Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.49
      1 /*	$NetBSD: kern_condvar.c,v 1.49 2020/05/03 01:24:37 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel condition variable implementation.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.49 2020/05/03 01:24:37 riastradh Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/lwp.h>
     42 #include <sys/condvar.h>
     43 #include <sys/sleepq.h>
     44 #include <sys/lockdebug.h>
     45 #include <sys/cpu.h>
     46 #include <sys/kernel.h>
     47 
     48 /*
     49  * Accessors for the private contents of the kcondvar_t data type.
     50  *
     51  *	cv_opaque[0]	sleepq_t
     52  *	cv_opaque[1]	description for ps(1)
     53  *
     54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56  * and dequeue).
     57  *
     58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59  * of the CV.
     60  */
     61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64 
     65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67 
     68 static void		cv_unsleep(lwp_t *, bool);
     69 static inline void	cv_wakeup_one(kcondvar_t *);
     70 static inline void	cv_wakeup_all(kcondvar_t *);
     71 
     72 syncobj_t cv_syncobj = {
     73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74 	.sobj_unsleep	= cv_unsleep,
     75 	.sobj_changepri	= sleepq_changepri,
     76 	.sobj_lendpri	= sleepq_lendpri,
     77 	.sobj_owner	= syncobj_noowner,
     78 };
     79 
     80 static const char deadcv[] = "deadcv";
     81 
     82 /*
     83  * cv_init:
     84  *
     85  *	Initialize a condition variable for use.
     86  */
     87 void
     88 cv_init(kcondvar_t *cv, const char *wmesg)
     89 {
     90 
     91 	KASSERT(wmesg != NULL);
     92 	CV_SET_WMESG(cv, wmesg);
     93 	sleepq_init(CV_SLEEPQ(cv));
     94 }
     95 
     96 /*
     97  * cv_destroy:
     98  *
     99  *	Tear down a condition variable.
    100  */
    101 void
    102 cv_destroy(kcondvar_t *cv)
    103 {
    104 
    105 #ifdef DIAGNOSTIC
    106 	KASSERT(cv_is_valid(cv));
    107 	KASSERT(!cv_has_waiters(cv));
    108 	CV_SET_WMESG(cv, deadcv);
    109 #endif
    110 }
    111 
    112 /*
    113  * cv_enter:
    114  *
    115  *	Look up and lock the sleep queue corresponding to the given
    116  *	condition variable, and increment the number of waiters.
    117  */
    118 static inline void
    119 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    120 {
    121 	sleepq_t *sq;
    122 	kmutex_t *mp;
    123 
    124 	KASSERT(cv_is_valid(cv));
    125 	KASSERT(!cpu_intr_p());
    126 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    127 
    128 	l->l_kpriority = true;
    129 	mp = sleepq_hashlock(cv);
    130 	sq = CV_SLEEPQ(cv);
    131 	sleepq_enter(sq, l, mp);
    132 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    133 	mutex_exit(mtx);
    134 	KASSERT(cv_has_waiters(cv));
    135 }
    136 
    137 /*
    138  * cv_unsleep:
    139  *
    140  *	Remove an LWP from the condition variable and sleep queue.  This
    141  *	is called when the LWP has not been awoken normally but instead
    142  *	interrupted: for example, when a signal is received.  Must be
    143  *	called with the LWP locked.  Will unlock if "unlock" is true.
    144  */
    145 static void
    146 cv_unsleep(lwp_t *l, bool unlock)
    147 {
    148 	kcondvar_t *cv __diagused;
    149 
    150 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    151 
    152 	KASSERT(l->l_wchan == (wchan_t)cv);
    153 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    154 	KASSERT(cv_is_valid(cv));
    155 	KASSERT(cv_has_waiters(cv));
    156 
    157 	sleepq_unsleep(l, unlock);
    158 }
    159 
    160 /*
    161  * cv_wait:
    162  *
    163  *	Wait non-interruptably on a condition variable until awoken.
    164  */
    165 void
    166 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    167 {
    168 	lwp_t *l = curlwp;
    169 
    170 	KASSERT(mutex_owned(mtx));
    171 
    172 	cv_enter(cv, mtx, l, false);
    173 	(void)sleepq_block(0, false);
    174 	mutex_enter(mtx);
    175 }
    176 
    177 /*
    178  * cv_wait_sig:
    179  *
    180  *	Wait on a condition variable until a awoken or a signal is received.
    181  *	Will also return early if the process is exiting.  Returns zero if
    182  *	awoken normally, ERESTART if a signal was received and the system
    183  *	call is restartable, or EINTR otherwise.
    184  */
    185 int
    186 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    187 {
    188 	lwp_t *l = curlwp;
    189 	int error;
    190 
    191 	KASSERT(mutex_owned(mtx));
    192 
    193 	cv_enter(cv, mtx, l, true);
    194 	error = sleepq_block(0, true);
    195 	mutex_enter(mtx);
    196 	return error;
    197 }
    198 
    199 /*
    200  * cv_timedwait:
    201  *
    202  *	Wait on a condition variable until awoken or the specified timeout
    203  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    204  *	timeout expired.
    205  *
    206  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    207  */
    208 int
    209 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    210 {
    211 	lwp_t *l = curlwp;
    212 	int error;
    213 
    214 	KASSERT(mutex_owned(mtx));
    215 
    216 	cv_enter(cv, mtx, l, false);
    217 	error = sleepq_block(timo, false);
    218 	mutex_enter(mtx);
    219 	return error;
    220 }
    221 
    222 /*
    223  * cv_timedwait_sig:
    224  *
    225  *	Wait on a condition variable until a timeout expires, awoken or a
    226  *	signal is received.  Will also return early if the process is
    227  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    228  *	timeout expires, ERESTART if a signal was received and the system
    229  *	call is restartable, or EINTR otherwise.
    230  *
    231  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    232  */
    233 int
    234 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    235 {
    236 	lwp_t *l = curlwp;
    237 	int error;
    238 
    239 	KASSERT(mutex_owned(mtx));
    240 
    241 	cv_enter(cv, mtx, l, true);
    242 	error = sleepq_block(timo, true);
    243 	mutex_enter(mtx);
    244 	return error;
    245 }
    246 
    247 struct timedwaitclock {
    248 	struct timespec		*timeout;
    249 	clockid_t		clockid;
    250 	int			flags;
    251 	const struct bintime	*epsilon;
    252 	struct timespec		starttime;
    253 };
    254 
    255 static int
    256 cv_timedwaitclock_begin(struct timedwaitclock *T, int *timo)
    257 {
    258 	struct timespec delta;
    259 	const struct timespec *deltap;
    260 	int error;
    261 
    262 	/* Sanity-check timeout -- may have come from userland.  */
    263 	if (T->timeout->tv_nsec < 0 || T->timeout->tv_nsec >= 1000000000L)
    264 		return EINVAL;
    265 
    266 	/*
    267 	 * Compute the time delta.
    268 	 */
    269 	if ((T->flags & TIMER_ABSTIME) == TIMER_ABSTIME) {
    270 		/* Check our watch.  */
    271 		error = clock_gettime1(T->clockid, &T->starttime);
    272 		if (error)
    273 			return error;
    274 
    275 		/* If the deadline has passed, we're done.  */
    276 		if (timespeccmp(T->timeout, &T->starttime, <=))
    277 			return ETIMEDOUT;
    278 
    279 		/* Count how much time is left.  */
    280 		timespecsub(T->timeout, &T->starttime, &delta);
    281 		deltap = &delta;
    282 	} else {
    283 		/* The user specified how much time is left.  */
    284 		deltap = T->timeout;
    285 
    286 		/* If there's none left, we've timed out.  */
    287 		if (deltap->tv_sec == 0 && deltap->tv_nsec == 0)
    288 			return ETIMEDOUT;
    289 	}
    290 
    291 	/*
    292 	 * Convert to ticks, but clamp to be >=1.
    293 	 *
    294 	 * XXX In the tickless future, use a high-resolution timer if
    295 	 * timo would round to zero.
    296 	 */
    297 	*timo = tstohz(deltap);
    298 	KASSERTMSG(*timo >= 0, "negative ticks: %d", *timo);
    299 	if (*timo == 0)
    300 		*timo = 1;
    301 
    302 	/* Success!  */
    303 	return 0;
    304 }
    305 
    306 static void
    307 cv_timedwaitclock_end(struct timedwaitclock *T)
    308 {
    309 	struct timespec endtime, delta;
    310 
    311 	/* If the timeout is absolute, nothing to do.  */
    312 	if ((T->flags & TIMER_ABSTIME) == TIMER_ABSTIME)
    313 		return;
    314 
    315 	/*
    316 	 * Check our watch.  If anything goes wrong with it, make sure
    317 	 * that the next time we immediately time out rather than fail
    318 	 * to deduct the time elapsed.
    319 	 */
    320 	if (clock_gettime1(T->clockid, &endtime)) {
    321 		T->timeout->tv_sec = 0;
    322 		T->timeout->tv_nsec = 0;
    323 		return;
    324 	}
    325 
    326 	/* Find how much time elapsed while we waited.  */
    327 	timespecsub(&endtime, &T->starttime, &delta);
    328 
    329 	/*
    330 	 * Paranoia: If the clock went backwards, treat it as if no
    331 	 * time elapsed at all rather than adding anything.
    332 	 */
    333 	if (delta.tv_sec < 0 ||
    334 	    (delta.tv_sec == 0 && delta.tv_nsec < 0)) {
    335 		delta.tv_sec = 0;
    336 		delta.tv_nsec = 0;
    337 	}
    338 
    339 	/*
    340 	 * Set it to the time left, or zero, whichever is larger.  We
    341 	 * do not fail with EWOULDBLOCK here because this may have been
    342 	 * an explicit wakeup, so the caller needs to check before they
    343 	 * give up or else cv_signal would be lost.
    344 	 */
    345 	if (timespeccmp(T->timeout, &delta, <=)) {
    346 		T->timeout->tv_sec = 0;
    347 		T->timeout->tv_nsec = 0;
    348 	} else {
    349 		timespecsub(T->timeout, &delta, T->timeout);
    350 	}
    351 }
    352 
    353 /*
    354  * cv_timedwaitclock:
    355  *
    356  *	Wait on a condition variable until awoken normally, or the
    357  *	specified timeout expires according to the provided clock.
    358  *	Returns zero if awoken normally or EWOULDBLOCK if the timeout
    359  *	expired.  For relative timeouts ((flags & TIMER_ABSTIME) == 0),
    360  *	updates timeout with the time left.
    361  *
    362  *	timeout == NULL specifies an infinite timeout.  epsilon is a
    363  *	requested maximum error in timeout (excluding spurious
    364  *	wakeups).
    365  */
    366 int
    367 cv_timedwaitclock(kcondvar_t *cv, kmutex_t *mtx, struct timespec *timeout,
    368     clockid_t clockid, int flags, const struct bintime *epsilon)
    369 {
    370 	struct timedwaitclock T = {
    371 		.timeout = timeout,
    372 		.clockid = clockid,
    373 		.flags = flags,
    374 		.epsilon = epsilon,
    375 	};
    376 	int timo;
    377 	int error;
    378 
    379 	if (timeout == NULL) {
    380 		cv_wait(cv, mtx);
    381 		return 0;
    382 	}
    383 
    384 	error = cv_timedwaitclock_begin(&T, &timo);
    385 	if (error)
    386 		return error;
    387 	error = cv_timedwait(cv, mtx, timo);
    388 	cv_timedwaitclock_end(&T);
    389 	return error;
    390 }
    391 
    392 /*
    393  * cv_timedwaitclock_sig:
    394  *
    395  *	Wait on a condition variable until awoken normally, interrupted
    396  *	by a signal, or the specified timeout expires according to the
    397  *	provided clock.  Returns zero if awoken normally,
    398  *	EINTR/ERESTART if interrupted by a signal, or EWOULDBLOCK if
    399  *	the timeout expired.  For relative timeouts ((flags &
    400  *	TIMER_ABSTIME) == 0), updates timeout with the time left.
    401  *
    402  *	timeout == NULL specifies an infinite timeout.  epsilon is a
    403  *	requested maximum error in timeout (excluding spurious
    404  *	wakeups).
    405  */
    406 int
    407 cv_timedwaitclock_sig(kcondvar_t *cv, kmutex_t *mtx, struct timespec *timeout,
    408     clockid_t clockid, int flags, const struct bintime *epsilon)
    409 {
    410 	struct timedwaitclock T = {
    411 		.timeout = timeout,
    412 		.clockid = clockid,
    413 		.flags = flags,
    414 		.epsilon = epsilon,
    415 	};
    416 	int timo;
    417 	int error;
    418 
    419 	if (timeout == NULL)
    420 		return cv_wait_sig(cv, mtx);
    421 
    422 	error = cv_timedwaitclock_begin(&T, &timo);
    423 	if (error)
    424 		return error;
    425 	error = cv_timedwait_sig(cv, mtx, timo);
    426 	cv_timedwaitclock_end(&T);
    427 	return error;
    428 }
    429 
    430 /*
    431  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    432  * want a number of ticks for a timeout:
    433  *
    434  *	timo = hz*(sec + frac/2^64)
    435  *	     = hz*sec + hz*frac/2^64
    436  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    437  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    438  *
    439  * where frachi is the high 32 bits of frac and fraclo is the
    440  * low 32 bits.
    441  *
    442  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    443  *
    444  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    445  *
    446  * since fraclo < 2^32.
    447  *
    448  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    449  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    450  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    451  * because we compute end - start in ticks in order to compute the
    452  * remaining timeout, and that difference cannot wrap around, so we use
    453  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    454  * margin for paranoia and will exceed most waits in practice by far.
    455  */
    456 static unsigned
    457 bintime2timo(const struct bintime *bt)
    458 {
    459 
    460 	KASSERT(hz < INT_MAX/2);
    461 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    462 	if (bt->sec > ((INT_MAX/2)/hz))
    463 		return INT_MAX/2;
    464 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    465 		return INT_MAX/2;
    466 
    467 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    468 }
    469 
    470 /*
    471  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    472  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    473  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    474  * second)/tick.  So for the fractional part, we compute
    475  *
    476  *	frac = rem * 2^64 / hz
    477  *	     = ((rem * 2^32) / hz) * 2^32
    478  *
    479  * Using truncating integer division instead of real division will
    480  * leave us with only about 32 bits of precision, which means about
    481  * 1/4-nanosecond resolution, which is good enough for our purposes.
    482  */
    483 static struct bintime
    484 timo2bintime(unsigned timo)
    485 {
    486 
    487 	return (struct bintime) {
    488 		.sec = timo / hz,
    489 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    490 	};
    491 }
    492 
    493 /*
    494  * cv_timedwaitbt:
    495  *
    496  *	Wait on a condition variable until awoken or the specified
    497  *	timeout expires.  Returns zero if awoken normally or
    498  *	EWOULDBLOCK if the timeout expires.
    499  *
    500  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    501  *	the time slept, so on exit, bt is the time remaining after
    502  *	sleeping, possibly negative if the complete time has elapsed.
    503  *	No infinite timeout; use cv_wait_sig instead.
    504  *
    505  *	epsilon is a requested maximum error in timeout (excluding
    506  *	spurious wakeups).  Currently not used, will be used in the
    507  *	future to choose between low- and high-resolution timers.
    508  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    509  *	where r is the finest resolution of clock available and s is
    510  *	scheduling delays for scheduler overhead and competing threads.
    511  *	Time is measured by the interrupt source implementing the
    512  *	timeout, not by another timecounter.
    513  */
    514 int
    515 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    516     const struct bintime *epsilon __diagused)
    517 {
    518 	struct bintime slept;
    519 	unsigned start, end;
    520 	int timo;
    521 	int error;
    522 
    523 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    524 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    525 
    526 	/* If there's nothing left to wait, time out.  */
    527 	if (bt->sec == 0 && bt->frac == 0)
    528 		return EWOULDBLOCK;
    529 
    530 	/* Convert to ticks, but clamp to be >=1.  */
    531 	timo = bintime2timo(bt);
    532 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    533 	if (timo == 0)
    534 		timo = 1;
    535 
    536 	/*
    537 	 * getticks() is technically int, but nothing special
    538 	 * happens instead of overflow, so we assume two's-complement
    539 	 * wraparound and just treat it as unsigned.
    540 	 */
    541 	start = getticks();
    542 	error = cv_timedwait(cv, mtx, timo);
    543 	end = getticks();
    544 
    545 	/*
    546 	 * Set it to the time left, or zero, whichever is larger.  We
    547 	 * do not fail with EWOULDBLOCK here because this may have been
    548 	 * an explicit wakeup, so the caller needs to check before they
    549 	 * give up or else cv_signal would be lost.
    550 	 */
    551 	slept = timo2bintime(end - start);
    552 	if (bintimecmp(bt, &slept, <=)) {
    553 		bt->sec = 0;
    554 		bt->frac = 0;
    555 	} else {
    556 		/* bt := bt - slept */
    557 		bintime_sub(bt, &slept);
    558 	}
    559 
    560 	return error;
    561 }
    562 
    563 /*
    564  * cv_timedwaitbt_sig:
    565  *
    566  *	Wait on a condition variable until awoken, the specified
    567  *	timeout expires, or interrupted by a signal.  Returns zero if
    568  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    569  *	EINTR/ERESTART if interrupted by a signal.
    570  *
    571  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    572  *	subtracts the time slept, so on exit, bt is the time remaining
    573  *	after sleeping.  No infinite timeout; use cv_wait instead.
    574  *
    575  *	epsilon is a requested maximum error in timeout (excluding
    576  *	spurious wakeups).  Currently not used, will be used in the
    577  *	future to choose between low- and high-resolution timers.
    578  */
    579 int
    580 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    581     const struct bintime *epsilon __diagused)
    582 {
    583 	struct bintime slept;
    584 	unsigned start, end;
    585 	int timo;
    586 	int error;
    587 
    588 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    589 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    590 
    591 	/* If there's nothing left to wait, time out.  */
    592 	if (bt->sec == 0 && bt->frac == 0)
    593 		return EWOULDBLOCK;
    594 
    595 	/* Convert to ticks, but clamp to be >=1.  */
    596 	timo = bintime2timo(bt);
    597 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    598 	if (timo == 0)
    599 		timo = 1;
    600 
    601 	/*
    602 	 * getticks() is technically int, but nothing special
    603 	 * happens instead of overflow, so we assume two's-complement
    604 	 * wraparound and just treat it as unsigned.
    605 	 */
    606 	start = getticks();
    607 	error = cv_timedwait_sig(cv, mtx, timo);
    608 	end = getticks();
    609 
    610 	/*
    611 	 * Set it to the time left, or zero, whichever is larger.  We
    612 	 * do not fail with EWOULDBLOCK here because this may have been
    613 	 * an explicit wakeup, so the caller needs to check before they
    614 	 * give up or else cv_signal would be lost.
    615 	 */
    616 	slept = timo2bintime(end - start);
    617 	if (bintimecmp(bt, &slept, <=)) {
    618 		bt->sec = 0;
    619 		bt->frac = 0;
    620 	} else {
    621 		/* bt := bt - slept */
    622 		bintime_sub(bt, &slept);
    623 	}
    624 
    625 	return error;
    626 }
    627 
    628 /*
    629  * cv_signal:
    630  *
    631  *	Wake the highest priority LWP waiting on a condition variable.
    632  *	Must be called with the interlocking mutex held.
    633  */
    634 void
    635 cv_signal(kcondvar_t *cv)
    636 {
    637 
    638 	KASSERT(cv_is_valid(cv));
    639 
    640 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    641 		cv_wakeup_one(cv);
    642 }
    643 
    644 /*
    645  * cv_wakeup_one:
    646  *
    647  *	Slow path for cv_signal().  Deliberately marked __noinline to
    648  *	prevent the compiler pulling it in to cv_signal(), which adds
    649  *	extra prologue and epilogue code.
    650  */
    651 static __noinline void
    652 cv_wakeup_one(kcondvar_t *cv)
    653 {
    654 	sleepq_t *sq;
    655 	kmutex_t *mp;
    656 	lwp_t *l;
    657 
    658 	/*
    659 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
    660 	 * interruptable waiter could fail to do something useful with the
    661 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
    662 	 * caller of cv_signal() may not expect such a scenario.
    663 	 *
    664 	 * This isn't a problem for non-interruptable waits (untimed and
    665 	 * timed), because if such a waiter is woken here it will not return
    666 	 * an error.
    667 	 */
    668 	mp = sleepq_hashlock(cv);
    669 	sq = CV_SLEEPQ(cv);
    670 	while ((l = LIST_FIRST(sq)) != NULL) {
    671 		KASSERT(l->l_sleepq == sq);
    672 		KASSERT(l->l_mutex == mp);
    673 		KASSERT(l->l_wchan == cv);
    674 		if ((l->l_flag & LW_SINTR) == 0) {
    675 			sleepq_remove(sq, l);
    676 			break;
    677 		} else
    678 			sleepq_remove(sq, l);
    679 	}
    680 	mutex_spin_exit(mp);
    681 }
    682 
    683 /*
    684  * cv_broadcast:
    685  *
    686  *	Wake all LWPs waiting on a condition variable.  Must be called
    687  *	with the interlocking mutex held.
    688  */
    689 void
    690 cv_broadcast(kcondvar_t *cv)
    691 {
    692 
    693 	KASSERT(cv_is_valid(cv));
    694 
    695 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    696 		cv_wakeup_all(cv);
    697 }
    698 
    699 /*
    700  * cv_wakeup_all:
    701  *
    702  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    703  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    704  *	extra prologue and epilogue code.
    705  */
    706 static __noinline void
    707 cv_wakeup_all(kcondvar_t *cv)
    708 {
    709 	sleepq_t *sq;
    710 	kmutex_t *mp;
    711 	lwp_t *l;
    712 
    713 	mp = sleepq_hashlock(cv);
    714 	sq = CV_SLEEPQ(cv);
    715 	while ((l = LIST_FIRST(sq)) != NULL) {
    716 		KASSERT(l->l_sleepq == sq);
    717 		KASSERT(l->l_mutex == mp);
    718 		KASSERT(l->l_wchan == cv);
    719 		sleepq_remove(sq, l);
    720 	}
    721 	mutex_spin_exit(mp);
    722 }
    723 
    724 /*
    725  * cv_has_waiters:
    726  *
    727  *	For diagnostic assertions: return non-zero if a condition
    728  *	variable has waiters.
    729  */
    730 bool
    731 cv_has_waiters(kcondvar_t *cv)
    732 {
    733 
    734 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    735 }
    736 
    737 /*
    738  * cv_is_valid:
    739  *
    740  *	For diagnostic assertions: return non-zero if a condition
    741  *	variable appears to be valid.  No locks need be held.
    742  */
    743 bool
    744 cv_is_valid(kcondvar_t *cv)
    745 {
    746 
    747 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    748 }
    749