kern_condvar.c revision 1.61 1 1.61 riastrad /* $NetBSD: kern_condvar.c,v 1.61 2023/10/15 10:27:11 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.56 ad * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
5 1.56 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.24 ad * Kernel condition variable implementation.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.61 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.61 2023/10/15 10:27:11 riastradh Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/systm.h>
42 1.35 uebayasi #include <sys/lwp.h>
43 1.2 ad #include <sys/condvar.h>
44 1.2 ad #include <sys/sleepq.h>
45 1.20 ad #include <sys/lockdebug.h>
46 1.24 ad #include <sys/cpu.h>
47 1.37 riastrad #include <sys/kernel.h>
48 1.61 riastrad #include <sys/syncobj.h>
49 1.20 ad
50 1.26 thorpej /*
51 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
52 1.26 thorpej *
53 1.44 ad * cv_opaque[0] sleepq_t
54 1.44 ad * cv_opaque[1] description for ps(1)
55 1.26 thorpej *
56 1.44 ad * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
57 1.43 ad * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
58 1.26 thorpej * and dequeue).
59 1.26 thorpej *
60 1.44 ad * cv_opaque[1] (the wmesg) is static and does not change throughout the life
61 1.26 thorpej * of the CV.
62 1.26 thorpej */
63 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
64 1.44 ad #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
65 1.44 ad #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
66 1.26 thorpej
67 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
68 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
69 1.2 ad
70 1.36 chs static void cv_unsleep(lwp_t *, bool);
71 1.36 chs static inline void cv_wakeup_one(kcondvar_t *);
72 1.36 chs static inline void cv_wakeup_all(kcondvar_t *);
73 1.2 ad
74 1.43 ad syncobj_t cv_syncobj = {
75 1.55 riastrad .sobj_name = "cv",
76 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
77 1.56 ad .sobj_boostpri = PRI_KERNEL,
78 1.41 ozaki .sobj_unsleep = cv_unsleep,
79 1.41 ozaki .sobj_changepri = sleepq_changepri,
80 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
81 1.41 ozaki .sobj_owner = syncobj_noowner,
82 1.2 ad };
83 1.2 ad
84 1.10 ad static const char deadcv[] = "deadcv";
85 1.10 ad
86 1.2 ad /*
87 1.2 ad * cv_init:
88 1.2 ad *
89 1.2 ad * Initialize a condition variable for use.
90 1.2 ad */
91 1.2 ad void
92 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
93 1.2 ad {
94 1.2 ad
95 1.21 ad KASSERT(wmesg != NULL);
96 1.26 thorpej CV_SET_WMESG(cv, wmesg);
97 1.20 ad sleepq_init(CV_SLEEPQ(cv));
98 1.2 ad }
99 1.2 ad
100 1.2 ad /*
101 1.2 ad * cv_destroy:
102 1.2 ad *
103 1.2 ad * Tear down a condition variable.
104 1.2 ad */
105 1.2 ad void
106 1.2 ad cv_destroy(kcondvar_t *cv)
107 1.2 ad {
108 1.2 ad
109 1.53 christos sleepq_destroy(CV_SLEEPQ(cv));
110 1.2 ad #ifdef DIAGNOSTIC
111 1.15 ad KASSERT(cv_is_valid(cv));
112 1.45 ad KASSERT(!cv_has_waiters(cv));
113 1.26 thorpej CV_SET_WMESG(cv, deadcv);
114 1.2 ad #endif
115 1.2 ad }
116 1.2 ad
117 1.2 ad /*
118 1.2 ad * cv_enter:
119 1.2 ad *
120 1.2 ad * Look up and lock the sleep queue corresponding to the given
121 1.2 ad * condition variable, and increment the number of waiters.
122 1.2 ad */
123 1.57 ad static inline int
124 1.47 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
125 1.2 ad {
126 1.2 ad sleepq_t *sq;
127 1.18 ad kmutex_t *mp;
128 1.57 ad int nlocks;
129 1.2 ad
130 1.15 ad KASSERT(cv_is_valid(cv));
131 1.24 ad KASSERT(!cpu_intr_p());
132 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
133 1.2 ad
134 1.24 ad mp = sleepq_hashlock(cv);
135 1.20 ad sq = CV_SLEEPQ(cv);
136 1.57 ad nlocks = sleepq_enter(sq, l, mp);
137 1.47 ad sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
138 1.2 ad mutex_exit(mtx);
139 1.24 ad KASSERT(cv_has_waiters(cv));
140 1.57 ad return nlocks;
141 1.2 ad }
142 1.2 ad
143 1.2 ad /*
144 1.2 ad * cv_unsleep:
145 1.2 ad *
146 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
147 1.2 ad * is called when the LWP has not been awoken normally but instead
148 1.2 ad * interrupted: for example, when a signal is received. Must be
149 1.42 ad * called with the LWP locked. Will unlock if "unlock" is true.
150 1.2 ad */
151 1.27 rmind static void
152 1.42 ad cv_unsleep(lwp_t *l, bool unlock)
153 1.2 ad {
154 1.34 martin kcondvar_t *cv __diagused;
155 1.2 ad
156 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
157 1.15 ad
158 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
159 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
160 1.15 ad KASSERT(cv_is_valid(cv));
161 1.24 ad KASSERT(cv_has_waiters(cv));
162 1.2 ad
163 1.42 ad sleepq_unsleep(l, unlock);
164 1.2 ad }
165 1.2 ad
166 1.2 ad /*
167 1.2 ad * cv_wait:
168 1.2 ad *
169 1.2 ad * Wait non-interruptably on a condition variable until awoken.
170 1.2 ad */
171 1.2 ad void
172 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
173 1.2 ad {
174 1.6 ad lwp_t *l = curlwp;
175 1.57 ad int nlocks;
176 1.2 ad
177 1.8 yamt KASSERT(mutex_owned(mtx));
178 1.2 ad
179 1.57 ad nlocks = cv_enter(cv, mtx, l, false);
180 1.57 ad (void)sleepq_block(0, false, &cv_syncobj, nlocks);
181 1.36 chs mutex_enter(mtx);
182 1.2 ad }
183 1.2 ad
184 1.2 ad /*
185 1.2 ad * cv_wait_sig:
186 1.2 ad *
187 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
188 1.2 ad * Will also return early if the process is exiting. Returns zero if
189 1.29 jym * awoken normally, ERESTART if a signal was received and the system
190 1.2 ad * call is restartable, or EINTR otherwise.
191 1.2 ad */
192 1.2 ad int
193 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
194 1.2 ad {
195 1.6 ad lwp_t *l = curlwp;
196 1.57 ad int error, nlocks;
197 1.2 ad
198 1.8 yamt KASSERT(mutex_owned(mtx));
199 1.2 ad
200 1.57 ad nlocks = cv_enter(cv, mtx, l, true);
201 1.57 ad error = sleepq_block(0, true, &cv_syncobj, nlocks);
202 1.45 ad mutex_enter(mtx);
203 1.45 ad return error;
204 1.2 ad }
205 1.2 ad
206 1.2 ad /*
207 1.2 ad * cv_timedwait:
208 1.2 ad *
209 1.2 ad * Wait on a condition variable until awoken or the specified timeout
210 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
211 1.2 ad * timeout expired.
212 1.31 apb *
213 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
214 1.2 ad */
215 1.2 ad int
216 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
217 1.2 ad {
218 1.6 ad lwp_t *l = curlwp;
219 1.57 ad int error, nlocks;
220 1.2 ad
221 1.8 yamt KASSERT(mutex_owned(mtx));
222 1.2 ad
223 1.57 ad nlocks = cv_enter(cv, mtx, l, false);
224 1.57 ad error = sleepq_block(timo, false, &cv_syncobj, nlocks);
225 1.45 ad mutex_enter(mtx);
226 1.45 ad return error;
227 1.2 ad }
228 1.2 ad
229 1.2 ad /*
230 1.2 ad * cv_timedwait_sig:
231 1.2 ad *
232 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
233 1.2 ad * signal is received. Will also return early if the process is
234 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
235 1.2 ad * timeout expires, ERESTART if a signal was received and the system
236 1.2 ad * call is restartable, or EINTR otherwise.
237 1.32 apb *
238 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
239 1.2 ad */
240 1.2 ad int
241 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
242 1.2 ad {
243 1.6 ad lwp_t *l = curlwp;
244 1.57 ad int error, nlocks;
245 1.2 ad
246 1.8 yamt KASSERT(mutex_owned(mtx));
247 1.2 ad
248 1.57 ad nlocks = cv_enter(cv, mtx, l, true);
249 1.57 ad error = sleepq_block(timo, true, &cv_syncobj, nlocks);
250 1.45 ad mutex_enter(mtx);
251 1.45 ad return error;
252 1.2 ad }
253 1.2 ad
254 1.49 riastrad /*
255 1.37 riastrad * Given a number of seconds, sec, and 2^64ths of a second, frac, we
256 1.37 riastrad * want a number of ticks for a timeout:
257 1.37 riastrad *
258 1.37 riastrad * timo = hz*(sec + frac/2^64)
259 1.37 riastrad * = hz*sec + hz*frac/2^64
260 1.37 riastrad * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
261 1.37 riastrad * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
262 1.37 riastrad *
263 1.37 riastrad * where frachi is the high 32 bits of frac and fraclo is the
264 1.37 riastrad * low 32 bits.
265 1.37 riastrad *
266 1.37 riastrad * We assume hz < INT_MAX/2 < UINT32_MAX, so
267 1.37 riastrad *
268 1.37 riastrad * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
269 1.37 riastrad *
270 1.37 riastrad * since fraclo < 2^32.
271 1.37 riastrad *
272 1.37 riastrad * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
273 1.37 riastrad * can't represent timeouts higher than INT_MAX in cv_timedwait, and
274 1.37 riastrad * spurious wakeup is OK. Moreover, we don't want to wrap around,
275 1.37 riastrad * because we compute end - start in ticks in order to compute the
276 1.37 riastrad * remaining timeout, and that difference cannot wrap around, so we use
277 1.37 riastrad * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
278 1.37 riastrad * margin for paranoia and will exceed most waits in practice by far.
279 1.37 riastrad */
280 1.37 riastrad static unsigned
281 1.37 riastrad bintime2timo(const struct bintime *bt)
282 1.37 riastrad {
283 1.37 riastrad
284 1.37 riastrad KASSERT(hz < INT_MAX/2);
285 1.37 riastrad CTASSERT(INT_MAX/2 < UINT32_MAX);
286 1.37 riastrad if (bt->sec > ((INT_MAX/2)/hz))
287 1.37 riastrad return INT_MAX/2;
288 1.37 riastrad if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
289 1.37 riastrad return INT_MAX/2;
290 1.37 riastrad
291 1.37 riastrad return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
292 1.37 riastrad }
293 1.37 riastrad
294 1.37 riastrad /*
295 1.37 riastrad * timo is in units of ticks. We want units of seconds and 2^64ths of
296 1.37 riastrad * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
297 1.37 riastrad * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
298 1.37 riastrad * second)/tick. So for the fractional part, we compute
299 1.37 riastrad *
300 1.37 riastrad * frac = rem * 2^64 / hz
301 1.37 riastrad * = ((rem * 2^32) / hz) * 2^32
302 1.37 riastrad *
303 1.37 riastrad * Using truncating integer division instead of real division will
304 1.37 riastrad * leave us with only about 32 bits of precision, which means about
305 1.37 riastrad * 1/4-nanosecond resolution, which is good enough for our purposes.
306 1.37 riastrad */
307 1.37 riastrad static struct bintime
308 1.37 riastrad timo2bintime(unsigned timo)
309 1.37 riastrad {
310 1.37 riastrad
311 1.37 riastrad return (struct bintime) {
312 1.37 riastrad .sec = timo / hz,
313 1.37 riastrad .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
314 1.37 riastrad };
315 1.37 riastrad }
316 1.37 riastrad
317 1.37 riastrad /*
318 1.37 riastrad * cv_timedwaitbt:
319 1.37 riastrad *
320 1.37 riastrad * Wait on a condition variable until awoken or the specified
321 1.37 riastrad * timeout expires. Returns zero if awoken normally or
322 1.37 riastrad * EWOULDBLOCK if the timeout expires.
323 1.37 riastrad *
324 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
325 1.37 riastrad * the time slept, so on exit, bt is the time remaining after
326 1.38 riastrad * sleeping, possibly negative if the complete time has elapsed.
327 1.38 riastrad * No infinite timeout; use cv_wait_sig instead.
328 1.37 riastrad *
329 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
330 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
331 1.37 riastrad * future to choose between low- and high-resolution timers.
332 1.38 riastrad * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
333 1.38 riastrad * where r is the finest resolution of clock available and s is
334 1.38 riastrad * scheduling delays for scheduler overhead and competing threads.
335 1.38 riastrad * Time is measured by the interrupt source implementing the
336 1.38 riastrad * timeout, not by another timecounter.
337 1.37 riastrad */
338 1.37 riastrad int
339 1.37 riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
340 1.38 riastrad const struct bintime *epsilon __diagused)
341 1.37 riastrad {
342 1.37 riastrad struct bintime slept;
343 1.37 riastrad unsigned start, end;
344 1.48 riastrad int timo;
345 1.37 riastrad int error;
346 1.37 riastrad
347 1.38 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
348 1.38 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
349 1.38 riastrad
350 1.48 riastrad /* If there's nothing left to wait, time out. */
351 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
352 1.48 riastrad return EWOULDBLOCK;
353 1.48 riastrad
354 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
355 1.48 riastrad timo = bintime2timo(bt);
356 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
357 1.48 riastrad if (timo == 0)
358 1.48 riastrad timo = 1;
359 1.48 riastrad
360 1.37 riastrad /*
361 1.46 maxv * getticks() is technically int, but nothing special
362 1.37 riastrad * happens instead of overflow, so we assume two's-complement
363 1.37 riastrad * wraparound and just treat it as unsigned.
364 1.37 riastrad */
365 1.46 maxv start = getticks();
366 1.48 riastrad error = cv_timedwait(cv, mtx, timo);
367 1.46 maxv end = getticks();
368 1.37 riastrad
369 1.48 riastrad /*
370 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
371 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
372 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
373 1.48 riastrad * give up or else cv_signal would be lost.
374 1.48 riastrad */
375 1.37 riastrad slept = timo2bintime(end - start);
376 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
377 1.48 riastrad bt->sec = 0;
378 1.48 riastrad bt->frac = 0;
379 1.48 riastrad } else {
380 1.48 riastrad /* bt := bt - slept */
381 1.48 riastrad bintime_sub(bt, &slept);
382 1.48 riastrad }
383 1.37 riastrad
384 1.37 riastrad return error;
385 1.37 riastrad }
386 1.37 riastrad
387 1.37 riastrad /*
388 1.37 riastrad * cv_timedwaitbt_sig:
389 1.37 riastrad *
390 1.37 riastrad * Wait on a condition variable until awoken, the specified
391 1.37 riastrad * timeout expires, or interrupted by a signal. Returns zero if
392 1.37 riastrad * awoken normally, EWOULDBLOCK if the timeout expires, or
393 1.37 riastrad * EINTR/ERESTART if interrupted by a signal.
394 1.37 riastrad *
395 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
396 1.37 riastrad * subtracts the time slept, so on exit, bt is the time remaining
397 1.37 riastrad * after sleeping. No infinite timeout; use cv_wait instead.
398 1.37 riastrad *
399 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
400 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
401 1.37 riastrad * future to choose between low- and high-resolution timers.
402 1.37 riastrad */
403 1.37 riastrad int
404 1.37 riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
405 1.39 riastrad const struct bintime *epsilon __diagused)
406 1.37 riastrad {
407 1.37 riastrad struct bintime slept;
408 1.37 riastrad unsigned start, end;
409 1.48 riastrad int timo;
410 1.37 riastrad int error;
411 1.37 riastrad
412 1.39 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
413 1.39 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
414 1.39 riastrad
415 1.48 riastrad /* If there's nothing left to wait, time out. */
416 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
417 1.48 riastrad return EWOULDBLOCK;
418 1.48 riastrad
419 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
420 1.48 riastrad timo = bintime2timo(bt);
421 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
422 1.48 riastrad if (timo == 0)
423 1.48 riastrad timo = 1;
424 1.48 riastrad
425 1.37 riastrad /*
426 1.46 maxv * getticks() is technically int, but nothing special
427 1.37 riastrad * happens instead of overflow, so we assume two's-complement
428 1.37 riastrad * wraparound and just treat it as unsigned.
429 1.37 riastrad */
430 1.46 maxv start = getticks();
431 1.48 riastrad error = cv_timedwait_sig(cv, mtx, timo);
432 1.46 maxv end = getticks();
433 1.37 riastrad
434 1.48 riastrad /*
435 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
436 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
437 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
438 1.48 riastrad * give up or else cv_signal would be lost.
439 1.48 riastrad */
440 1.37 riastrad slept = timo2bintime(end - start);
441 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
442 1.48 riastrad bt->sec = 0;
443 1.48 riastrad bt->frac = 0;
444 1.48 riastrad } else {
445 1.48 riastrad /* bt := bt - slept */
446 1.48 riastrad bintime_sub(bt, &slept);
447 1.48 riastrad }
448 1.37 riastrad
449 1.37 riastrad return error;
450 1.37 riastrad }
451 1.37 riastrad
452 1.37 riastrad /*
453 1.2 ad * cv_signal:
454 1.2 ad *
455 1.59 ad * Wake the highest priority LWP waiting on a condition variable. Must
456 1.59 ad * be called with the interlocking mutex held or just after it has been
457 1.59 ad * released (so the awoken LWP will see the changed condition).
458 1.2 ad */
459 1.2 ad void
460 1.2 ad cv_signal(kcondvar_t *cv)
461 1.2 ad {
462 1.20 ad
463 1.20 ad KASSERT(cv_is_valid(cv));
464 1.20 ad
465 1.59 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
466 1.59 ad /*
467 1.59 ad * Compiler turns into a tail call usually, i.e. jmp,
468 1.59 ad * because the arguments are the same and no locals.
469 1.59 ad */
470 1.24 ad cv_wakeup_one(cv);
471 1.59 ad }
472 1.20 ad }
473 1.20 ad
474 1.42 ad /*
475 1.42 ad * cv_wakeup_one:
476 1.42 ad *
477 1.42 ad * Slow path for cv_signal(). Deliberately marked __noinline to
478 1.42 ad * prevent the compiler pulling it in to cv_signal(), which adds
479 1.42 ad * extra prologue and epilogue code.
480 1.42 ad */
481 1.42 ad static __noinline void
482 1.20 ad cv_wakeup_one(kcondvar_t *cv)
483 1.20 ad {
484 1.2 ad sleepq_t *sq;
485 1.18 ad kmutex_t *mp;
486 1.20 ad lwp_t *l;
487 1.2 ad
488 1.24 ad mp = sleepq_hashlock(cv);
489 1.20 ad sq = CV_SLEEPQ(cv);
490 1.58 ad if (__predict_true((l = LIST_FIRST(sq)) != NULL)) {
491 1.45 ad KASSERT(l->l_sleepq == sq);
492 1.45 ad KASSERT(l->l_mutex == mp);
493 1.45 ad KASSERT(l->l_wchan == cv);
494 1.58 ad sleepq_remove(sq, l, true);
495 1.20 ad }
496 1.20 ad mutex_spin_exit(mp);
497 1.2 ad }
498 1.2 ad
499 1.2 ad /*
500 1.2 ad * cv_broadcast:
501 1.2 ad *
502 1.59 ad * Wake all LWPs waiting on a condition variable. Must be called with
503 1.59 ad * the interlocking mutex held or just after it has been released (so
504 1.59 ad * the awoken LWP will see the changed condition).
505 1.2 ad */
506 1.2 ad void
507 1.2 ad cv_broadcast(kcondvar_t *cv)
508 1.2 ad {
509 1.20 ad
510 1.20 ad KASSERT(cv_is_valid(cv));
511 1.20 ad
512 1.59 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
513 1.59 ad /*
514 1.59 ad * Compiler turns into a tail call usually, i.e. jmp,
515 1.59 ad * because the arguments are the same and no locals.
516 1.59 ad */
517 1.24 ad cv_wakeup_all(cv);
518 1.59 ad }
519 1.20 ad }
520 1.20 ad
521 1.42 ad /*
522 1.42 ad * cv_wakeup_all:
523 1.42 ad *
524 1.42 ad * Slow path for cv_broadcast(). Deliberately marked __noinline to
525 1.42 ad * prevent the compiler pulling it in to cv_broadcast(), which adds
526 1.42 ad * extra prologue and epilogue code.
527 1.42 ad */
528 1.42 ad static __noinline void
529 1.20 ad cv_wakeup_all(kcondvar_t *cv)
530 1.20 ad {
531 1.2 ad sleepq_t *sq;
532 1.18 ad kmutex_t *mp;
533 1.45 ad lwp_t *l;
534 1.15 ad
535 1.24 ad mp = sleepq_hashlock(cv);
536 1.20 ad sq = CV_SLEEPQ(cv);
537 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
538 1.20 ad KASSERT(l->l_sleepq == sq);
539 1.20 ad KASSERT(l->l_mutex == mp);
540 1.20 ad KASSERT(l->l_wchan == cv);
541 1.58 ad sleepq_remove(sq, l, true);
542 1.20 ad }
543 1.20 ad mutex_spin_exit(mp);
544 1.2 ad }
545 1.2 ad
546 1.2 ad /*
547 1.60 ad * cv_fdrestart:
548 1.60 ad *
549 1.60 ad * Like cv_broadcast(), but make any LWPs that share the same file
550 1.60 ad * descriptor table as the caller return ERESTART when resuming. Used
551 1.60 ad * to dislodge LWPs waiting for I/O that prevent a file descriptor from
552 1.60 ad * being closed, without upsetting access to the file (not descriptor)
553 1.60 ad * made from another direction. Rarely used thus no fast path
554 1.60 ad * provided.
555 1.60 ad */
556 1.60 ad void
557 1.60 ad cv_fdrestart(kcondvar_t *cv)
558 1.60 ad {
559 1.60 ad sleepq_t *sq;
560 1.60 ad kmutex_t *mp;
561 1.60 ad lwp_t *l;
562 1.60 ad
563 1.60 ad KASSERT(cv_is_valid(cv));
564 1.60 ad
565 1.60 ad if (LIST_EMPTY(CV_SLEEPQ(cv)))
566 1.60 ad return;
567 1.60 ad
568 1.60 ad mp = sleepq_hashlock(cv);
569 1.60 ad sq = CV_SLEEPQ(cv);
570 1.60 ad while ((l = LIST_FIRST(sq)) != NULL) {
571 1.60 ad KASSERT(l->l_sleepq == sq);
572 1.60 ad KASSERT(l->l_mutex == mp);
573 1.60 ad KASSERT(l->l_wchan == cv);
574 1.60 ad /* l_fd stable at this point so no special locking needed. */
575 1.60 ad if (l->l_fd == curlwp->l_fd) {
576 1.60 ad l->l_flag |= LW_RESTART;
577 1.60 ad sleepq_remove(sq, l, false);
578 1.60 ad }
579 1.60 ad }
580 1.60 ad mutex_spin_exit(mp);
581 1.60 ad }
582 1.60 ad
583 1.60 ad /*
584 1.2 ad * cv_has_waiters:
585 1.2 ad *
586 1.2 ad * For diagnostic assertions: return non-zero if a condition
587 1.2 ad * variable has waiters.
588 1.2 ad */
589 1.7 ad bool
590 1.2 ad cv_has_waiters(kcondvar_t *cv)
591 1.2 ad {
592 1.23 chris
593 1.44 ad return !LIST_EMPTY(CV_SLEEPQ(cv));
594 1.2 ad }
595 1.15 ad
596 1.15 ad /*
597 1.15 ad * cv_is_valid:
598 1.15 ad *
599 1.15 ad * For diagnostic assertions: return non-zero if a condition
600 1.15 ad * variable appears to be valid. No locks need be held.
601 1.15 ad */
602 1.15 ad bool
603 1.15 ad cv_is_valid(kcondvar_t *cv)
604 1.15 ad {
605 1.15 ad
606 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
607 1.15 ad }
608