kern_condvar.c revision 1.14 1 /* $NetBSD: kern_condvar.c,v 1.14 2007/11/06 00:42:41 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel condition variable implementation, modeled after those found in
41 * Solaris, a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.14 2007/11/06 00:42:41 ad Exp $");
49
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/sched.h>
53 #include <sys/systm.h>
54 #include <sys/condvar.h>
55 #include <sys/sleepq.h>
56
57 static void cv_unsleep(lwp_t *);
58
59 static syncobj_t cv_syncobj = {
60 SOBJ_SLEEPQ_SORTED,
61 cv_unsleep,
62 sleepq_changepri,
63 sleepq_lendpri,
64 syncobj_noowner,
65 };
66
67 static const char deadcv[] = "deadcv";
68
69 /*
70 * cv_init:
71 *
72 * Initialize a condition variable for use.
73 */
74 void
75 cv_init(kcondvar_t *cv, const char *wmesg)
76 {
77
78 KASSERT(wmesg != NULL);
79
80 cv->cv_wmesg = wmesg;
81 cv->cv_waiters = 0;
82 }
83
84 /*
85 * cv_destroy:
86 *
87 * Tear down a condition variable.
88 */
89 void
90 cv_destroy(kcondvar_t *cv)
91 {
92
93 #ifdef DIAGNOSTIC
94 KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
95 KASSERT(cv->cv_waiters == 0);
96 cv->cv_wmesg = deadcv;
97 #endif
98 }
99
100 /*
101 * cv_enter:
102 *
103 * Look up and lock the sleep queue corresponding to the given
104 * condition variable, and increment the number of waiters.
105 */
106 static inline sleepq_t *
107 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
108 {
109 sleepq_t *sq;
110
111 KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
112 KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
113
114 l->l_cv_signalled = 0;
115 l->l_kpriority = true;
116 sq = sleeptab_lookup(&sleeptab, cv);
117 cv->cv_waiters++;
118 sleepq_enter(sq, l);
119 sleepq_enqueue(sq, cv, cv->cv_wmesg, &cv_syncobj);
120 mutex_exit(mtx);
121
122 return sq;
123 }
124
125 /*
126 * cv_exit:
127 *
128 * After resuming execution, check to see if we have been restarted
129 * as a result of cv_signal(). If we have, but cannot take the
130 * wakeup (because of eg a pending Unix signal or timeout) then try
131 * to ensure that another LWP sees it. This is necessary because
132 * there may be multiple waiters, and at least one should take the
133 * wakeup if possible.
134 */
135 static inline int
136 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
137 {
138
139 mutex_enter(mtx);
140 if (__predict_false(error != 0) && l->l_cv_signalled != 0)
141 cv_signal(cv);
142
143 KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
144
145 return error;
146 }
147
148 /*
149 * cv_unsleep:
150 *
151 * Remove an LWP from the condition variable and sleep queue. This
152 * is called when the LWP has not been awoken normally but instead
153 * interrupted: for example, when a signal is received. Must be
154 * called with the LWP locked, and must return it unlocked.
155 */
156 static void
157 cv_unsleep(lwp_t *l)
158 {
159 kcondvar_t *cv;
160
161 KASSERT(l->l_wchan != NULL);
162 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
163
164 cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
165 KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
166 cv->cv_waiters--;
167
168 sleepq_unsleep(l);
169 }
170
171 /*
172 * cv_wait:
173 *
174 * Wait non-interruptably on a condition variable until awoken.
175 */
176 void
177 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
178 {
179 lwp_t *l = curlwp;
180 sleepq_t *sq;
181
182 KASSERT(mutex_owned(mtx));
183
184 if (sleepq_dontsleep(l)) {
185 (void)sleepq_abort(mtx, 0);
186 return;
187 }
188
189 sq = cv_enter(cv, mtx, l);
190 (void)sleepq_block(0, false);
191 (void)cv_exit(cv, mtx, l, 0);
192 }
193
194 /*
195 * cv_wait_sig:
196 *
197 * Wait on a condition variable until a awoken or a signal is received.
198 * Will also return early if the process is exiting. Returns zero if
199 * awoken normallly, ERESTART if a signal was received and the system
200 * call is restartable, or EINTR otherwise.
201 */
202 int
203 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
204 {
205 lwp_t *l = curlwp;
206 sleepq_t *sq;
207 int error;
208
209 KASSERT(mutex_owned(mtx));
210
211 if (sleepq_dontsleep(l))
212 return sleepq_abort(mtx, 0);
213
214 sq = cv_enter(cv, mtx, l);
215 error = sleepq_block(0, true);
216 return cv_exit(cv, mtx, l, error);
217 }
218
219 /*
220 * cv_timedwait:
221 *
222 * Wait on a condition variable until awoken or the specified timeout
223 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
224 * timeout expired.
225 */
226 int
227 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
228 {
229 lwp_t *l = curlwp;
230 sleepq_t *sq;
231 int error;
232
233 KASSERT(mutex_owned(mtx));
234
235 if (sleepq_dontsleep(l))
236 return sleepq_abort(mtx, 0);
237
238 sq = cv_enter(cv, mtx, l);
239 error = sleepq_block(timo, false);
240 return cv_exit(cv, mtx, l, error);
241 }
242
243 /*
244 * cv_timedwait_sig:
245 *
246 * Wait on a condition variable until a timeout expires, awoken or a
247 * signal is received. Will also return early if the process is
248 * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
249 * timeout expires, ERESTART if a signal was received and the system
250 * call is restartable, or EINTR otherwise.
251 */
252 int
253 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
254 {
255 lwp_t *l = curlwp;
256 sleepq_t *sq;
257 int error;
258
259 KASSERT(mutex_owned(mtx));
260
261 if (sleepq_dontsleep(l))
262 return sleepq_abort(mtx, 0);
263
264 sq = cv_enter(cv, mtx, l);
265 error = sleepq_block(timo, true);
266 return cv_exit(cv, mtx, l, error);
267 }
268
269 /*
270 * cv_signal:
271 *
272 * Wake the highest priority LWP waiting on a condition variable.
273 * Must be called with the interlocking mutex held.
274 */
275 void
276 cv_signal(kcondvar_t *cv)
277 {
278 lwp_t *l;
279 sleepq_t *sq;
280
281 if (cv->cv_waiters == 0)
282 return;
283
284 /*
285 * cv->cv_waiters may be stale and have dropped to zero, but
286 * while holding the interlock (the mutex passed to cv_wait()
287 * and similar) we will see non-zero values when it matters.
288 */
289
290 sq = sleeptab_lookup(&sleeptab, cv);
291 if (cv->cv_waiters != 0) {
292 cv->cv_waiters--;
293 l = sleepq_wake(sq, cv, 1);
294 l->l_cv_signalled = 1;
295 } else
296 sleepq_unlock(sq);
297 }
298
299 /*
300 * cv_broadcast:
301 *
302 * Wake all LWPs waiting on a condition variable. Must be called
303 * with the interlocking mutex held.
304 */
305 void
306 cv_broadcast(kcondvar_t *cv)
307 {
308 sleepq_t *sq;
309 u_int cnt;
310
311 if (cv->cv_waiters == 0)
312 return;
313
314 sq = sleeptab_lookup(&sleeptab, cv);
315 if ((cnt = cv->cv_waiters) != 0) {
316 cv->cv_waiters = 0;
317 sleepq_wake(sq, cv, cnt);
318 } else
319 sleepq_unlock(sq);
320 }
321
322 /*
323 * cv_wakeup:
324 *
325 * Wake all LWPs waiting on a condition variable. For cases
326 * where the address may be waited on by mtsleep()/tsleep().
327 * Not a documented call.
328 */
329 void
330 cv_wakeup(kcondvar_t *cv)
331 {
332 sleepq_t *sq;
333
334 sq = sleeptab_lookup(&sleeptab, cv);
335 cv->cv_waiters = 0;
336 sleepq_wake(sq, cv, (u_int)-1);
337 }
338
339 /*
340 * cv_has_waiters:
341 *
342 * For diagnostic assertions: return non-zero if a condition
343 * variable has waiters.
344 */
345 bool
346 cv_has_waiters(kcondvar_t *cv)
347 {
348
349 /* No need to interlock here */
350 return cv->cv_waiters != 0;
351 }
352