Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.50
      1 /*	$NetBSD: kern_condvar.c,v 1.50 2020/05/03 17:36:33 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel condition variable implementation.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.50 2020/05/03 17:36:33 thorpej Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/lwp.h>
     42 #include <sys/condvar.h>
     43 #include <sys/sleepq.h>
     44 #include <sys/lockdebug.h>
     45 #include <sys/cpu.h>
     46 #include <sys/kernel.h>
     47 
     48 /*
     49  * Accessors for the private contents of the kcondvar_t data type.
     50  *
     51  *	cv_opaque[0]	sleepq_t
     52  *	cv_opaque[1]	description for ps(1)
     53  *
     54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56  * and dequeue).
     57  *
     58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59  * of the CV.
     60  */
     61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64 
     65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67 
     68 static void		cv_unsleep(lwp_t *, bool);
     69 static inline void	cv_wakeup_one(kcondvar_t *);
     70 static inline void	cv_wakeup_all(kcondvar_t *);
     71 
     72 syncobj_t cv_syncobj = {
     73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74 	.sobj_unsleep	= cv_unsleep,
     75 	.sobj_changepri	= sleepq_changepri,
     76 	.sobj_lendpri	= sleepq_lendpri,
     77 	.sobj_owner	= syncobj_noowner,
     78 };
     79 
     80 static const char deadcv[] = "deadcv";
     81 
     82 /*
     83  * cv_init:
     84  *
     85  *	Initialize a condition variable for use.
     86  */
     87 void
     88 cv_init(kcondvar_t *cv, const char *wmesg)
     89 {
     90 
     91 	KASSERT(wmesg != NULL);
     92 	CV_SET_WMESG(cv, wmesg);
     93 	sleepq_init(CV_SLEEPQ(cv));
     94 }
     95 
     96 /*
     97  * cv_destroy:
     98  *
     99  *	Tear down a condition variable.
    100  */
    101 void
    102 cv_destroy(kcondvar_t *cv)
    103 {
    104 
    105 #ifdef DIAGNOSTIC
    106 	KASSERT(cv_is_valid(cv));
    107 	KASSERT(!cv_has_waiters(cv));
    108 	CV_SET_WMESG(cv, deadcv);
    109 #endif
    110 }
    111 
    112 /*
    113  * cv_enter:
    114  *
    115  *	Look up and lock the sleep queue corresponding to the given
    116  *	condition variable, and increment the number of waiters.
    117  */
    118 static inline void
    119 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    120 {
    121 	sleepq_t *sq;
    122 	kmutex_t *mp;
    123 
    124 	KASSERT(cv_is_valid(cv));
    125 	KASSERT(!cpu_intr_p());
    126 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    127 
    128 	l->l_kpriority = true;
    129 	mp = sleepq_hashlock(cv);
    130 	sq = CV_SLEEPQ(cv);
    131 	sleepq_enter(sq, l, mp);
    132 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    133 	mutex_exit(mtx);
    134 	KASSERT(cv_has_waiters(cv));
    135 }
    136 
    137 /*
    138  * cv_unsleep:
    139  *
    140  *	Remove an LWP from the condition variable and sleep queue.  This
    141  *	is called when the LWP has not been awoken normally but instead
    142  *	interrupted: for example, when a signal is received.  Must be
    143  *	called with the LWP locked.  Will unlock if "unlock" is true.
    144  */
    145 static void
    146 cv_unsleep(lwp_t *l, bool unlock)
    147 {
    148 	kcondvar_t *cv __diagused;
    149 
    150 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    151 
    152 	KASSERT(l->l_wchan == (wchan_t)cv);
    153 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    154 	KASSERT(cv_is_valid(cv));
    155 	KASSERT(cv_has_waiters(cv));
    156 
    157 	sleepq_unsleep(l, unlock);
    158 }
    159 
    160 /*
    161  * cv_wait:
    162  *
    163  *	Wait non-interruptably on a condition variable until awoken.
    164  */
    165 void
    166 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    167 {
    168 	lwp_t *l = curlwp;
    169 
    170 	KASSERT(mutex_owned(mtx));
    171 
    172 	cv_enter(cv, mtx, l, false);
    173 	(void)sleepq_block(0, false);
    174 	mutex_enter(mtx);
    175 }
    176 
    177 /*
    178  * cv_wait_sig:
    179  *
    180  *	Wait on a condition variable until a awoken or a signal is received.
    181  *	Will also return early if the process is exiting.  Returns zero if
    182  *	awoken normally, ERESTART if a signal was received and the system
    183  *	call is restartable, or EINTR otherwise.
    184  */
    185 int
    186 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    187 {
    188 	lwp_t *l = curlwp;
    189 	int error;
    190 
    191 	KASSERT(mutex_owned(mtx));
    192 
    193 	cv_enter(cv, mtx, l, true);
    194 	error = sleepq_block(0, true);
    195 	mutex_enter(mtx);
    196 	return error;
    197 }
    198 
    199 /*
    200  * cv_timedwait:
    201  *
    202  *	Wait on a condition variable until awoken or the specified timeout
    203  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    204  *	timeout expired.
    205  *
    206  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    207  */
    208 int
    209 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    210 {
    211 	lwp_t *l = curlwp;
    212 	int error;
    213 
    214 	KASSERT(mutex_owned(mtx));
    215 
    216 	cv_enter(cv, mtx, l, false);
    217 	error = sleepq_block(timo, false);
    218 	mutex_enter(mtx);
    219 	return error;
    220 }
    221 
    222 /*
    223  * cv_timedwait_sig:
    224  *
    225  *	Wait on a condition variable until a timeout expires, awoken or a
    226  *	signal is received.  Will also return early if the process is
    227  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    228  *	timeout expires, ERESTART if a signal was received and the system
    229  *	call is restartable, or EINTR otherwise.
    230  *
    231  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    232  */
    233 int
    234 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    235 {
    236 	lwp_t *l = curlwp;
    237 	int error;
    238 
    239 	KASSERT(mutex_owned(mtx));
    240 
    241 	cv_enter(cv, mtx, l, true);
    242 	error = sleepq_block(timo, true);
    243 	mutex_enter(mtx);
    244 	return error;
    245 }
    246 
    247 /*
    248  * cv_timedwaitclock:
    249  *
    250  *	Wait on a condition variable until awoken normally, or the
    251  *	specified timeout expires according to the provided clock.
    252  *	Returns zero if awoken normally or EWOULDBLOCK if the timeout
    253  *	expired.  For relative timeouts ((flags & TIMER_ABSTIME) == 0),
    254  *	updates timeout with the time left.
    255  *
    256  *	timeout == NULL specifies an infinite timeout.  epsilon is a
    257  *	requested maximum error in timeout (excluding spurious
    258  *	wakeups).
    259  */
    260 int
    261 cv_timedwaitclock(kcondvar_t *cv, kmutex_t *mtx, struct timespec *timeout,
    262     clockid_t clockid, int flags, const struct bintime *epsilon)
    263 {
    264 	struct timedwaitclock T = {
    265 		.timeout = timeout,
    266 		.clockid = clockid,
    267 		.flags = flags,
    268 		.epsilon = epsilon,
    269 	};
    270 	int timo;
    271 	int error;
    272 
    273 	if (timeout == NULL) {
    274 		cv_wait(cv, mtx);
    275 		return 0;
    276 	}
    277 
    278 	error = timedwaitclock_begin(&T, &timo);
    279 	if (error)
    280 		return error;
    281 	error = cv_timedwait(cv, mtx, timo);
    282 	timedwaitclock_end(&T);
    283 	return error;
    284 }
    285 
    286 /*
    287  * cv_timedwaitclock_sig:
    288  *
    289  *	Wait on a condition variable until awoken normally, interrupted
    290  *	by a signal, or the specified timeout expires according to the
    291  *	provided clock.  Returns zero if awoken normally,
    292  *	EINTR/ERESTART if interrupted by a signal, or EWOULDBLOCK if
    293  *	the timeout expired.  For relative timeouts ((flags &
    294  *	TIMER_ABSTIME) == 0), updates timeout with the time left.
    295  *
    296  *	timeout == NULL specifies an infinite timeout.  epsilon is a
    297  *	requested maximum error in timeout (excluding spurious
    298  *	wakeups).
    299  */
    300 int
    301 cv_timedwaitclock_sig(kcondvar_t *cv, kmutex_t *mtx, struct timespec *timeout,
    302     clockid_t clockid, int flags, const struct bintime *epsilon)
    303 {
    304 	struct timedwaitclock T = {
    305 		.timeout = timeout,
    306 		.clockid = clockid,
    307 		.flags = flags,
    308 		.epsilon = epsilon,
    309 	};
    310 	int timo;
    311 	int error;
    312 
    313 	if (timeout == NULL)
    314 		return cv_wait_sig(cv, mtx);
    315 
    316 	error = timedwaitclock_begin(&T, &timo);
    317 	if (error)
    318 		return error;
    319 	error = cv_timedwait_sig(cv, mtx, timo);
    320 	timedwaitclock_end(&T);
    321 	return error;
    322 }
    323 
    324 /*
    325  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    326  * want a number of ticks for a timeout:
    327  *
    328  *	timo = hz*(sec + frac/2^64)
    329  *	     = hz*sec + hz*frac/2^64
    330  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    331  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    332  *
    333  * where frachi is the high 32 bits of frac and fraclo is the
    334  * low 32 bits.
    335  *
    336  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    337  *
    338  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    339  *
    340  * since fraclo < 2^32.
    341  *
    342  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    343  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    344  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    345  * because we compute end - start in ticks in order to compute the
    346  * remaining timeout, and that difference cannot wrap around, so we use
    347  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    348  * margin for paranoia and will exceed most waits in practice by far.
    349  */
    350 static unsigned
    351 bintime2timo(const struct bintime *bt)
    352 {
    353 
    354 	KASSERT(hz < INT_MAX/2);
    355 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    356 	if (bt->sec > ((INT_MAX/2)/hz))
    357 		return INT_MAX/2;
    358 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    359 		return INT_MAX/2;
    360 
    361 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    362 }
    363 
    364 /*
    365  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    366  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    367  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    368  * second)/tick.  So for the fractional part, we compute
    369  *
    370  *	frac = rem * 2^64 / hz
    371  *	     = ((rem * 2^32) / hz) * 2^32
    372  *
    373  * Using truncating integer division instead of real division will
    374  * leave us with only about 32 bits of precision, which means about
    375  * 1/4-nanosecond resolution, which is good enough for our purposes.
    376  */
    377 static struct bintime
    378 timo2bintime(unsigned timo)
    379 {
    380 
    381 	return (struct bintime) {
    382 		.sec = timo / hz,
    383 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    384 	};
    385 }
    386 
    387 /*
    388  * cv_timedwaitbt:
    389  *
    390  *	Wait on a condition variable until awoken or the specified
    391  *	timeout expires.  Returns zero if awoken normally or
    392  *	EWOULDBLOCK if the timeout expires.
    393  *
    394  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    395  *	the time slept, so on exit, bt is the time remaining after
    396  *	sleeping, possibly negative if the complete time has elapsed.
    397  *	No infinite timeout; use cv_wait_sig instead.
    398  *
    399  *	epsilon is a requested maximum error in timeout (excluding
    400  *	spurious wakeups).  Currently not used, will be used in the
    401  *	future to choose between low- and high-resolution timers.
    402  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    403  *	where r is the finest resolution of clock available and s is
    404  *	scheduling delays for scheduler overhead and competing threads.
    405  *	Time is measured by the interrupt source implementing the
    406  *	timeout, not by another timecounter.
    407  */
    408 int
    409 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    410     const struct bintime *epsilon __diagused)
    411 {
    412 	struct bintime slept;
    413 	unsigned start, end;
    414 	int timo;
    415 	int error;
    416 
    417 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    418 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    419 
    420 	/* If there's nothing left to wait, time out.  */
    421 	if (bt->sec == 0 && bt->frac == 0)
    422 		return EWOULDBLOCK;
    423 
    424 	/* Convert to ticks, but clamp to be >=1.  */
    425 	timo = bintime2timo(bt);
    426 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    427 	if (timo == 0)
    428 		timo = 1;
    429 
    430 	/*
    431 	 * getticks() is technically int, but nothing special
    432 	 * happens instead of overflow, so we assume two's-complement
    433 	 * wraparound and just treat it as unsigned.
    434 	 */
    435 	start = getticks();
    436 	error = cv_timedwait(cv, mtx, timo);
    437 	end = getticks();
    438 
    439 	/*
    440 	 * Set it to the time left, or zero, whichever is larger.  We
    441 	 * do not fail with EWOULDBLOCK here because this may have been
    442 	 * an explicit wakeup, so the caller needs to check before they
    443 	 * give up or else cv_signal would be lost.
    444 	 */
    445 	slept = timo2bintime(end - start);
    446 	if (bintimecmp(bt, &slept, <=)) {
    447 		bt->sec = 0;
    448 		bt->frac = 0;
    449 	} else {
    450 		/* bt := bt - slept */
    451 		bintime_sub(bt, &slept);
    452 	}
    453 
    454 	return error;
    455 }
    456 
    457 /*
    458  * cv_timedwaitbt_sig:
    459  *
    460  *	Wait on a condition variable until awoken, the specified
    461  *	timeout expires, or interrupted by a signal.  Returns zero if
    462  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    463  *	EINTR/ERESTART if interrupted by a signal.
    464  *
    465  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    466  *	subtracts the time slept, so on exit, bt is the time remaining
    467  *	after sleeping.  No infinite timeout; use cv_wait instead.
    468  *
    469  *	epsilon is a requested maximum error in timeout (excluding
    470  *	spurious wakeups).  Currently not used, will be used in the
    471  *	future to choose between low- and high-resolution timers.
    472  */
    473 int
    474 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    475     const struct bintime *epsilon __diagused)
    476 {
    477 	struct bintime slept;
    478 	unsigned start, end;
    479 	int timo;
    480 	int error;
    481 
    482 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    483 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    484 
    485 	/* If there's nothing left to wait, time out.  */
    486 	if (bt->sec == 0 && bt->frac == 0)
    487 		return EWOULDBLOCK;
    488 
    489 	/* Convert to ticks, but clamp to be >=1.  */
    490 	timo = bintime2timo(bt);
    491 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    492 	if (timo == 0)
    493 		timo = 1;
    494 
    495 	/*
    496 	 * getticks() is technically int, but nothing special
    497 	 * happens instead of overflow, so we assume two's-complement
    498 	 * wraparound and just treat it as unsigned.
    499 	 */
    500 	start = getticks();
    501 	error = cv_timedwait_sig(cv, mtx, timo);
    502 	end = getticks();
    503 
    504 	/*
    505 	 * Set it to the time left, or zero, whichever is larger.  We
    506 	 * do not fail with EWOULDBLOCK here because this may have been
    507 	 * an explicit wakeup, so the caller needs to check before they
    508 	 * give up or else cv_signal would be lost.
    509 	 */
    510 	slept = timo2bintime(end - start);
    511 	if (bintimecmp(bt, &slept, <=)) {
    512 		bt->sec = 0;
    513 		bt->frac = 0;
    514 	} else {
    515 		/* bt := bt - slept */
    516 		bintime_sub(bt, &slept);
    517 	}
    518 
    519 	return error;
    520 }
    521 
    522 /*
    523  * cv_signal:
    524  *
    525  *	Wake the highest priority LWP waiting on a condition variable.
    526  *	Must be called with the interlocking mutex held.
    527  */
    528 void
    529 cv_signal(kcondvar_t *cv)
    530 {
    531 
    532 	KASSERT(cv_is_valid(cv));
    533 
    534 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    535 		cv_wakeup_one(cv);
    536 }
    537 
    538 /*
    539  * cv_wakeup_one:
    540  *
    541  *	Slow path for cv_signal().  Deliberately marked __noinline to
    542  *	prevent the compiler pulling it in to cv_signal(), which adds
    543  *	extra prologue and epilogue code.
    544  */
    545 static __noinline void
    546 cv_wakeup_one(kcondvar_t *cv)
    547 {
    548 	sleepq_t *sq;
    549 	kmutex_t *mp;
    550 	lwp_t *l;
    551 
    552 	/*
    553 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
    554 	 * interruptable waiter could fail to do something useful with the
    555 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
    556 	 * caller of cv_signal() may not expect such a scenario.
    557 	 *
    558 	 * This isn't a problem for non-interruptable waits (untimed and
    559 	 * timed), because if such a waiter is woken here it will not return
    560 	 * an error.
    561 	 */
    562 	mp = sleepq_hashlock(cv);
    563 	sq = CV_SLEEPQ(cv);
    564 	while ((l = LIST_FIRST(sq)) != NULL) {
    565 		KASSERT(l->l_sleepq == sq);
    566 		KASSERT(l->l_mutex == mp);
    567 		KASSERT(l->l_wchan == cv);
    568 		if ((l->l_flag & LW_SINTR) == 0) {
    569 			sleepq_remove(sq, l);
    570 			break;
    571 		} else
    572 			sleepq_remove(sq, l);
    573 	}
    574 	mutex_spin_exit(mp);
    575 }
    576 
    577 /*
    578  * cv_broadcast:
    579  *
    580  *	Wake all LWPs waiting on a condition variable.  Must be called
    581  *	with the interlocking mutex held.
    582  */
    583 void
    584 cv_broadcast(kcondvar_t *cv)
    585 {
    586 
    587 	KASSERT(cv_is_valid(cv));
    588 
    589 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    590 		cv_wakeup_all(cv);
    591 }
    592 
    593 /*
    594  * cv_wakeup_all:
    595  *
    596  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    597  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    598  *	extra prologue and epilogue code.
    599  */
    600 static __noinline void
    601 cv_wakeup_all(kcondvar_t *cv)
    602 {
    603 	sleepq_t *sq;
    604 	kmutex_t *mp;
    605 	lwp_t *l;
    606 
    607 	mp = sleepq_hashlock(cv);
    608 	sq = CV_SLEEPQ(cv);
    609 	while ((l = LIST_FIRST(sq)) != NULL) {
    610 		KASSERT(l->l_sleepq == sq);
    611 		KASSERT(l->l_mutex == mp);
    612 		KASSERT(l->l_wchan == cv);
    613 		sleepq_remove(sq, l);
    614 	}
    615 	mutex_spin_exit(mp);
    616 }
    617 
    618 /*
    619  * cv_has_waiters:
    620  *
    621  *	For diagnostic assertions: return non-zero if a condition
    622  *	variable has waiters.
    623  */
    624 bool
    625 cv_has_waiters(kcondvar_t *cv)
    626 {
    627 
    628 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    629 }
    630 
    631 /*
    632  * cv_is_valid:
    633  *
    634  *	For diagnostic assertions: return non-zero if a condition
    635  *	variable appears to be valid.  No locks need be held.
    636  */
    637 bool
    638 cv_is_valid(kcondvar_t *cv)
    639 {
    640 
    641 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    642 }
    643