kern_condvar.c revision 1.62 1 1.62 riastrad /* $NetBSD: kern_condvar.c,v 1.62 2023/10/15 10:28:00 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.56 ad * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
5 1.56 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.24 ad * Kernel condition variable implementation.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.62 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.62 2023/10/15 10:28:00 riastradh Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.62 riastrad
42 1.2 ad #include <sys/condvar.h>
43 1.24 ad #include <sys/cpu.h>
44 1.37 riastrad #include <sys/kernel.h>
45 1.62 riastrad #include <sys/lockdebug.h>
46 1.62 riastrad #include <sys/lwp.h>
47 1.62 riastrad #include <sys/sleepq.h>
48 1.61 riastrad #include <sys/syncobj.h>
49 1.62 riastrad #include <sys/systm.h>
50 1.20 ad
51 1.26 thorpej /*
52 1.26 thorpej * Accessors for the private contents of the kcondvar_t data type.
53 1.26 thorpej *
54 1.44 ad * cv_opaque[0] sleepq_t
55 1.44 ad * cv_opaque[1] description for ps(1)
56 1.26 thorpej *
57 1.44 ad * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
58 1.43 ad * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
59 1.26 thorpej * and dequeue).
60 1.26 thorpej *
61 1.44 ad * cv_opaque[1] (the wmesg) is static and does not change throughout the life
62 1.26 thorpej * of the CV.
63 1.26 thorpej */
64 1.26 thorpej #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
65 1.44 ad #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
66 1.44 ad #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
67 1.26 thorpej
68 1.26 thorpej #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
69 1.20 ad #define CV_RA ((uintptr_t)__builtin_return_address(0))
70 1.2 ad
71 1.36 chs static void cv_unsleep(lwp_t *, bool);
72 1.36 chs static inline void cv_wakeup_one(kcondvar_t *);
73 1.36 chs static inline void cv_wakeup_all(kcondvar_t *);
74 1.2 ad
75 1.43 ad syncobj_t cv_syncobj = {
76 1.55 riastrad .sobj_name = "cv",
77 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
78 1.56 ad .sobj_boostpri = PRI_KERNEL,
79 1.41 ozaki .sobj_unsleep = cv_unsleep,
80 1.41 ozaki .sobj_changepri = sleepq_changepri,
81 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
82 1.41 ozaki .sobj_owner = syncobj_noowner,
83 1.2 ad };
84 1.2 ad
85 1.10 ad static const char deadcv[] = "deadcv";
86 1.10 ad
87 1.2 ad /*
88 1.2 ad * cv_init:
89 1.2 ad *
90 1.2 ad * Initialize a condition variable for use.
91 1.2 ad */
92 1.2 ad void
93 1.2 ad cv_init(kcondvar_t *cv, const char *wmesg)
94 1.2 ad {
95 1.2 ad
96 1.21 ad KASSERT(wmesg != NULL);
97 1.26 thorpej CV_SET_WMESG(cv, wmesg);
98 1.20 ad sleepq_init(CV_SLEEPQ(cv));
99 1.2 ad }
100 1.2 ad
101 1.2 ad /*
102 1.2 ad * cv_destroy:
103 1.2 ad *
104 1.2 ad * Tear down a condition variable.
105 1.2 ad */
106 1.2 ad void
107 1.2 ad cv_destroy(kcondvar_t *cv)
108 1.2 ad {
109 1.2 ad
110 1.53 christos sleepq_destroy(CV_SLEEPQ(cv));
111 1.2 ad #ifdef DIAGNOSTIC
112 1.15 ad KASSERT(cv_is_valid(cv));
113 1.45 ad KASSERT(!cv_has_waiters(cv));
114 1.26 thorpej CV_SET_WMESG(cv, deadcv);
115 1.2 ad #endif
116 1.2 ad }
117 1.2 ad
118 1.2 ad /*
119 1.2 ad * cv_enter:
120 1.2 ad *
121 1.2 ad * Look up and lock the sleep queue corresponding to the given
122 1.2 ad * condition variable, and increment the number of waiters.
123 1.2 ad */
124 1.57 ad static inline int
125 1.47 ad cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
126 1.2 ad {
127 1.2 ad sleepq_t *sq;
128 1.18 ad kmutex_t *mp;
129 1.57 ad int nlocks;
130 1.2 ad
131 1.15 ad KASSERT(cv_is_valid(cv));
132 1.24 ad KASSERT(!cpu_intr_p());
133 1.14 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
134 1.2 ad
135 1.24 ad mp = sleepq_hashlock(cv);
136 1.20 ad sq = CV_SLEEPQ(cv);
137 1.57 ad nlocks = sleepq_enter(sq, l, mp);
138 1.47 ad sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
139 1.2 ad mutex_exit(mtx);
140 1.24 ad KASSERT(cv_has_waiters(cv));
141 1.57 ad return nlocks;
142 1.2 ad }
143 1.2 ad
144 1.2 ad /*
145 1.2 ad * cv_unsleep:
146 1.2 ad *
147 1.2 ad * Remove an LWP from the condition variable and sleep queue. This
148 1.2 ad * is called when the LWP has not been awoken normally but instead
149 1.2 ad * interrupted: for example, when a signal is received. Must be
150 1.42 ad * called with the LWP locked. Will unlock if "unlock" is true.
151 1.2 ad */
152 1.27 rmind static void
153 1.42 ad cv_unsleep(lwp_t *l, bool unlock)
154 1.2 ad {
155 1.34 martin kcondvar_t *cv __diagused;
156 1.2 ad
157 1.15 ad cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
158 1.15 ad
159 1.20 ad KASSERT(l->l_wchan == (wchan_t)cv);
160 1.20 ad KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
161 1.15 ad KASSERT(cv_is_valid(cv));
162 1.24 ad KASSERT(cv_has_waiters(cv));
163 1.2 ad
164 1.42 ad sleepq_unsleep(l, unlock);
165 1.2 ad }
166 1.2 ad
167 1.2 ad /*
168 1.2 ad * cv_wait:
169 1.2 ad *
170 1.2 ad * Wait non-interruptably on a condition variable until awoken.
171 1.2 ad */
172 1.2 ad void
173 1.2 ad cv_wait(kcondvar_t *cv, kmutex_t *mtx)
174 1.2 ad {
175 1.6 ad lwp_t *l = curlwp;
176 1.57 ad int nlocks;
177 1.2 ad
178 1.8 yamt KASSERT(mutex_owned(mtx));
179 1.2 ad
180 1.57 ad nlocks = cv_enter(cv, mtx, l, false);
181 1.57 ad (void)sleepq_block(0, false, &cv_syncobj, nlocks);
182 1.36 chs mutex_enter(mtx);
183 1.2 ad }
184 1.2 ad
185 1.2 ad /*
186 1.2 ad * cv_wait_sig:
187 1.2 ad *
188 1.2 ad * Wait on a condition variable until a awoken or a signal is received.
189 1.2 ad * Will also return early if the process is exiting. Returns zero if
190 1.29 jym * awoken normally, ERESTART if a signal was received and the system
191 1.2 ad * call is restartable, or EINTR otherwise.
192 1.2 ad */
193 1.2 ad int
194 1.2 ad cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
195 1.2 ad {
196 1.6 ad lwp_t *l = curlwp;
197 1.57 ad int error, nlocks;
198 1.2 ad
199 1.8 yamt KASSERT(mutex_owned(mtx));
200 1.2 ad
201 1.57 ad nlocks = cv_enter(cv, mtx, l, true);
202 1.57 ad error = sleepq_block(0, true, &cv_syncobj, nlocks);
203 1.45 ad mutex_enter(mtx);
204 1.45 ad return error;
205 1.2 ad }
206 1.2 ad
207 1.2 ad /*
208 1.2 ad * cv_timedwait:
209 1.2 ad *
210 1.2 ad * Wait on a condition variable until awoken or the specified timeout
211 1.2 ad * expires. Returns zero if awoken normally or EWOULDBLOCK if the
212 1.2 ad * timeout expired.
213 1.31 apb *
214 1.31 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
215 1.2 ad */
216 1.2 ad int
217 1.2 ad cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
218 1.2 ad {
219 1.6 ad lwp_t *l = curlwp;
220 1.57 ad int error, nlocks;
221 1.2 ad
222 1.8 yamt KASSERT(mutex_owned(mtx));
223 1.2 ad
224 1.57 ad nlocks = cv_enter(cv, mtx, l, false);
225 1.57 ad error = sleepq_block(timo, false, &cv_syncobj, nlocks);
226 1.45 ad mutex_enter(mtx);
227 1.45 ad return error;
228 1.2 ad }
229 1.2 ad
230 1.2 ad /*
231 1.2 ad * cv_timedwait_sig:
232 1.2 ad *
233 1.2 ad * Wait on a condition variable until a timeout expires, awoken or a
234 1.2 ad * signal is received. Will also return early if the process is
235 1.29 jym * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
236 1.2 ad * timeout expires, ERESTART if a signal was received and the system
237 1.2 ad * call is restartable, or EINTR otherwise.
238 1.32 apb *
239 1.32 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
240 1.2 ad */
241 1.2 ad int
242 1.2 ad cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
243 1.2 ad {
244 1.6 ad lwp_t *l = curlwp;
245 1.57 ad int error, nlocks;
246 1.2 ad
247 1.8 yamt KASSERT(mutex_owned(mtx));
248 1.2 ad
249 1.57 ad nlocks = cv_enter(cv, mtx, l, true);
250 1.57 ad error = sleepq_block(timo, true, &cv_syncobj, nlocks);
251 1.45 ad mutex_enter(mtx);
252 1.45 ad return error;
253 1.2 ad }
254 1.2 ad
255 1.49 riastrad /*
256 1.37 riastrad * Given a number of seconds, sec, and 2^64ths of a second, frac, we
257 1.37 riastrad * want a number of ticks for a timeout:
258 1.37 riastrad *
259 1.37 riastrad * timo = hz*(sec + frac/2^64)
260 1.37 riastrad * = hz*sec + hz*frac/2^64
261 1.37 riastrad * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
262 1.37 riastrad * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
263 1.37 riastrad *
264 1.37 riastrad * where frachi is the high 32 bits of frac and fraclo is the
265 1.37 riastrad * low 32 bits.
266 1.37 riastrad *
267 1.37 riastrad * We assume hz < INT_MAX/2 < UINT32_MAX, so
268 1.37 riastrad *
269 1.37 riastrad * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
270 1.37 riastrad *
271 1.37 riastrad * since fraclo < 2^32.
272 1.37 riastrad *
273 1.37 riastrad * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
274 1.37 riastrad * can't represent timeouts higher than INT_MAX in cv_timedwait, and
275 1.37 riastrad * spurious wakeup is OK. Moreover, we don't want to wrap around,
276 1.37 riastrad * because we compute end - start in ticks in order to compute the
277 1.37 riastrad * remaining timeout, and that difference cannot wrap around, so we use
278 1.37 riastrad * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
279 1.37 riastrad * margin for paranoia and will exceed most waits in practice by far.
280 1.37 riastrad */
281 1.37 riastrad static unsigned
282 1.37 riastrad bintime2timo(const struct bintime *bt)
283 1.37 riastrad {
284 1.37 riastrad
285 1.37 riastrad KASSERT(hz < INT_MAX/2);
286 1.37 riastrad CTASSERT(INT_MAX/2 < UINT32_MAX);
287 1.37 riastrad if (bt->sec > ((INT_MAX/2)/hz))
288 1.37 riastrad return INT_MAX/2;
289 1.37 riastrad if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
290 1.37 riastrad return INT_MAX/2;
291 1.37 riastrad
292 1.37 riastrad return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
293 1.37 riastrad }
294 1.37 riastrad
295 1.37 riastrad /*
296 1.37 riastrad * timo is in units of ticks. We want units of seconds and 2^64ths of
297 1.37 riastrad * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
298 1.37 riastrad * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
299 1.37 riastrad * second)/tick. So for the fractional part, we compute
300 1.37 riastrad *
301 1.37 riastrad * frac = rem * 2^64 / hz
302 1.37 riastrad * = ((rem * 2^32) / hz) * 2^32
303 1.37 riastrad *
304 1.37 riastrad * Using truncating integer division instead of real division will
305 1.37 riastrad * leave us with only about 32 bits of precision, which means about
306 1.37 riastrad * 1/4-nanosecond resolution, which is good enough for our purposes.
307 1.37 riastrad */
308 1.37 riastrad static struct bintime
309 1.37 riastrad timo2bintime(unsigned timo)
310 1.37 riastrad {
311 1.37 riastrad
312 1.37 riastrad return (struct bintime) {
313 1.37 riastrad .sec = timo / hz,
314 1.37 riastrad .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
315 1.37 riastrad };
316 1.37 riastrad }
317 1.37 riastrad
318 1.37 riastrad /*
319 1.37 riastrad * cv_timedwaitbt:
320 1.37 riastrad *
321 1.37 riastrad * Wait on a condition variable until awoken or the specified
322 1.37 riastrad * timeout expires. Returns zero if awoken normally or
323 1.37 riastrad * EWOULDBLOCK if the timeout expires.
324 1.37 riastrad *
325 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
326 1.37 riastrad * the time slept, so on exit, bt is the time remaining after
327 1.38 riastrad * sleeping, possibly negative if the complete time has elapsed.
328 1.38 riastrad * No infinite timeout; use cv_wait_sig instead.
329 1.37 riastrad *
330 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
331 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
332 1.37 riastrad * future to choose between low- and high-resolution timers.
333 1.38 riastrad * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
334 1.38 riastrad * where r is the finest resolution of clock available and s is
335 1.38 riastrad * scheduling delays for scheduler overhead and competing threads.
336 1.38 riastrad * Time is measured by the interrupt source implementing the
337 1.38 riastrad * timeout, not by another timecounter.
338 1.37 riastrad */
339 1.37 riastrad int
340 1.37 riastrad cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
341 1.38 riastrad const struct bintime *epsilon __diagused)
342 1.37 riastrad {
343 1.37 riastrad struct bintime slept;
344 1.37 riastrad unsigned start, end;
345 1.48 riastrad int timo;
346 1.37 riastrad int error;
347 1.37 riastrad
348 1.38 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
349 1.38 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
350 1.38 riastrad
351 1.48 riastrad /* If there's nothing left to wait, time out. */
352 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
353 1.48 riastrad return EWOULDBLOCK;
354 1.48 riastrad
355 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
356 1.48 riastrad timo = bintime2timo(bt);
357 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
358 1.48 riastrad if (timo == 0)
359 1.48 riastrad timo = 1;
360 1.48 riastrad
361 1.37 riastrad /*
362 1.46 maxv * getticks() is technically int, but nothing special
363 1.37 riastrad * happens instead of overflow, so we assume two's-complement
364 1.37 riastrad * wraparound and just treat it as unsigned.
365 1.37 riastrad */
366 1.46 maxv start = getticks();
367 1.48 riastrad error = cv_timedwait(cv, mtx, timo);
368 1.46 maxv end = getticks();
369 1.37 riastrad
370 1.48 riastrad /*
371 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
372 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
373 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
374 1.48 riastrad * give up or else cv_signal would be lost.
375 1.48 riastrad */
376 1.37 riastrad slept = timo2bintime(end - start);
377 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
378 1.48 riastrad bt->sec = 0;
379 1.48 riastrad bt->frac = 0;
380 1.48 riastrad } else {
381 1.48 riastrad /* bt := bt - slept */
382 1.48 riastrad bintime_sub(bt, &slept);
383 1.48 riastrad }
384 1.37 riastrad
385 1.37 riastrad return error;
386 1.37 riastrad }
387 1.37 riastrad
388 1.37 riastrad /*
389 1.37 riastrad * cv_timedwaitbt_sig:
390 1.37 riastrad *
391 1.37 riastrad * Wait on a condition variable until awoken, the specified
392 1.37 riastrad * timeout expires, or interrupted by a signal. Returns zero if
393 1.37 riastrad * awoken normally, EWOULDBLOCK if the timeout expires, or
394 1.37 riastrad * EINTR/ERESTART if interrupted by a signal.
395 1.37 riastrad *
396 1.37 riastrad * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
397 1.37 riastrad * subtracts the time slept, so on exit, bt is the time remaining
398 1.37 riastrad * after sleeping. No infinite timeout; use cv_wait instead.
399 1.37 riastrad *
400 1.37 riastrad * epsilon is a requested maximum error in timeout (excluding
401 1.37 riastrad * spurious wakeups). Currently not used, will be used in the
402 1.37 riastrad * future to choose between low- and high-resolution timers.
403 1.37 riastrad */
404 1.37 riastrad int
405 1.37 riastrad cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
406 1.39 riastrad const struct bintime *epsilon __diagused)
407 1.37 riastrad {
408 1.37 riastrad struct bintime slept;
409 1.37 riastrad unsigned start, end;
410 1.48 riastrad int timo;
411 1.37 riastrad int error;
412 1.37 riastrad
413 1.39 riastrad KASSERTMSG(bt->sec >= 0, "negative timeout");
414 1.39 riastrad KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
415 1.39 riastrad
416 1.48 riastrad /* If there's nothing left to wait, time out. */
417 1.48 riastrad if (bt->sec == 0 && bt->frac == 0)
418 1.48 riastrad return EWOULDBLOCK;
419 1.48 riastrad
420 1.48 riastrad /* Convert to ticks, but clamp to be >=1. */
421 1.48 riastrad timo = bintime2timo(bt);
422 1.48 riastrad KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
423 1.48 riastrad if (timo == 0)
424 1.48 riastrad timo = 1;
425 1.48 riastrad
426 1.37 riastrad /*
427 1.46 maxv * getticks() is technically int, but nothing special
428 1.37 riastrad * happens instead of overflow, so we assume two's-complement
429 1.37 riastrad * wraparound and just treat it as unsigned.
430 1.37 riastrad */
431 1.46 maxv start = getticks();
432 1.48 riastrad error = cv_timedwait_sig(cv, mtx, timo);
433 1.46 maxv end = getticks();
434 1.37 riastrad
435 1.48 riastrad /*
436 1.48 riastrad * Set it to the time left, or zero, whichever is larger. We
437 1.48 riastrad * do not fail with EWOULDBLOCK here because this may have been
438 1.48 riastrad * an explicit wakeup, so the caller needs to check before they
439 1.48 riastrad * give up or else cv_signal would be lost.
440 1.48 riastrad */
441 1.37 riastrad slept = timo2bintime(end - start);
442 1.48 riastrad if (bintimecmp(bt, &slept, <=)) {
443 1.48 riastrad bt->sec = 0;
444 1.48 riastrad bt->frac = 0;
445 1.48 riastrad } else {
446 1.48 riastrad /* bt := bt - slept */
447 1.48 riastrad bintime_sub(bt, &slept);
448 1.48 riastrad }
449 1.37 riastrad
450 1.37 riastrad return error;
451 1.37 riastrad }
452 1.37 riastrad
453 1.37 riastrad /*
454 1.2 ad * cv_signal:
455 1.2 ad *
456 1.59 ad * Wake the highest priority LWP waiting on a condition variable. Must
457 1.59 ad * be called with the interlocking mutex held or just after it has been
458 1.59 ad * released (so the awoken LWP will see the changed condition).
459 1.2 ad */
460 1.2 ad void
461 1.2 ad cv_signal(kcondvar_t *cv)
462 1.2 ad {
463 1.20 ad
464 1.20 ad KASSERT(cv_is_valid(cv));
465 1.20 ad
466 1.59 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
467 1.59 ad /*
468 1.59 ad * Compiler turns into a tail call usually, i.e. jmp,
469 1.59 ad * because the arguments are the same and no locals.
470 1.59 ad */
471 1.24 ad cv_wakeup_one(cv);
472 1.59 ad }
473 1.20 ad }
474 1.20 ad
475 1.42 ad /*
476 1.42 ad * cv_wakeup_one:
477 1.42 ad *
478 1.42 ad * Slow path for cv_signal(). Deliberately marked __noinline to
479 1.42 ad * prevent the compiler pulling it in to cv_signal(), which adds
480 1.42 ad * extra prologue and epilogue code.
481 1.42 ad */
482 1.42 ad static __noinline void
483 1.20 ad cv_wakeup_one(kcondvar_t *cv)
484 1.20 ad {
485 1.2 ad sleepq_t *sq;
486 1.18 ad kmutex_t *mp;
487 1.20 ad lwp_t *l;
488 1.2 ad
489 1.24 ad mp = sleepq_hashlock(cv);
490 1.20 ad sq = CV_SLEEPQ(cv);
491 1.58 ad if (__predict_true((l = LIST_FIRST(sq)) != NULL)) {
492 1.45 ad KASSERT(l->l_sleepq == sq);
493 1.45 ad KASSERT(l->l_mutex == mp);
494 1.45 ad KASSERT(l->l_wchan == cv);
495 1.58 ad sleepq_remove(sq, l, true);
496 1.20 ad }
497 1.20 ad mutex_spin_exit(mp);
498 1.2 ad }
499 1.2 ad
500 1.2 ad /*
501 1.2 ad * cv_broadcast:
502 1.2 ad *
503 1.59 ad * Wake all LWPs waiting on a condition variable. Must be called with
504 1.59 ad * the interlocking mutex held or just after it has been released (so
505 1.59 ad * the awoken LWP will see the changed condition).
506 1.2 ad */
507 1.2 ad void
508 1.2 ad cv_broadcast(kcondvar_t *cv)
509 1.2 ad {
510 1.20 ad
511 1.20 ad KASSERT(cv_is_valid(cv));
512 1.20 ad
513 1.59 ad if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
514 1.59 ad /*
515 1.59 ad * Compiler turns into a tail call usually, i.e. jmp,
516 1.59 ad * because the arguments are the same and no locals.
517 1.59 ad */
518 1.24 ad cv_wakeup_all(cv);
519 1.59 ad }
520 1.20 ad }
521 1.20 ad
522 1.42 ad /*
523 1.42 ad * cv_wakeup_all:
524 1.42 ad *
525 1.42 ad * Slow path for cv_broadcast(). Deliberately marked __noinline to
526 1.42 ad * prevent the compiler pulling it in to cv_broadcast(), which adds
527 1.42 ad * extra prologue and epilogue code.
528 1.42 ad */
529 1.42 ad static __noinline void
530 1.20 ad cv_wakeup_all(kcondvar_t *cv)
531 1.20 ad {
532 1.2 ad sleepq_t *sq;
533 1.18 ad kmutex_t *mp;
534 1.45 ad lwp_t *l;
535 1.15 ad
536 1.24 ad mp = sleepq_hashlock(cv);
537 1.20 ad sq = CV_SLEEPQ(cv);
538 1.45 ad while ((l = LIST_FIRST(sq)) != NULL) {
539 1.20 ad KASSERT(l->l_sleepq == sq);
540 1.20 ad KASSERT(l->l_mutex == mp);
541 1.20 ad KASSERT(l->l_wchan == cv);
542 1.58 ad sleepq_remove(sq, l, true);
543 1.20 ad }
544 1.20 ad mutex_spin_exit(mp);
545 1.2 ad }
546 1.2 ad
547 1.2 ad /*
548 1.60 ad * cv_fdrestart:
549 1.60 ad *
550 1.60 ad * Like cv_broadcast(), but make any LWPs that share the same file
551 1.60 ad * descriptor table as the caller return ERESTART when resuming. Used
552 1.60 ad * to dislodge LWPs waiting for I/O that prevent a file descriptor from
553 1.60 ad * being closed, without upsetting access to the file (not descriptor)
554 1.60 ad * made from another direction. Rarely used thus no fast path
555 1.60 ad * provided.
556 1.60 ad */
557 1.60 ad void
558 1.60 ad cv_fdrestart(kcondvar_t *cv)
559 1.60 ad {
560 1.60 ad sleepq_t *sq;
561 1.60 ad kmutex_t *mp;
562 1.60 ad lwp_t *l;
563 1.60 ad
564 1.60 ad KASSERT(cv_is_valid(cv));
565 1.60 ad
566 1.60 ad if (LIST_EMPTY(CV_SLEEPQ(cv)))
567 1.60 ad return;
568 1.60 ad
569 1.60 ad mp = sleepq_hashlock(cv);
570 1.60 ad sq = CV_SLEEPQ(cv);
571 1.60 ad while ((l = LIST_FIRST(sq)) != NULL) {
572 1.60 ad KASSERT(l->l_sleepq == sq);
573 1.60 ad KASSERT(l->l_mutex == mp);
574 1.60 ad KASSERT(l->l_wchan == cv);
575 1.60 ad /* l_fd stable at this point so no special locking needed. */
576 1.60 ad if (l->l_fd == curlwp->l_fd) {
577 1.60 ad l->l_flag |= LW_RESTART;
578 1.60 ad sleepq_remove(sq, l, false);
579 1.60 ad }
580 1.60 ad }
581 1.60 ad mutex_spin_exit(mp);
582 1.60 ad }
583 1.60 ad
584 1.60 ad /*
585 1.2 ad * cv_has_waiters:
586 1.2 ad *
587 1.2 ad * For diagnostic assertions: return non-zero if a condition
588 1.2 ad * variable has waiters.
589 1.2 ad */
590 1.7 ad bool
591 1.2 ad cv_has_waiters(kcondvar_t *cv)
592 1.2 ad {
593 1.23 chris
594 1.44 ad return !LIST_EMPTY(CV_SLEEPQ(cv));
595 1.2 ad }
596 1.15 ad
597 1.15 ad /*
598 1.15 ad * cv_is_valid:
599 1.15 ad *
600 1.15 ad * For diagnostic assertions: return non-zero if a condition
601 1.15 ad * variable appears to be valid. No locks need be held.
602 1.15 ad */
603 1.15 ad bool
604 1.15 ad cv_is_valid(kcondvar_t *cv)
605 1.15 ad {
606 1.15 ad
607 1.26 thorpej return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
608 1.15 ad }
609