLEEPQ(cv));
97 1.2 ad }
98 1.2 ad
99 1.2 ad /*
100 1.2 ad * cv_destroy:
101 1.2 ad *
102 1.2 ad * Tear down a condition variable.
103 1.2 ad */
104 1.2 ad void
105 1.2 ad cv_destroy(kcondvar_t *cv)
106 1.2 ad {
107 1.2 ad
108 1.53 christos sleepq_destroy(CV_SLEEPQ(cv));
109 1.2 ad #ifdef DIAGNOSTIC
110 1.15 ad KASSERT(cv_is_valid(cv));
111 1.45 ad KASSERT(!cv_has_waiters(cv));
112 1.26 thorpej CV_SET_WMESG(cv, deadcv);
113 1.2 ad #endif
114 1.2 ad }
115 1.2 ad
116 1.2 ad /*
117 1.2 ad * cv_enter:
118 1.2 ad *
119 1.2 ad * Look up and lock the sleep queue corresponding to the given
120 1.2 ad * condition variable, and increment the number of waiters.
121 1.2 ad */
122 1.57 ad static inline int
123 1.47 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
124 1.2 ad {
125 1.2 ad sleepq_t *sq;
126 1.18 ad kmutex_t *mp;
127 1.57 ad int nlocks;
128 1.2 ad
129 1.15 ad KASSERT(cv_is_valid(cv));
130 1.24 ad KASSERT(!cpu_intr_p());
131 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
132 1.2 ad
133 1.24 ad mp = sleepq_hashlock(cv);
134 1.20 ad sq = CV_SLEEPQ(cv);
135 1.57 ad nlocks = sleepq_enter(sq, l, mp);
136 1.47 ad sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
137 1.2 ad mutex_exit(mtx);
138 1.24 ad KASSERT(cv_has_waiters(cv));
139 1.57 ad return nlocks;
140 1.2 ad }
141 1.2 ad
142 1.2 ad /*
143 1.2 ad * cv_unsleep:
144 1.2 ad *
145 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
146 1.2 ad * is called when the LWP has not been awoken normally but instead
147 1.2 ad * interrupted: for example, when a signal is received. Must be
148 1.42 ad * called with the LWP locked. Will unlock if "unlock" is true.
149 1.2 ad */
150 1.27 rmind static void
151 1.42 ad cv_unsleep(lwp_t *l, bool unlock)
152 1.2 ad {
153 1.34 martin kcondvar_t *cv __diagused;
154 1.2 ad
155 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
156 1.15 ad
157 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
158 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
159 1.15 ad KASSERT(cv_is_valid(cv));
160 1.24 ad KASSERT(cv_has_waiters(cv));
161 1.2 ad
162 1.42 ad sleepq_unsleep(l, unlock);
163 1.2 ad }
164 1.2 ad
165 1.2 ad /*
166 1.2 ad * cv_wait:
167 1.2 ad *
168 1.2 ad * Wait non-interruptably on a condition variable until awoken.
169 1.2 ad */
170 1.2 ad void
171 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
172 1.2 ad {
173 1.6 ad lwp_t *l = curlwp;
174 1.57 ad int nlocks;
175 1.2 ad
176 1.8 yamt KASSERT(mutex_owned(mtx));
177 1.2 ad
178 1.57 ad nlocks = cv_enter(cv, mtx, l, false);
179 1.57 ad (void)sleepq_block(0, false, &cv_syncobj, nlocks);
180 1.36 chs mutex_enter(mtx);
181 1.2 ad }
182 1.2 ad
183 1.2 ad /*
184 1.2 ad * cv_wait_sig:
185 1.2 ad *
186 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
187 1.2 ad * Will also return early if the process is exiting. Returns zero if
188 1.29 jym * awoken normally, ERESTART if a signal was received and the system
189 1.2 ad * call is restartable, or EINTR otherwise.
190 1.2 ad */
191 1.2 ad int
192 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
193 1.2 ad {
194 1.6 ad lwp_t *l = curlwp;
195 1.57 ad int error, nlocks;
196 1.2 ad
197 1.8 yamt KASSERT(mutex_owned(mtx));
198 1.2 ad
199 1.57 ad nlocks = cv_enter(cv, mtx, l, true);
200 1.57 ad error = sleepq_block(0, true, &cv_syncobj, nlocks);
201 1.45 ad mutex_enter(mtx);
202 1.45 ad return error;
203 1.2 ad }
204 1.2 ad
205 1.2 ad /*
206 1.2 ad * cv_timedwait:
207 1.2 ad *
208 1.2 ad * Wait on a condition variable until awoken or the specified timeout
209 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
210 1.2 ad * timeout expired.
211 1.31 apb *
212 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
213 1.2 ad */
214 1.2 ad int
215 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
216 1.2 ad {
217 1.6 ad lwp_t *l = curlwp;
218 1.57 ad int error, nlocks;
219 1.2 ad
220 1.8 yamt KASSERT(mutex_owned(mtx));
221 1.2 ad
222 1.57 ad nlocks = cv_enter(cv, mtx, l, false);
223 1.57 ad error = sleepq_block(timo, false, &cv_syncobj, nlocks);
224 1.45 ad mutex_enter(mtx);
225 1.45 ad return error;
226 1.2 ad }
227 1.2 ad
228 1.2 ad /*
229 1.2 ad * cv_timedwait_sig:
230 1.2 ad *
231 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
232 1.2 ad * signal is received. Will also return early if the process is
233 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
234 1.2 ad * timeout expires, ERESTART if a signal was received and the system
235 1.2 ad * call is restartable, or EINTR otherwise.
236 1.32 apb *
237 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
238 1.2 ad */
239 1.2 ad int
240 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
241 1.2 ad {
242 1.6 ad lwp_t *l = curlwp;
243 1.57 ad int error, nlocks;
244 1.2 ad
245 1.8 yamt KASSERT(mutex_owned(mtx));
246 1.2 ad
247 1.57 ad nlocks = cv_enter(cv, mtx, l, true);
248 1.57 ad error = sleepq_block(timo, true, &cv_syncobj, nlocks);
249 1.45 ad mutex_enter(mtx);
250 1.45 ad return error;
251 1.2 ad }
252 1.2 ad
253 1.49 riastrad /*
254 1.37 riastrad * Given a number of seconds, sec, and 2^64ths of a second, frac, we
255 1.37 riastrad * want a number of ticks for a timeout:
256 1.37 riastrad *
257 1.37 riastrad * timo = hz*(sec + frac/2^64)
258 1.37 riastrad * = hz*sec + hz*frac/2^64
259 1.37 riastrad * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
260 1.37 riastrad * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
261 1.37 riastrad *
262 1.37 riastrad * where frachi is the high 32 bits of frac and fraclo is the
263 1.37 riastrad * low 32 bits.
264 1.37 riastrad *
265 1.37 riastrad * We assume hz < INT_MAX/2 < UINT32_MAX, so
266 1.37 riastrad *
267 1.37 riastrad * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
268 1.37 riastrad *
269 1.37 riastrad * since fraclo < 2^32.
270 1.37 riastrad *
271 1.37 riastrad * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
272 1.37 riastrad * can't represent timeouts higher than INT_MAX in cv_timedwait, and
273 1.37 riastrad * spurious wakeup is OK. Moreover, we don't want to wrap around,
274 1.37 riastrad * because we compute end - start in ticks in order to compute the
275 1.37 riastrad * remaining timeout, and that difference cannot wrap around, so we use
276 1.37 riastrad * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
277 1.37 riastrad * margin for paranoia and will exceed most waits in practice by far.
278 1.37 riastrad */
279 1.37 riastrad static unsigned
280 1.37 riastrad bintime2timo(const struct bintime *bt)
281 1.37 riastrad {
282 1.37 riastrad
283 1.37 riastrad KASSERT(hz < INT_MAX/2);
284 1.37 riastrad CTASSERT(INT_MAX/2 < UINT32_MAX);
285 1.37 riastrad if (bt->sec > ((INT_MAX/2)/hz))
286 1.37 riastrad return INT_MAX/2;
287 1.37 riastrad if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
288 1.37 riastrad return INT_MAX/2;
289 1.37 riastrad
290 1.37 riastrad return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
291 1.37 riastrad }
292 1.37 riastrad
293 1.37 riastrad /*
294 1.37 riastrad * timo is in units of ticks. We want units of seconds and 2^64ths of
295 1.37 riastrad * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
296 1.37 riastrad * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
297 1.37 riastrad * second)/tick. So for the fractional part, we compute
298 1.37 riastrad *
299 1.37 riastrad * frac = rem * 2^64 / hz
300 1.37 riastrad * = ((rem * 2^32) / hz) * 2^32
301 1.37 riastrad *
302 1.37 riastrad * Using truncating integer division instead of real division will
303 1.37 riastrad * leave us with only about 32 bits of precision, which means about
304 1.37 riastrad * 1/4-nanosecond resolution, which is good enough for our purposes.
305 1.37 riastrad */
306 1.37 riastrad static struct bintime
307 1.37 riastrad timo2bintime(unsigned timo)
308 1.37 riastrad {
309 1.37 riastrad
310 1.37 riastrad return (struct bintime) {
311 1.37 riastrad .sec = timo / hz,
312 1.37 riastrad .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
313 1.37 riastrad };
314 1.37 riastrad }
315 1.37 riastrad
316 1.37 riastrad /*
317 1.37 riastrad * cv_timedwaitbt:
318 1.37 riastrad *
319 1.37 riastrad * Wait on a condition variable until awoken or the specified
320 1.37 riastrad * timeout expires. Returns zero if awoken normally or
321 1.37 riastrad * EWOULDBLOCK if the timeout expires.
322 1.37 riastrad *
323 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
324 1.37 riastrad * the time slept, so on exit, bt is the time remaining after
325 1.38 riastrad * sleeping, possibly negative if the complete time has elapsed.
326 1.38 riastrad * No infinite timeout; use cv_wait_sig instead.
327 1.37 riastrad *
328 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
329 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
330 1.37 riastrad * future to choose between low- and high-resolution timers.
331 1.38 riastrad * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
332 1.38 riastrad * where r is the finest resolution of clock available and s is
333 1.38 riastrad * scheduling delays for scheduler overhead and competing threads.
334 1.38 riastrad * Time is measured by the interrupt source implementing the
335 1.38 riastrad * timeout, not by another timecounter.
336 1.37 riastrad */
337 1.37 riastrad int
338 1.37 riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
339 1.38 riastrad const struct bintime *epsilon __diagused)
340 1.37 riastrad {
341 1.37 riastrad struct bintime slept;
342 1.37 riastrad unsigned start, end;
343 1.48 riastrad int timo;
344 1.37 riastrad int error;
345 1.37 riastrad
346 1.38 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
347 1.38 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
348 1.38 riastrad
349 1.48 riastrad /* If there's nothing left to wait, time out. */
350 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
351 1.48 riastrad return EWOULDBLOCK;
352 1.48 riastrad
353 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
354 1.48 riastrad timo = bintime2timo(bt);
355 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
356 1.48 riastrad if (timo == 0)
357 1.48 riastrad timo = 1;
358 1.48 riastrad
359 1.37 riastrad /*
360 1.46 maxv * getticks() is technically int, but nothing special
361 1.37 riastrad * happens instead of overflow, so we assume two's-complement
362 1.37 riastrad * wraparound and just treat it as unsigned.
363 1.37 riastrad */
364 1.46 maxv start = getticks();
365 1.48 riastrad error = cv_timedwait(cv, mtx, timo);
366 1.46 maxv end = getticks();
367 1.37 riastrad
368 1.48 riastrad /*
369 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
370 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
371 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
372 1.48 riastrad * give up or else cv_signal would be lost.
373 1.48 riastrad */
374 1.37 riastrad slept = timo2bintime(end - start);
375 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
376 1.48 riastrad bt->sec = 0;
377 1.48 riastrad bt->frac = 0;
378 1.48 riastrad } else {
379 1.48 riastrad /* bt := bt - slept */
380 1.48 riastrad bintime_sub(bt, &slept);
381 1.48 riastrad }
382 1.37 riastrad
383 1.37 riastrad return error;
384 1.37 riastrad }
385 1.37 riastrad
386 1.37 riastrad /*
387 1.37 riastrad * cv_timedwaitbt_sig:
388 1.37 riastrad *
389 1.37 riastrad * Wait on a condition variable until awoken, the specified
390 1.37 riastrad * timeout expires, or interrupted by a signal. Returns zero if
391 1.37 riastrad * awoken normally, EWOULDBLOCK if the timeout expires, or
392 1.37 riastrad * EINTR/ERESTART if interrupted by a signal.
393 1.37 riastrad *
394 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
395 1.37 riastrad * subtracts the time slept, so on exit, bt is the time remaining
396 1.37 riastrad * after sleeping. No infinite timeout; use cv_wait instead.
397 1.37 riastrad *
398 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
399 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
400 1.37 riastrad * future to choose between low- and high-resolution timers.
401 1.37 riastrad */
402 1.37 riastrad int
403 1.37 riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
404 1.39 riastrad const struct bintime *epsilon __diagused)
405 1.37 riastrad {
406 1.37 riastrad struct bintime slept;
407 1.37 riastrad unsigned start, end;
408 1.48 riastrad int timo;
409 1.37 riastrad int error;
410 1.37 riastrad
411 1.39 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
412 1.39 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
413 1.39 riastrad
414 1.48 riastrad /* If there's nothing left to wait, time out. */
415 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
416 1.48 riastrad return EWOULDBLOCK;
417 1.48 riastrad
418 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
419 1.48 riastrad timo = bintime2timo(bt);
420 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
421 1.48 riastrad if (timo == 0)
422 1.48 riastrad timo = 1;
423 1.48 riastrad
424 1.37 riastrad /*
425 1.46 maxv * getticks() is technically int, but nothing special
426 1.37 riastrad * happens instead of overflow, so we assume two's-complement
427 1.37 riastrad * wraparound and just treat it as unsigned.
428 1.37 riastrad */
429 1.46 maxv start = getticks();
430 1.48 riastrad error = cv_timedwait_sig(cv, mtx, timo);
431 1.46 maxv end = getticks();
432 1.37 riastrad
433 1.48 riastrad /*
434 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
435 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
436 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
437 1.48 riastrad * give up or else cv_signal would be lost.
438 1.48 riastrad */
439 1.37 riastrad slept = timo2bintime(end - start);
440 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
441 1.48 riastrad bt->sec = 0;
442 1.48 riastrad bt->frac = 0;
443 1.48 riastrad } else {
444 1.48 riastrad /* bt := bt - slept */
445 1.48 riastrad bintime_sub(bt, &slept);
446 1.48 riastrad }
447 1.37 riastrad
448 1.37 riastrad return error;
449 1.37 riastrad }
450 1.37 riastrad
451 1.37 riastrad /*
452 1.2 ad * cv_signal:
453 1.2 ad *
454 1.2 ad * Wake the highest priority LWP waiting on a condition variable.
455 1.2 ad * Must be called with the interlocking mutex held.
456 1.2 ad */
457 1.2 ad void
458 1.2 ad cv_signal(kcondvar_t *cv)
459 1.2 ad {
460 1.20 ad
461 1.20 ad KASSERT(cv_is_valid(cv));
462 1.20 ad
463 1.44 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
464 1.24 ad cv_wakeup_one(cv);
465 1.20 ad }
466 1.20 ad
467 1.42 ad /*
468 1.42 ad * cv_wakeup_one:
469 1.42 ad *
470 1.42 ad * Slow path for cv_signal(). Deliberately marked __noinline to
471 1.42 ad * prevent the compiler pulling it in to cv_signal(), which adds
472 1.42 ad * extra prologue and epilogue code.
473 1.42 ad */
474 1.42 ad static __noinline void
475 1.20 ad cv_wakeup_one(kcondvar_t *cv)
476 1.20 ad {
477 1.2 ad sleepq_t *sq;
478 1.18 ad kmutex_t *mp;
479 1.20 ad lwp_t *l;
480 1.2 ad
481 1.45 ad /*
482 1.45 ad * Keep waking LWPs until a non-interruptable waiter is found. An
483 1.45 ad * interruptable waiter could fail to do something useful with the
484 1.45 ad * wakeup due to an error return from cv_[timed]wait_sig(), and the
485 1.45 ad * caller of cv_signal() may not expect such a scenario.
486 1.45 ad *
487 1.45 ad * This isn't a problem for non-interruptable waits (untimed and
488 1.45 ad * timed), because if such a waiter is woken here it will not return
489 1.45 ad * an error.
490 1.45 ad */
491 1.24 ad mp = sleepq_hashlock(cv);
492 1.20 ad sq = CV_SLEEPQ(cv);
493 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
494 1.45 ad KASSERT(l->l_sleepq == sq);
495 1.45 ad KASSERT(l->l_mutex == mp);
496 1.45 ad KASSERT(l->l_wchan == cv);
497 1.45 ad if ((l->l_flag & LW_SINTR) == 0) {
498 1.45 ad sleepq_remove(sq, l);
499 1.45 ad break;
500 1.45 ad } else
501 1.45 ad sleepq_remove(sq, l);
502 1.20 ad }
503 1.20 ad mutex_spin_exit(mp);
504 1.2 ad }
505 1.2 ad
506 1.2 ad /*
507 1.2 ad * cv_broadcast:
508 1.2 ad *
509 1.2 ad * Wake all LWPs waiting on a condition variable. Must be called
510 1.2 ad * with the interlocking mutex held.
511 1.2 ad */
512 1.2 ad void
513 1.2 ad cv_broadcast(kcondvar_t *cv)
514 1.2 ad {
515 1.20 ad
516 1.20 ad KASSERT(cv_is_valid(cv));
517 1.20 ad
518 1.44 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
519 1.24 ad cv_wakeup_all(cv);
520 1.20 ad }
521 1.20 ad
522 1.42 ad /*
523 1.42 ad * cv_wakeup_all:
524 1.42 ad *
525 1.42 ad * Slow path for cv_broadcast(). Deliberately marked __noinline to
526 1.42 ad * prevent the compiler pulling it in to cv_broadcast(), which adds
527 1.42 ad * extra prologue and epilogue code.
528 1.42 ad */
529 1.42 ad static __noinline void
530 1.20 ad cv_wakeup_all(kcondvar_t *cv)
531 1.20 ad {
532 1.2 ad sleepq_t *sq;
533 1.18 ad kmutex_t *mp;
534 1.45 ad lwp_t *l;
535 1.15 ad
536 1.24 ad mp = sleepq_hashlock(cv);
537 1.20 ad sq = CV_SLEEPQ(cv);
538 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
539 1.20 ad KASSERT(l->l_sleepq == sq);
540 1.20 ad KASSERT(l->l_mutex == mp);
541 1.20 ad KASSERT(l->l_wchan == cv);
542 1.27 rmind sleepq_remove(sq, l);
543 1.20 ad }
544 1.20 ad mutex_spin_exit(mp);
545 1.2 ad }
546 1.2 ad
547 1.2 ad /*
548 1.2 ad * cv_has_waiters:
549 1.2 ad *
550 1.2 ad * For diagnostic assertions: return non-zero if a condition
551 1.2 ad * variable has waiters.
552 1.2 ad */
553 1.7 ad bool
554 1.2 ad cv_has_waiters(kcondvar_t *cv)
555 1.2 ad {
556 1.23 chris
557 1.44 ad return !LIST_EMPTY(CV_SLEEPQ(cv));
558 1.2 ad }
559 1.15 ad
560 1.15 ad /*
561 1.15 ad * cv_is_valid:
562 1.15 ad *
563 1.15 ad * For diagnostic assertions: return non-zero if a condition
564 1.15 ad * variable appears to be valid. No locks need be held.
565 1.15 ad */
566 1.15 ad bool
567 1.15 ad cv_is_valid(kcondvar_t *cv)
568 1.15 ad {
569 1.15 ad
570 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
571 1.15 ad }
572