kern_condvar.c revision 1.6 1 1.6 ad /* $NetBSD: kern_condvar.c,v 1.6 2007/03/29 17:34:39 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.2 ad * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Kernel condition variable implementation, modeled after those found in
41 1.2 ad * Solaris, a description of which can be found in:
42 1.2 ad *
43 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 1.2 ad * Richard McDougall.
45 1.2 ad */
46 1.2 ad
47 1.2 ad #include <sys/cdefs.h>
48 1.6 ad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.6 2007/03/29 17:34:39 ad Exp $");
49 1.2 ad
50 1.2 ad #include <sys/param.h>
51 1.2 ad #include <sys/proc.h>
52 1.2 ad #include <sys/sched.h>
53 1.2 ad #include <sys/systm.h>
54 1.2 ad #include <sys/condvar.h>
55 1.2 ad #include <sys/sleepq.h>
56 1.2 ad
57 1.6 ad static void cv_unsleep(lwp_t *);
58 1.6 ad static void cv_changepri(lwp_t *, pri_t);
59 1.2 ad
60 1.2 ad syncobj_t cv_syncobj = {
61 1.2 ad SOBJ_SLEEPQ_SORTED,
62 1.2 ad cv_unsleep,
63 1.2 ad cv_changepri,
64 1.4 yamt sleepq_lendpri,
65 1.4 yamt syncobj_noowner,
66 1.2 ad };
67 1.2 ad
68 1.2 ad /*
69 1.2 ad * cv_init:
70 1.2 ad *
71 1.2 ad * Initialize a condition variable for use.
72 1.2 ad */
73 1.2 ad void
74 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
75 1.2 ad {
76 1.2 ad
77 1.2 ad KASSERT(wmesg != NULL);
78 1.2 ad
79 1.2 ad cv->cv_wmesg = wmesg;
80 1.2 ad cv->cv_waiters = 0;
81 1.2 ad }
82 1.2 ad
83 1.2 ad /*
84 1.2 ad * cv_destroy:
85 1.2 ad *
86 1.2 ad * Tear down a condition variable.
87 1.2 ad */
88 1.2 ad void
89 1.2 ad cv_destroy(kcondvar_t *cv)
90 1.2 ad {
91 1.2 ad
92 1.2 ad #ifdef DIAGNOSTIC
93 1.2 ad KASSERT(cv->cv_waiters == 0 && cv->cv_wmesg != NULL);
94 1.2 ad cv->cv_wmesg = NULL;
95 1.2 ad #endif
96 1.2 ad }
97 1.2 ad
98 1.2 ad /*
99 1.2 ad * cv_enter:
100 1.2 ad *
101 1.2 ad * Look up and lock the sleep queue corresponding to the given
102 1.2 ad * condition variable, and increment the number of waiters.
103 1.2 ad */
104 1.2 ad static inline sleepq_t *
105 1.6 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
106 1.2 ad {
107 1.2 ad sleepq_t *sq;
108 1.2 ad
109 1.2 ad KASSERT(cv->cv_wmesg != NULL);
110 1.2 ad
111 1.6 ad l->l_cv_signalled = 0;
112 1.2 ad sq = sleeptab_lookup(&sleeptab, cv);
113 1.2 ad cv->cv_waiters++;
114 1.2 ad sleepq_enter(sq, l);
115 1.2 ad mutex_exit(mtx);
116 1.2 ad
117 1.2 ad return sq;
118 1.2 ad }
119 1.2 ad
120 1.2 ad /*
121 1.6 ad * cv_exit:
122 1.6 ad *
123 1.6 ad * After resuming execution, check to see if we have been restarted
124 1.6 ad * as a result of cv_signal(). If we have, but cannot take the
125 1.6 ad * wakeup (because of eg a pending Unix signal or timeout) then try
126 1.6 ad * to ensure that another LWP sees it. This is necessary because
127 1.6 ad * there may be multiple waiters, and at least one should take the
128 1.6 ad * wakeup if possible.
129 1.6 ad */
130 1.6 ad static inline int
131 1.6 ad cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
132 1.6 ad {
133 1.6 ad
134 1.6 ad mutex_enter(mtx);
135 1.6 ad if (__predict_false(error != 0) && l->l_cv_signalled != 0)
136 1.6 ad cv_signal(cv);
137 1.6 ad
138 1.6 ad return error;
139 1.6 ad }
140 1.6 ad
141 1.6 ad /*
142 1.2 ad * cv_unsleep:
143 1.2 ad *
144 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
145 1.2 ad * is called when the LWP has not been awoken normally but instead
146 1.2 ad * interrupted: for example, when a signal is received. Must be
147 1.2 ad * called with the LWP locked, and must return it unlocked.
148 1.2 ad */
149 1.2 ad static void
150 1.6 ad cv_unsleep(lwp_t *l)
151 1.2 ad {
152 1.2 ad uintptr_t addr;
153 1.2 ad
154 1.2 ad KASSERT(l->l_wchan != NULL);
155 1.2 ad LOCK_ASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
156 1.2 ad
157 1.2 ad addr = (uintptr_t)l->l_wchan;
158 1.2 ad ((kcondvar_t *)addr)->cv_waiters--;
159 1.2 ad
160 1.2 ad sleepq_unsleep(l);
161 1.2 ad }
162 1.2 ad
163 1.2 ad /*
164 1.2 ad * cv_changepri:
165 1.2 ad *
166 1.2 ad * Adjust the real (user) priority of an LWP blocked on a CV.
167 1.2 ad */
168 1.2 ad static void
169 1.6 ad cv_changepri(lwp_t *l, pri_t pri)
170 1.2 ad {
171 1.2 ad sleepq_t *sq = l->l_sleepq;
172 1.5 yamt pri_t opri;
173 1.2 ad
174 1.2 ad KASSERT(lwp_locked(l, sq->sq_mutex));
175 1.2 ad
176 1.4 yamt opri = lwp_eprio(l);
177 1.2 ad l->l_usrpri = pri;
178 1.2 ad l->l_priority = sched_kpri(l);
179 1.2 ad
180 1.4 yamt if (lwp_eprio(l) != opri) {
181 1.2 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
182 1.4 yamt sleepq_insert(sq, l, l->l_syncobj);
183 1.2 ad }
184 1.2 ad }
185 1.2 ad
186 1.2 ad /*
187 1.2 ad * cv_wait:
188 1.2 ad *
189 1.2 ad * Wait non-interruptably on a condition variable until awoken.
190 1.2 ad */
191 1.2 ad void
192 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
193 1.2 ad {
194 1.6 ad lwp_t *l = curlwp;
195 1.2 ad sleepq_t *sq;
196 1.2 ad
197 1.2 ad LOCK_ASSERT(mutex_owned(mtx));
198 1.2 ad
199 1.2 ad if (sleepq_dontsleep(l)) {
200 1.2 ad (void)sleepq_abort(mtx, 0);
201 1.2 ad return;
202 1.2 ad }
203 1.2 ad
204 1.2 ad sq = cv_enter(cv, mtx, l);
205 1.3 yamt sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, 0, 0, &cv_syncobj);
206 1.2 ad (void)sleepq_unblock(0, 0);
207 1.6 ad (void)cv_exit(cv, mtx, l, 0);
208 1.2 ad }
209 1.2 ad
210 1.2 ad /*
211 1.2 ad * cv_wait_sig:
212 1.2 ad *
213 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
214 1.2 ad * Will also return early if the process is exiting. Returns zero if
215 1.2 ad * awoken normallly, ERESTART if a signal was received and the system
216 1.2 ad * call is restartable, or EINTR otherwise.
217 1.2 ad */
218 1.2 ad int
219 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
220 1.2 ad {
221 1.6 ad lwp_t *l = curlwp;
222 1.2 ad sleepq_t *sq;
223 1.2 ad int error;
224 1.2 ad
225 1.2 ad LOCK_ASSERT(mutex_owned(mtx));
226 1.2 ad
227 1.2 ad if (sleepq_dontsleep(l))
228 1.2 ad return sleepq_abort(mtx, 0);
229 1.2 ad
230 1.2 ad sq = cv_enter(cv, mtx, l);
231 1.3 yamt sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, 0, 1, &cv_syncobj);
232 1.2 ad error = sleepq_unblock(0, 1);
233 1.6 ad return cv_exit(cv, mtx, l, error);
234 1.2 ad }
235 1.2 ad
236 1.2 ad /*
237 1.2 ad * cv_timedwait:
238 1.2 ad *
239 1.2 ad * Wait on a condition variable until awoken or the specified timeout
240 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
241 1.2 ad * timeout expired.
242 1.2 ad */
243 1.2 ad int
244 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
245 1.2 ad {
246 1.6 ad lwp_t *l = curlwp;
247 1.2 ad sleepq_t *sq;
248 1.2 ad int error;
249 1.2 ad
250 1.2 ad LOCK_ASSERT(mutex_owned(mtx));
251 1.2 ad
252 1.2 ad if (sleepq_dontsleep(l))
253 1.2 ad return sleepq_abort(mtx, 0);
254 1.2 ad
255 1.2 ad sq = cv_enter(cv, mtx, l);
256 1.3 yamt sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, timo, 0, &cv_syncobj);
257 1.2 ad error = sleepq_unblock(timo, 0);
258 1.6 ad return cv_exit(cv, mtx, l, error);
259 1.2 ad }
260 1.2 ad
261 1.2 ad /*
262 1.2 ad * cv_timedwait_sig:
263 1.2 ad *
264 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
265 1.2 ad * signal is received. Will also return early if the process is
266 1.2 ad * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
267 1.2 ad * timeout expires, ERESTART if a signal was received and the system
268 1.2 ad * call is restartable, or EINTR otherwise.
269 1.2 ad */
270 1.2 ad int
271 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
272 1.2 ad {
273 1.6 ad lwp_t *l = curlwp;
274 1.2 ad sleepq_t *sq;
275 1.2 ad int error;
276 1.2 ad
277 1.2 ad LOCK_ASSERT(mutex_owned(mtx));
278 1.2 ad
279 1.2 ad if (sleepq_dontsleep(l))
280 1.2 ad return sleepq_abort(mtx, 0);
281 1.2 ad
282 1.2 ad sq = cv_enter(cv, mtx, l);
283 1.3 yamt sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, timo, 1, &cv_syncobj);
284 1.2 ad error = sleepq_unblock(timo, 1);
285 1.6 ad return cv_exit(cv, mtx, l, error);
286 1.2 ad }
287 1.2 ad
288 1.2 ad /*
289 1.2 ad * cv_signal:
290 1.2 ad *
291 1.2 ad * Wake the highest priority LWP waiting on a condition variable.
292 1.2 ad * Must be called with the interlocking mutex held.
293 1.2 ad */
294 1.2 ad void
295 1.2 ad cv_signal(kcondvar_t *cv)
296 1.2 ad {
297 1.6 ad lwp_t *l;
298 1.2 ad sleepq_t *sq;
299 1.2 ad
300 1.2 ad if (cv->cv_waiters == 0)
301 1.2 ad return;
302 1.2 ad
303 1.2 ad /*
304 1.2 ad * cv->cv_waiters may be stale and have dropped to zero, but
305 1.2 ad * while holding the interlock (the mutex passed to cv_wait()
306 1.2 ad * and similar) we will see non-zero values when it matters.
307 1.2 ad */
308 1.2 ad
309 1.2 ad sq = sleeptab_lookup(&sleeptab, cv);
310 1.2 ad if (cv->cv_waiters != 0) {
311 1.2 ad cv->cv_waiters--;
312 1.6 ad l = sleepq_wake(sq, cv, 1);
313 1.6 ad l->l_cv_signalled = 1;
314 1.2 ad } else
315 1.2 ad sleepq_unlock(sq);
316 1.2 ad }
317 1.2 ad
318 1.2 ad /*
319 1.2 ad * cv_broadcast:
320 1.2 ad *
321 1.2 ad * Wake all LWPs waiting on a condition variable. Must be called
322 1.2 ad * with the interlocking mutex held.
323 1.2 ad */
324 1.2 ad void
325 1.2 ad cv_broadcast(kcondvar_t *cv)
326 1.2 ad {
327 1.2 ad sleepq_t *sq;
328 1.2 ad u_int cnt;
329 1.2 ad
330 1.2 ad if (cv->cv_waiters == 0)
331 1.2 ad return;
332 1.2 ad
333 1.2 ad sq = sleeptab_lookup(&sleeptab, cv);
334 1.2 ad if ((cnt = cv->cv_waiters) != 0) {
335 1.2 ad cv->cv_waiters = 0;
336 1.2 ad sleepq_wake(sq, cv, cnt);
337 1.2 ad } else
338 1.2 ad sleepq_unlock(sq);
339 1.2 ad }
340 1.2 ad
341 1.2 ad /*
342 1.2 ad * cv_has_waiters:
343 1.2 ad *
344 1.2 ad * For diagnostic assertions: return non-zero if a condition
345 1.2 ad * variable has waiters.
346 1.2 ad */
347 1.2 ad int
348 1.2 ad cv_has_waiters(kcondvar_t *cv)
349 1.2 ad {
350 1.2 ad
351 1.2 ad /* No need to interlock here */
352 1.2 ad return (int)cv->cv_waiters;
353 1.2 ad }
354