kern_condvar.c revision 1.44.2.1 1 /* $NetBSD: kern_condvar.c,v 1.44.2.1 2020/04/20 11:29:10 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel condition variable implementation.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.44.2.1 2020/04/20 11:29:10 bouyer Exp $");
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lwp.h>
42 #include <sys/condvar.h>
43 #include <sys/sleepq.h>
44 #include <sys/lockdebug.h>
45 #include <sys/cpu.h>
46 #include <sys/kernel.h>
47
48 /*
49 * Accessors for the private contents of the kcondvar_t data type.
50 *
51 * cv_opaque[0] sleepq_t
52 * cv_opaque[1] description for ps(1)
53 *
54 * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55 * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56 * and dequeue).
57 *
58 * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59 * of the CV.
60 */
61 #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
62 #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
63 #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
64
65 #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
66 #define CV_RA ((uintptr_t)__builtin_return_address(0))
67
68 static void cv_unsleep(lwp_t *, bool);
69 static inline void cv_wakeup_one(kcondvar_t *);
70 static inline void cv_wakeup_all(kcondvar_t *);
71
72 syncobj_t cv_syncobj = {
73 .sobj_flag = SOBJ_SLEEPQ_SORTED,
74 .sobj_unsleep = cv_unsleep,
75 .sobj_changepri = sleepq_changepri,
76 .sobj_lendpri = sleepq_lendpri,
77 .sobj_owner = syncobj_noowner,
78 };
79
80 static const char deadcv[] = "deadcv";
81
82 /*
83 * cv_init:
84 *
85 * Initialize a condition variable for use.
86 */
87 void
88 cv_init(kcondvar_t *cv, const char *wmesg)
89 {
90
91 KASSERT(wmesg != NULL);
92 CV_SET_WMESG(cv, wmesg);
93 sleepq_init(CV_SLEEPQ(cv));
94 }
95
96 /*
97 * cv_destroy:
98 *
99 * Tear down a condition variable.
100 */
101 void
102 cv_destroy(kcondvar_t *cv)
103 {
104
105 #ifdef DIAGNOSTIC
106 KASSERT(cv_is_valid(cv));
107 KASSERT(!cv_has_waiters(cv));
108 CV_SET_WMESG(cv, deadcv);
109 #endif
110 }
111
112 /*
113 * cv_enter:
114 *
115 * Look up and lock the sleep queue corresponding to the given
116 * condition variable, and increment the number of waiters.
117 */
118 static inline void
119 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
120 {
121 sleepq_t *sq;
122 kmutex_t *mp;
123
124 KASSERT(cv_is_valid(cv));
125 KASSERT(!cpu_intr_p());
126 KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
127
128 l->l_kpriority = true;
129 mp = sleepq_hashlock(cv);
130 sq = CV_SLEEPQ(cv);
131 sleepq_enter(sq, l, mp);
132 sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
133 mutex_exit(mtx);
134 KASSERT(cv_has_waiters(cv));
135 }
136
137 /*
138 * cv_unsleep:
139 *
140 * Remove an LWP from the condition variable and sleep queue. This
141 * is called when the LWP has not been awoken normally but instead
142 * interrupted: for example, when a signal is received. Must be
143 * called with the LWP locked. Will unlock if "unlock" is true.
144 */
145 static void
146 cv_unsleep(lwp_t *l, bool unlock)
147 {
148 kcondvar_t *cv __diagused;
149
150 cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
151
152 KASSERT(l->l_wchan == (wchan_t)cv);
153 KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
154 KASSERT(cv_is_valid(cv));
155 KASSERT(cv_has_waiters(cv));
156
157 sleepq_unsleep(l, unlock);
158 }
159
160 /*
161 * cv_wait:
162 *
163 * Wait non-interruptably on a condition variable until awoken.
164 */
165 void
166 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
167 {
168 lwp_t *l = curlwp;
169
170 KASSERT(mutex_owned(mtx));
171
172 cv_enter(cv, mtx, l, false);
173 (void)sleepq_block(0, false);
174 mutex_enter(mtx);
175 }
176
177 /*
178 * cv_wait_sig:
179 *
180 * Wait on a condition variable until a awoken or a signal is received.
181 * Will also return early if the process is exiting. Returns zero if
182 * awoken normally, ERESTART if a signal was received and the system
183 * call is restartable, or EINTR otherwise.
184 */
185 int
186 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
187 {
188 lwp_t *l = curlwp;
189 int error;
190
191 KASSERT(mutex_owned(mtx));
192
193 cv_enter(cv, mtx, l, true);
194 error = sleepq_block(0, true);
195 mutex_enter(mtx);
196 return error;
197 }
198
199 /*
200 * cv_timedwait:
201 *
202 * Wait on a condition variable until awoken or the specified timeout
203 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
204 * timeout expired.
205 *
206 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
207 */
208 int
209 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
210 {
211 lwp_t *l = curlwp;
212 int error;
213
214 KASSERT(mutex_owned(mtx));
215
216 cv_enter(cv, mtx, l, false);
217 error = sleepq_block(timo, false);
218 mutex_enter(mtx);
219 return error;
220 }
221
222 /*
223 * cv_timedwait_sig:
224 *
225 * Wait on a condition variable until a timeout expires, awoken or a
226 * signal is received. Will also return early if the process is
227 * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
228 * timeout expires, ERESTART if a signal was received and the system
229 * call is restartable, or EINTR otherwise.
230 *
231 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
232 */
233 int
234 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
235 {
236 lwp_t *l = curlwp;
237 int error;
238
239 KASSERT(mutex_owned(mtx));
240
241 cv_enter(cv, mtx, l, true);
242 error = sleepq_block(timo, true);
243 mutex_enter(mtx);
244 return error;
245 }
246
247 /*
248 * Given a number of seconds, sec, and 2^64ths of a second, frac, we
249 * want a number of ticks for a timeout:
250 *
251 * timo = hz*(sec + frac/2^64)
252 * = hz*sec + hz*frac/2^64
253 * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
254 * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
255 *
256 * where frachi is the high 32 bits of frac and fraclo is the
257 * low 32 bits.
258 *
259 * We assume hz < INT_MAX/2 < UINT32_MAX, so
260 *
261 * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
262 *
263 * since fraclo < 2^32.
264 *
265 * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
266 * can't represent timeouts higher than INT_MAX in cv_timedwait, and
267 * spurious wakeup is OK. Moreover, we don't want to wrap around,
268 * because we compute end - start in ticks in order to compute the
269 * remaining timeout, and that difference cannot wrap around, so we use
270 * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
271 * margin for paranoia and will exceed most waits in practice by far.
272 */
273 static unsigned
274 bintime2timo(const struct bintime *bt)
275 {
276
277 KASSERT(hz < INT_MAX/2);
278 CTASSERT(INT_MAX/2 < UINT32_MAX);
279 if (bt->sec > ((INT_MAX/2)/hz))
280 return INT_MAX/2;
281 if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
282 return INT_MAX/2;
283
284 return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
285 }
286
287 /*
288 * timo is in units of ticks. We want units of seconds and 2^64ths of
289 * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
290 * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
291 * second)/tick. So for the fractional part, we compute
292 *
293 * frac = rem * 2^64 / hz
294 * = ((rem * 2^32) / hz) * 2^32
295 *
296 * Using truncating integer division instead of real division will
297 * leave us with only about 32 bits of precision, which means about
298 * 1/4-nanosecond resolution, which is good enough for our purposes.
299 */
300 static struct bintime
301 timo2bintime(unsigned timo)
302 {
303
304 return (struct bintime) {
305 .sec = timo / hz,
306 .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
307 };
308 }
309
310 /*
311 * cv_timedwaitbt:
312 *
313 * Wait on a condition variable until awoken or the specified
314 * timeout expires. Returns zero if awoken normally or
315 * EWOULDBLOCK if the timeout expires.
316 *
317 * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
318 * the time slept, so on exit, bt is the time remaining after
319 * sleeping, possibly negative if the complete time has elapsed.
320 * No infinite timeout; use cv_wait_sig instead.
321 *
322 * epsilon is a requested maximum error in timeout (excluding
323 * spurious wakeups). Currently not used, will be used in the
324 * future to choose between low- and high-resolution timers.
325 * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
326 * where r is the finest resolution of clock available and s is
327 * scheduling delays for scheduler overhead and competing threads.
328 * Time is measured by the interrupt source implementing the
329 * timeout, not by another timecounter.
330 */
331 int
332 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
333 const struct bintime *epsilon __diagused)
334 {
335 struct bintime slept;
336 unsigned start, end;
337 int error;
338
339 KASSERTMSG(bt->sec >= 0, "negative timeout");
340 KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
341
342 /*
343 * getticks() is technically int, but nothing special
344 * happens instead of overflow, so we assume two's-complement
345 * wraparound and just treat it as unsigned.
346 */
347 start = getticks();
348 error = cv_timedwait(cv, mtx, bintime2timo(bt));
349 end = getticks();
350
351 slept = timo2bintime(end - start);
352 /* bt := bt - slept */
353 bintime_sub(bt, &slept);
354
355 return error;
356 }
357
358 /*
359 * cv_timedwaitbt_sig:
360 *
361 * Wait on a condition variable until awoken, the specified
362 * timeout expires, or interrupted by a signal. Returns zero if
363 * awoken normally, EWOULDBLOCK if the timeout expires, or
364 * EINTR/ERESTART if interrupted by a signal.
365 *
366 * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
367 * subtracts the time slept, so on exit, bt is the time remaining
368 * after sleeping. No infinite timeout; use cv_wait instead.
369 *
370 * epsilon is a requested maximum error in timeout (excluding
371 * spurious wakeups). Currently not used, will be used in the
372 * future to choose between low- and high-resolution timers.
373 */
374 int
375 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
376 const struct bintime *epsilon __diagused)
377 {
378 struct bintime slept;
379 unsigned start, end;
380 int error;
381
382 KASSERTMSG(bt->sec >= 0, "negative timeout");
383 KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
384
385 /*
386 * getticks() is technically int, but nothing special
387 * happens instead of overflow, so we assume two's-complement
388 * wraparound and just treat it as unsigned.
389 */
390 start = getticks();
391 error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
392 end = getticks();
393
394 slept = timo2bintime(end - start);
395 /* bt := bt - slept */
396 bintime_sub(bt, &slept);
397
398 return error;
399 }
400
401 /*
402 * cv_signal:
403 *
404 * Wake the highest priority LWP waiting on a condition variable.
405 * Must be called with the interlocking mutex held.
406 */
407 void
408 cv_signal(kcondvar_t *cv)
409 {
410
411 KASSERT(cv_is_valid(cv));
412
413 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
414 cv_wakeup_one(cv);
415 }
416
417 /*
418 * cv_wakeup_one:
419 *
420 * Slow path for cv_signal(). Deliberately marked __noinline to
421 * prevent the compiler pulling it in to cv_signal(), which adds
422 * extra prologue and epilogue code.
423 */
424 static __noinline void
425 cv_wakeup_one(kcondvar_t *cv)
426 {
427 sleepq_t *sq;
428 kmutex_t *mp;
429 lwp_t *l;
430
431 /*
432 * Keep waking LWPs until a non-interruptable waiter is found. An
433 * interruptable waiter could fail to do something useful with the
434 * wakeup due to an error return from cv_[timed]wait_sig(), and the
435 * caller of cv_signal() may not expect such a scenario.
436 *
437 * This isn't a problem for non-interruptable waits (untimed and
438 * timed), because if such a waiter is woken here it will not return
439 * an error.
440 */
441 mp = sleepq_hashlock(cv);
442 sq = CV_SLEEPQ(cv);
443 while ((l = LIST_FIRST(sq)) != NULL) {
444 KASSERT(l->l_sleepq == sq);
445 KASSERT(l->l_mutex == mp);
446 KASSERT(l->l_wchan == cv);
447 if ((l->l_flag & LW_SINTR) == 0) {
448 sleepq_remove(sq, l);
449 break;
450 } else
451 sleepq_remove(sq, l);
452 }
453 mutex_spin_exit(mp);
454 }
455
456 /*
457 * cv_broadcast:
458 *
459 * Wake all LWPs waiting on a condition variable. Must be called
460 * with the interlocking mutex held.
461 */
462 void
463 cv_broadcast(kcondvar_t *cv)
464 {
465
466 KASSERT(cv_is_valid(cv));
467
468 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
469 cv_wakeup_all(cv);
470 }
471
472 /*
473 * cv_wakeup_all:
474 *
475 * Slow path for cv_broadcast(). Deliberately marked __noinline to
476 * prevent the compiler pulling it in to cv_broadcast(), which adds
477 * extra prologue and epilogue code.
478 */
479 static __noinline void
480 cv_wakeup_all(kcondvar_t *cv)
481 {
482 sleepq_t *sq;
483 kmutex_t *mp;
484 lwp_t *l;
485
486 mp = sleepq_hashlock(cv);
487 sq = CV_SLEEPQ(cv);
488 while ((l = LIST_FIRST(sq)) != NULL) {
489 KASSERT(l->l_sleepq == sq);
490 KASSERT(l->l_mutex == mp);
491 KASSERT(l->l_wchan == cv);
492 sleepq_remove(sq, l);
493 }
494 mutex_spin_exit(mp);
495 }
496
497 /*
498 * cv_has_waiters:
499 *
500 * For diagnostic assertions: return non-zero if a condition
501 * variable has waiters.
502 */
503 bool
504 cv_has_waiters(kcondvar_t *cv)
505 {
506
507 return !LIST_EMPTY(CV_SLEEPQ(cv));
508 }
509
510 /*
511 * cv_is_valid:
512 *
513 * For diagnostic assertions: return non-zero if a condition
514 * variable appears to be valid. No locks need be held.
515 */
516 bool
517 cv_is_valid(kcondvar_t *cv)
518 {
519
520 return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
521 }
522