kern_condvar.c revision 1.44 1 /* $NetBSD: kern_condvar.c,v 1.44 2020/03/26 19:46:42 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel condition variable implementation.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.44 2020/03/26 19:46:42 ad Exp $");
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lwp.h>
42 #include <sys/condvar.h>
43 #include <sys/sleepq.h>
44 #include <sys/lockdebug.h>
45 #include <sys/cpu.h>
46 #include <sys/kernel.h>
47
48 /*
49 * Accessors for the private contents of the kcondvar_t data type.
50 *
51 * cv_opaque[0] sleepq_t
52 * cv_opaque[1] description for ps(1)
53 *
54 * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55 * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56 * and dequeue).
57 *
58 * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59 * of the CV.
60 */
61 #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
62 #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
63 #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
64
65 #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
66 #define CV_RA ((uintptr_t)__builtin_return_address(0))
67
68 static void cv_unsleep(lwp_t *, bool);
69 static inline void cv_wakeup_one(kcondvar_t *);
70 static inline void cv_wakeup_all(kcondvar_t *);
71
72 syncobj_t cv_syncobj = {
73 .sobj_flag = SOBJ_SLEEPQ_SORTED,
74 .sobj_unsleep = cv_unsleep,
75 .sobj_changepri = sleepq_changepri,
76 .sobj_lendpri = sleepq_lendpri,
77 .sobj_owner = syncobj_noowner,
78 };
79
80 lockops_t cv_lockops = {
81 .lo_name = "Condition variable",
82 .lo_type = LOCKOPS_CV,
83 .lo_dump = NULL,
84 };
85
86 static const char deadcv[] = "deadcv";
87 #ifdef LOCKDEBUG
88 static const char nodebug[] = "nodebug";
89
90 #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
91 #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
92
93 static inline void
94 cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
95 {
96
97 if (CV_DEBUG_P(cv))
98 l->l_flag |= LW_CVLOCKDEBUG;
99 }
100
101 static inline void
102 cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
103 {
104
105 if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
106 return;
107
108 l->l_flag &= ~LW_CVLOCKDEBUG;
109 LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
110 }
111 #else
112 #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
113 #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
114 #endif
115
116 /*
117 * cv_init:
118 *
119 * Initialize a condition variable for use.
120 */
121 void
122 cv_init(kcondvar_t *cv, const char *wmesg)
123 {
124 #ifdef LOCKDEBUG
125 bool dodebug;
126
127 dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
128 (uintptr_t)__builtin_return_address(0));
129 if (!dodebug) {
130 /* XXX This will break vfs_lockf. */
131 wmesg = nodebug;
132 }
133 #endif
134 KASSERT(wmesg != NULL);
135 CV_SET_WMESG(cv, wmesg);
136 sleepq_init(CV_SLEEPQ(cv));
137 }
138
139 /*
140 * cv_destroy:
141 *
142 * Tear down a condition variable.
143 */
144 void
145 cv_destroy(kcondvar_t *cv)
146 {
147
148 LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
149 #ifdef DIAGNOSTIC
150 KASSERT(cv_is_valid(cv));
151 CV_SET_WMESG(cv, deadcv);
152 #endif
153 }
154
155 /*
156 * cv_enter:
157 *
158 * Look up and lock the sleep queue corresponding to the given
159 * condition variable, and increment the number of waiters.
160 */
161 static inline void
162 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
163 {
164 sleepq_t *sq;
165 kmutex_t *mp;
166
167 KASSERT(cv_is_valid(cv));
168 KASSERT(!cpu_intr_p());
169 KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
170
171 LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
172
173 l->l_kpriority = true;
174 mp = sleepq_hashlock(cv);
175 sq = CV_SLEEPQ(cv);
176 sleepq_enter(sq, l, mp);
177 sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
178 mutex_exit(mtx);
179 KASSERT(cv_has_waiters(cv));
180 }
181
182 /*
183 * cv_exit:
184 *
185 * After resuming execution, check to see if we have been restarted
186 * as a result of cv_signal(). If we have, but cannot take the
187 * wakeup (because of eg a pending Unix signal or timeout) then try
188 * to ensure that another LWP sees it. This is necessary because
189 * there may be multiple waiters, and at least one should take the
190 * wakeup if possible.
191 */
192 static inline int
193 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
194 {
195
196 mutex_enter(mtx);
197 if (__predict_false(error != 0))
198 cv_signal(cv);
199
200 LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
201 KASSERT(cv_is_valid(cv));
202
203 return error;
204 }
205
206 /*
207 * cv_unsleep:
208 *
209 * Remove an LWP from the condition variable and sleep queue. This
210 * is called when the LWP has not been awoken normally but instead
211 * interrupted: for example, when a signal is received. Must be
212 * called with the LWP locked. Will unlock if "unlock" is true.
213 */
214 static void
215 cv_unsleep(lwp_t *l, bool unlock)
216 {
217 kcondvar_t *cv __diagused;
218
219 cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
220
221 KASSERT(l->l_wchan == (wchan_t)cv);
222 KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
223 KASSERT(cv_is_valid(cv));
224 KASSERT(cv_has_waiters(cv));
225
226 sleepq_unsleep(l, unlock);
227 }
228
229 /*
230 * cv_wait:
231 *
232 * Wait non-interruptably on a condition variable until awoken.
233 */
234 void
235 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
236 {
237 lwp_t *l = curlwp;
238
239 KASSERT(mutex_owned(mtx));
240
241 cv_enter(cv, mtx, l);
242
243 /*
244 * We can't use cv_exit() here since the cv might be destroyed before
245 * this thread gets a chance to run. Instead, hand off the lockdebug
246 * responsibility to the thread that wakes us up.
247 */
248
249 CV_LOCKDEBUG_HANDOFF(l, cv);
250 (void)sleepq_block(0, false);
251 mutex_enter(mtx);
252 }
253
254 /*
255 * cv_wait_sig:
256 *
257 * Wait on a condition variable until a awoken or a signal is received.
258 * Will also return early if the process is exiting. Returns zero if
259 * awoken normally, ERESTART if a signal was received and the system
260 * call is restartable, or EINTR otherwise.
261 */
262 int
263 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
264 {
265 lwp_t *l = curlwp;
266 int error;
267
268 KASSERT(mutex_owned(mtx));
269
270 cv_enter(cv, mtx, l);
271 error = sleepq_block(0, true);
272 return cv_exit(cv, mtx, l, error);
273 }
274
275 /*
276 * cv_timedwait:
277 *
278 * Wait on a condition variable until awoken or the specified timeout
279 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
280 * timeout expired.
281 *
282 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
283 */
284 int
285 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
286 {
287 lwp_t *l = curlwp;
288 int error;
289
290 KASSERT(mutex_owned(mtx));
291
292 cv_enter(cv, mtx, l);
293 error = sleepq_block(timo, false);
294 return cv_exit(cv, mtx, l, error);
295 }
296
297 /*
298 * cv_timedwait_sig:
299 *
300 * Wait on a condition variable until a timeout expires, awoken or a
301 * signal is received. Will also return early if the process is
302 * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
303 * timeout expires, ERESTART if a signal was received and the system
304 * call is restartable, or EINTR otherwise.
305 *
306 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
307 */
308 int
309 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
310 {
311 lwp_t *l = curlwp;
312 int error;
313
314 KASSERT(mutex_owned(mtx));
315
316 cv_enter(cv, mtx, l);
317 error = sleepq_block(timo, true);
318 return cv_exit(cv, mtx, l, error);
319 }
320
321 /*
322 * Given a number of seconds, sec, and 2^64ths of a second, frac, we
323 * want a number of ticks for a timeout:
324 *
325 * timo = hz*(sec + frac/2^64)
326 * = hz*sec + hz*frac/2^64
327 * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
328 * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
329 *
330 * where frachi is the high 32 bits of frac and fraclo is the
331 * low 32 bits.
332 *
333 * We assume hz < INT_MAX/2 < UINT32_MAX, so
334 *
335 * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
336 *
337 * since fraclo < 2^32.
338 *
339 * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
340 * can't represent timeouts higher than INT_MAX in cv_timedwait, and
341 * spurious wakeup is OK. Moreover, we don't want to wrap around,
342 * because we compute end - start in ticks in order to compute the
343 * remaining timeout, and that difference cannot wrap around, so we use
344 * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
345 * margin for paranoia and will exceed most waits in practice by far.
346 */
347 static unsigned
348 bintime2timo(const struct bintime *bt)
349 {
350
351 KASSERT(hz < INT_MAX/2);
352 CTASSERT(INT_MAX/2 < UINT32_MAX);
353 if (bt->sec > ((INT_MAX/2)/hz))
354 return INT_MAX/2;
355 if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
356 return INT_MAX/2;
357
358 return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
359 }
360
361 /*
362 * timo is in units of ticks. We want units of seconds and 2^64ths of
363 * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
364 * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
365 * second)/tick. So for the fractional part, we compute
366 *
367 * frac = rem * 2^64 / hz
368 * = ((rem * 2^32) / hz) * 2^32
369 *
370 * Using truncating integer division instead of real division will
371 * leave us with only about 32 bits of precision, which means about
372 * 1/4-nanosecond resolution, which is good enough for our purposes.
373 */
374 static struct bintime
375 timo2bintime(unsigned timo)
376 {
377
378 return (struct bintime) {
379 .sec = timo / hz,
380 .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
381 };
382 }
383
384 /*
385 * cv_timedwaitbt:
386 *
387 * Wait on a condition variable until awoken or the specified
388 * timeout expires. Returns zero if awoken normally or
389 * EWOULDBLOCK if the timeout expires.
390 *
391 * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
392 * the time slept, so on exit, bt is the time remaining after
393 * sleeping, possibly negative if the complete time has elapsed.
394 * No infinite timeout; use cv_wait_sig instead.
395 *
396 * epsilon is a requested maximum error in timeout (excluding
397 * spurious wakeups). Currently not used, will be used in the
398 * future to choose between low- and high-resolution timers.
399 * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
400 * where r is the finest resolution of clock available and s is
401 * scheduling delays for scheduler overhead and competing threads.
402 * Time is measured by the interrupt source implementing the
403 * timeout, not by another timecounter.
404 */
405 int
406 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
407 const struct bintime *epsilon __diagused)
408 {
409 struct bintime slept;
410 unsigned start, end;
411 int error;
412
413 KASSERTMSG(bt->sec >= 0, "negative timeout");
414 KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
415
416 /*
417 * hardclock_ticks is technically int, but nothing special
418 * happens instead of overflow, so we assume two's-complement
419 * wraparound and just treat it as unsigned.
420 */
421 start = hardclock_ticks;
422 error = cv_timedwait(cv, mtx, bintime2timo(bt));
423 end = hardclock_ticks;
424
425 slept = timo2bintime(end - start);
426 /* bt := bt - slept */
427 bintime_sub(bt, &slept);
428
429 return error;
430 }
431
432 /*
433 * cv_timedwaitbt_sig:
434 *
435 * Wait on a condition variable until awoken, the specified
436 * timeout expires, or interrupted by a signal. Returns zero if
437 * awoken normally, EWOULDBLOCK if the timeout expires, or
438 * EINTR/ERESTART if interrupted by a signal.
439 *
440 * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
441 * subtracts the time slept, so on exit, bt is the time remaining
442 * after sleeping. No infinite timeout; use cv_wait instead.
443 *
444 * epsilon is a requested maximum error in timeout (excluding
445 * spurious wakeups). Currently not used, will be used in the
446 * future to choose between low- and high-resolution timers.
447 */
448 int
449 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
450 const struct bintime *epsilon __diagused)
451 {
452 struct bintime slept;
453 unsigned start, end;
454 int error;
455
456 KASSERTMSG(bt->sec >= 0, "negative timeout");
457 KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
458
459 /*
460 * hardclock_ticks is technically int, but nothing special
461 * happens instead of overflow, so we assume two's-complement
462 * wraparound and just treat it as unsigned.
463 */
464 start = hardclock_ticks;
465 error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
466 end = hardclock_ticks;
467
468 slept = timo2bintime(end - start);
469 /* bt := bt - slept */
470 bintime_sub(bt, &slept);
471
472 return error;
473 }
474
475 /*
476 * cv_signal:
477 *
478 * Wake the highest priority LWP waiting on a condition variable.
479 * Must be called with the interlocking mutex held.
480 */
481 void
482 cv_signal(kcondvar_t *cv)
483 {
484
485 /* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
486 KASSERT(cv_is_valid(cv));
487
488 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
489 cv_wakeup_one(cv);
490 }
491
492 /*
493 * cv_wakeup_one:
494 *
495 * Slow path for cv_signal(). Deliberately marked __noinline to
496 * prevent the compiler pulling it in to cv_signal(), which adds
497 * extra prologue and epilogue code.
498 */
499 static __noinline void
500 cv_wakeup_one(kcondvar_t *cv)
501 {
502 sleepq_t *sq;
503 kmutex_t *mp;
504 lwp_t *l;
505
506 KASSERT(cv_is_valid(cv));
507
508 mp = sleepq_hashlock(cv);
509 sq = CV_SLEEPQ(cv);
510 l = LIST_FIRST(sq);
511 if (__predict_false(l == NULL)) {
512 mutex_spin_exit(mp);
513 return;
514 }
515 KASSERT(l->l_sleepq == sq);
516 KASSERT(l->l_mutex == mp);
517 KASSERT(l->l_wchan == cv);
518 CV_LOCKDEBUG_PROCESS(l, cv);
519 sleepq_remove(sq, l);
520 mutex_spin_exit(mp);
521
522 KASSERT(cv_is_valid(cv));
523 }
524
525 /*
526 * cv_broadcast:
527 *
528 * Wake all LWPs waiting on a condition variable. Must be called
529 * with the interlocking mutex held.
530 */
531 void
532 cv_broadcast(kcondvar_t *cv)
533 {
534
535 /* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
536 KASSERT(cv_is_valid(cv));
537
538 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
539 cv_wakeup_all(cv);
540 }
541
542 /*
543 * cv_wakeup_all:
544 *
545 * Slow path for cv_broadcast(). Deliberately marked __noinline to
546 * prevent the compiler pulling it in to cv_broadcast(), which adds
547 * extra prologue and epilogue code.
548 */
549 static __noinline void
550 cv_wakeup_all(kcondvar_t *cv)
551 {
552 sleepq_t *sq;
553 kmutex_t *mp;
554 lwp_t *l, *next;
555
556 KASSERT(cv_is_valid(cv));
557
558 mp = sleepq_hashlock(cv);
559 sq = CV_SLEEPQ(cv);
560 for (l = LIST_FIRST(sq); l != NULL; l = next) {
561 KASSERT(l->l_sleepq == sq);
562 KASSERT(l->l_mutex == mp);
563 KASSERT(l->l_wchan == cv);
564 next = LIST_NEXT(l, l_sleepchain);
565 CV_LOCKDEBUG_PROCESS(l, cv);
566 sleepq_remove(sq, l);
567 }
568 mutex_spin_exit(mp);
569
570 KASSERT(cv_is_valid(cv));
571 }
572
573 /*
574 * cv_has_waiters:
575 *
576 * For diagnostic assertions: return non-zero if a condition
577 * variable has waiters.
578 */
579 bool
580 cv_has_waiters(kcondvar_t *cv)
581 {
582
583 return !LIST_EMPTY(CV_SLEEPQ(cv));
584 }
585
586 /*
587 * cv_is_valid:
588 *
589 * For diagnostic assertions: return non-zero if a condition
590 * variable appears to be valid. No locks need be held.
591 */
592 bool
593 cv_is_valid(kcondvar_t *cv)
594 {
595
596 return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
597 }
598