kern_condvar.c revision 1.14.14.1 1 /* $NetBSD: kern_condvar.c,v 1.14.14.1 2008/04/03 12:43:00 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel condition variable implementation, modeled after those found in
41 * Solaris, a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.14.14.1 2008/04/03 12:43:00 mjf Exp $");
49
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/sched.h>
53 #include <sys/systm.h>
54 #include <sys/condvar.h>
55 #include <sys/sleepq.h>
56
57 static u_int cv_unsleep(lwp_t *, bool);
58
59 static syncobj_t cv_syncobj = {
60 SOBJ_SLEEPQ_SORTED,
61 cv_unsleep,
62 sleepq_changepri,
63 sleepq_lendpri,
64 syncobj_noowner,
65 };
66
67 static const char deadcv[] = "deadcv";
68
69 /*
70 * cv_init:
71 *
72 * Initialize a condition variable for use.
73 */
74 void
75 cv_init(kcondvar_t *cv, const char *wmesg)
76 {
77
78 KASSERT(wmesg != NULL);
79
80 cv->cv_wmesg = wmesg;
81 cv->cv_waiters = 0;
82 }
83
84 /*
85 * cv_destroy:
86 *
87 * Tear down a condition variable.
88 */
89 void
90 cv_destroy(kcondvar_t *cv)
91 {
92
93 #ifdef DIAGNOSTIC
94 KASSERT(cv_is_valid(cv));
95 cv->cv_wmesg = deadcv;
96 cv->cv_waiters = -3;
97 #endif
98 }
99
100 /*
101 * cv_enter:
102 *
103 * Look up and lock the sleep queue corresponding to the given
104 * condition variable, and increment the number of waiters.
105 */
106 static inline sleepq_t *
107 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
108 {
109 sleepq_t *sq;
110
111 KASSERT(cv_is_valid(cv));
112 KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
113
114 l->l_cv_signalled = 0;
115 l->l_kpriority = true;
116 sq = sleeptab_lookup(&sleeptab, cv);
117 cv->cv_waiters++;
118 sleepq_enter(sq, l);
119 sleepq_enqueue(sq, cv, cv->cv_wmesg, &cv_syncobj);
120 mutex_exit(mtx);
121
122 return sq;
123 }
124
125 /*
126 * cv_exit:
127 *
128 * After resuming execution, check to see if we have been restarted
129 * as a result of cv_signal(). If we have, but cannot take the
130 * wakeup (because of eg a pending Unix signal or timeout) then try
131 * to ensure that another LWP sees it. This is necessary because
132 * there may be multiple waiters, and at least one should take the
133 * wakeup if possible.
134 */
135 static inline int
136 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
137 {
138
139 mutex_enter(mtx);
140 if (__predict_false(error != 0) && l->l_cv_signalled != 0)
141 cv_signal(cv);
142
143 KASSERT(cv_is_valid(cv));
144
145 return error;
146 }
147
148 /*
149 * cv_unsleep:
150 *
151 * Remove an LWP from the condition variable and sleep queue. This
152 * is called when the LWP has not been awoken normally but instead
153 * interrupted: for example, when a signal is received. Must be
154 * called with the LWP locked, and must return it unlocked.
155 */
156 static u_int
157 cv_unsleep(lwp_t *l, bool cleanup)
158 {
159 kcondvar_t *cv;
160
161 cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
162
163 KASSERT(l->l_wchan != NULL);
164 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
165 KASSERT(cv_is_valid(cv));
166 KASSERT(cv->cv_waiters > 0);
167
168 cv->cv_waiters--;
169 return sleepq_unsleep(l, cleanup);
170 }
171
172 /*
173 * cv_wait:
174 *
175 * Wait non-interruptably on a condition variable until awoken.
176 */
177 void
178 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
179 {
180 lwp_t *l = curlwp;
181 sleepq_t *sq;
182
183 KASSERT(mutex_owned(mtx));
184
185 if (sleepq_dontsleep(l)) {
186 (void)sleepq_abort(mtx, 0);
187 return;
188 }
189
190 sq = cv_enter(cv, mtx, l);
191 (void)sleepq_block(0, false);
192 (void)cv_exit(cv, mtx, l, 0);
193 }
194
195 /*
196 * cv_wait_sig:
197 *
198 * Wait on a condition variable until a awoken or a signal is received.
199 * Will also return early if the process is exiting. Returns zero if
200 * awoken normallly, ERESTART if a signal was received and the system
201 * call is restartable, or EINTR otherwise.
202 */
203 int
204 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
205 {
206 lwp_t *l = curlwp;
207 sleepq_t *sq;
208 int error;
209
210 KASSERT(mutex_owned(mtx));
211
212 if (sleepq_dontsleep(l))
213 return sleepq_abort(mtx, 0);
214
215 sq = cv_enter(cv, mtx, l);
216 error = sleepq_block(0, true);
217 return cv_exit(cv, mtx, l, error);
218 }
219
220 /*
221 * cv_timedwait:
222 *
223 * Wait on a condition variable until awoken or the specified timeout
224 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
225 * timeout expired.
226 */
227 int
228 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
229 {
230 lwp_t *l = curlwp;
231 sleepq_t *sq;
232 int error;
233
234 KASSERT(mutex_owned(mtx));
235
236 if (sleepq_dontsleep(l))
237 return sleepq_abort(mtx, 0);
238
239 sq = cv_enter(cv, mtx, l);
240 error = sleepq_block(timo, false);
241 return cv_exit(cv, mtx, l, error);
242 }
243
244 /*
245 * cv_timedwait_sig:
246 *
247 * Wait on a condition variable until a timeout expires, awoken or a
248 * signal is received. Will also return early if the process is
249 * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
250 * timeout expires, ERESTART if a signal was received and the system
251 * call is restartable, or EINTR otherwise.
252 */
253 int
254 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
255 {
256 lwp_t *l = curlwp;
257 sleepq_t *sq;
258 int error;
259
260 KASSERT(mutex_owned(mtx));
261
262 if (sleepq_dontsleep(l))
263 return sleepq_abort(mtx, 0);
264
265 sq = cv_enter(cv, mtx, l);
266 error = sleepq_block(timo, true);
267 return cv_exit(cv, mtx, l, error);
268 }
269
270 /*
271 * cv_signal:
272 *
273 * Wake the highest priority LWP waiting on a condition variable.
274 * Must be called with the interlocking mutex held.
275 */
276 void
277 cv_signal(kcondvar_t *cv)
278 {
279 lwp_t *l;
280 sleepq_t *sq;
281
282 KASSERT(cv_is_valid(cv));
283
284 if (cv->cv_waiters == 0)
285 return;
286
287 /*
288 * cv->cv_waiters may be stale and have dropped to zero, but
289 * while holding the interlock (the mutex passed to cv_wait()
290 * and similar) we will see non-zero values when it matters.
291 */
292
293 sq = sleeptab_lookup(&sleeptab, cv);
294 if (cv->cv_waiters != 0) {
295 cv->cv_waiters--;
296 l = sleepq_wake(sq, cv, 1);
297 l->l_cv_signalled = 1;
298 } else
299 sleepq_unlock(sq);
300
301 KASSERT(cv_is_valid(cv));
302 }
303
304 /*
305 * cv_broadcast:
306 *
307 * Wake all LWPs waiting on a condition variable. Must be called
308 * with the interlocking mutex held.
309 */
310 void
311 cv_broadcast(kcondvar_t *cv)
312 {
313 sleepq_t *sq;
314 u_int cnt;
315
316 KASSERT(cv_is_valid(cv));
317
318 if (cv->cv_waiters == 0)
319 return;
320
321 sq = sleeptab_lookup(&sleeptab, cv);
322 if ((cnt = cv->cv_waiters) != 0) {
323 cv->cv_waiters = 0;
324 sleepq_wake(sq, cv, cnt);
325 } else
326 sleepq_unlock(sq);
327
328 KASSERT(cv_is_valid(cv));
329 }
330
331 /*
332 * cv_wakeup:
333 *
334 * Wake all LWPs waiting on a condition variable. For cases
335 * where the address may be waited on by mtsleep()/tsleep().
336 * Not a documented call.
337 */
338 void
339 cv_wakeup(kcondvar_t *cv)
340 {
341 sleepq_t *sq;
342
343 KASSERT(cv_is_valid(cv));
344
345 sq = sleeptab_lookup(&sleeptab, cv);
346 cv->cv_waiters = 0;
347 sleepq_wake(sq, cv, (u_int)-1);
348
349 KASSERT(cv_is_valid(cv));
350 }
351
352 /*
353 * cv_has_waiters:
354 *
355 * For diagnostic assertions: return non-zero if a condition
356 * variable has waiters.
357 */
358 bool
359 cv_has_waiters(kcondvar_t *cv)
360 {
361
362 /* No need to interlock here */
363 return cv->cv_waiters != 0;
364 }
365
366 /*
367 * cv_is_valid:
368 *
369 * For diagnostic assertions: return non-zero if a condition
370 * variable appears to be valid. No locks need be held.
371 */
372 bool
373 cv_is_valid(kcondvar_t *cv)
374 {
375
376 if (cv->cv_wmesg == deadcv || cv->cv_wmesg == NULL)
377 return false;
378 if ((cv->cv_waiters & 0xff000000) != 0) {
379 /* Arbitrary: invalid number of waiters. */
380 return false;
381 }
382 return cv->cv_waiters >= 0;
383 }
384