Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.51
      1 /*	$NetBSD: kern_condvar.c,v 1.51 2020/05/04 18:23:37 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel condition variable implementation.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.51 2020/05/04 18:23:37 riastradh Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/lwp.h>
     42 #include <sys/condvar.h>
     43 #include <sys/sleepq.h>
     44 #include <sys/lockdebug.h>
     45 #include <sys/cpu.h>
     46 #include <sys/kernel.h>
     47 
     48 /*
     49  * Accessors for the private contents of the kcondvar_t data type.
     50  *
     51  *	cv_opaque[0]	sleepq_t
     52  *	cv_opaque[1]	description for ps(1)
     53  *
     54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56  * and dequeue).
     57  *
     58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59  * of the CV.
     60  */
     61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64 
     65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67 
     68 static void		cv_unsleep(lwp_t *, bool);
     69 static inline void	cv_wakeup_one(kcondvar_t *);
     70 static inline void	cv_wakeup_all(kcondvar_t *);
     71 
     72 syncobj_t cv_syncobj = {
     73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74 	.sobj_unsleep	= cv_unsleep,
     75 	.sobj_changepri	= sleepq_changepri,
     76 	.sobj_lendpri	= sleepq_lendpri,
     77 	.sobj_owner	= syncobj_noowner,
     78 };
     79 
     80 static const char deadcv[] = "deadcv";
     81 
     82 /*
     83  * cv_init:
     84  *
     85  *	Initialize a condition variable for use.
     86  */
     87 void
     88 cv_init(kcondvar_t *cv, const char *wmesg)
     89 {
     90 
     91 	KASSERT(wmesg != NULL);
     92 	CV_SET_WMESG(cv, wmesg);
     93 	sleepq_init(CV_SLEEPQ(cv));
     94 }
     95 
     96 /*
     97  * cv_destroy:
     98  *
     99  *	Tear down a condition variable.
    100  */
    101 void
    102 cv_destroy(kcondvar_t *cv)
    103 {
    104 
    105 #ifdef DIAGNOSTIC
    106 	KASSERT(cv_is_valid(cv));
    107 	KASSERT(!cv_has_waiters(cv));
    108 	CV_SET_WMESG(cv, deadcv);
    109 #endif
    110 }
    111 
    112 /*
    113  * cv_enter:
    114  *
    115  *	Look up and lock the sleep queue corresponding to the given
    116  *	condition variable, and increment the number of waiters.
    117  */
    118 static inline void
    119 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    120 {
    121 	sleepq_t *sq;
    122 	kmutex_t *mp;
    123 
    124 	KASSERT(cv_is_valid(cv));
    125 	KASSERT(!cpu_intr_p());
    126 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    127 
    128 	l->l_kpriority = true;
    129 	mp = sleepq_hashlock(cv);
    130 	sq = CV_SLEEPQ(cv);
    131 	sleepq_enter(sq, l, mp);
    132 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    133 	mutex_exit(mtx);
    134 	KASSERT(cv_has_waiters(cv));
    135 }
    136 
    137 /*
    138  * cv_unsleep:
    139  *
    140  *	Remove an LWP from the condition variable and sleep queue.  This
    141  *	is called when the LWP has not been awoken normally but instead
    142  *	interrupted: for example, when a signal is received.  Must be
    143  *	called with the LWP locked.  Will unlock if "unlock" is true.
    144  */
    145 static void
    146 cv_unsleep(lwp_t *l, bool unlock)
    147 {
    148 	kcondvar_t *cv __diagused;
    149 
    150 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    151 
    152 	KASSERT(l->l_wchan == (wchan_t)cv);
    153 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    154 	KASSERT(cv_is_valid(cv));
    155 	KASSERT(cv_has_waiters(cv));
    156 
    157 	sleepq_unsleep(l, unlock);
    158 }
    159 
    160 /*
    161  * cv_wait:
    162  *
    163  *	Wait non-interruptably on a condition variable until awoken.
    164  */
    165 void
    166 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    167 {
    168 	lwp_t *l = curlwp;
    169 
    170 	KASSERT(mutex_owned(mtx));
    171 
    172 	cv_enter(cv, mtx, l, false);
    173 	(void)sleepq_block(0, false);
    174 	mutex_enter(mtx);
    175 }
    176 
    177 /*
    178  * cv_wait_sig:
    179  *
    180  *	Wait on a condition variable until a awoken or a signal is received.
    181  *	Will also return early if the process is exiting.  Returns zero if
    182  *	awoken normally, ERESTART if a signal was received and the system
    183  *	call is restartable, or EINTR otherwise.
    184  */
    185 int
    186 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    187 {
    188 	lwp_t *l = curlwp;
    189 	int error;
    190 
    191 	KASSERT(mutex_owned(mtx));
    192 
    193 	cv_enter(cv, mtx, l, true);
    194 	error = sleepq_block(0, true);
    195 	mutex_enter(mtx);
    196 	return error;
    197 }
    198 
    199 /*
    200  * cv_timedwait:
    201  *
    202  *	Wait on a condition variable until awoken or the specified timeout
    203  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    204  *	timeout expired.
    205  *
    206  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    207  */
    208 int
    209 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    210 {
    211 	lwp_t *l = curlwp;
    212 	int error;
    213 
    214 	KASSERT(mutex_owned(mtx));
    215 
    216 	cv_enter(cv, mtx, l, false);
    217 	error = sleepq_block(timo, false);
    218 	mutex_enter(mtx);
    219 	return error;
    220 }
    221 
    222 /*
    223  * cv_timedwait_sig:
    224  *
    225  *	Wait on a condition variable until a timeout expires, awoken or a
    226  *	signal is received.  Will also return early if the process is
    227  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    228  *	timeout expires, ERESTART if a signal was received and the system
    229  *	call is restartable, or EINTR otherwise.
    230  *
    231  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    232  */
    233 int
    234 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    235 {
    236 	lwp_t *l = curlwp;
    237 	int error;
    238 
    239 	KASSERT(mutex_owned(mtx));
    240 
    241 	cv_enter(cv, mtx, l, true);
    242 	error = sleepq_block(timo, true);
    243 	mutex_enter(mtx);
    244 	return error;
    245 }
    246 
    247 /*
    248  * cv_timedwaitclock:
    249  *
    250  *	Wait on a condition variable until awoken normally, or the
    251  *	specified timeout expires according to the provided clock.
    252  *	Returns zero if awoken normally or EWOULDBLOCK if the timeout
    253  *	expired.  For relative timeouts ((flags & TIMER_ABSTIME) == 0),
    254  *	updates timeout with the time left.
    255  *
    256  *	timeout == NULL specifies an infinite timeout.  epsilon is a
    257  *	requested maximum error in timeout (excluding spurious
    258  *	wakeups).
    259  */
    260 int
    261 cv_timedwaitclock(kcondvar_t *cv, kmutex_t *mtx, struct timespec *timeout,
    262     clockid_t clockid, int flags, const struct bintime *epsilon)
    263 {
    264 	struct timedwaitclock T;
    265 	int timo;
    266 	int error;
    267 
    268 	if (timeout == NULL) {
    269 		cv_wait(cv, mtx);
    270 		return 0;
    271 	}
    272 
    273 	timedwaitclock_setup(&T, timeout, clockid, flags, epsilon);
    274 	error = timedwaitclock_begin(&T, &timo);
    275 	if (error)
    276 		return error;
    277 	error = cv_timedwait(cv, mtx, timo);
    278 	timedwaitclock_end(&T);
    279 	return error;
    280 }
    281 
    282 /*
    283  * cv_timedwaitclock_sig:
    284  *
    285  *	Wait on a condition variable until awoken normally, interrupted
    286  *	by a signal, or the specified timeout expires according to the
    287  *	provided clock.  Returns zero if awoken normally,
    288  *	EINTR/ERESTART if interrupted by a signal, or EWOULDBLOCK if
    289  *	the timeout expired.  For relative timeouts ((flags &
    290  *	TIMER_ABSTIME) == 0), updates timeout with the time left.
    291  *
    292  *	timeout == NULL specifies an infinite timeout.  epsilon is a
    293  *	requested maximum error in timeout (excluding spurious
    294  *	wakeups).
    295  */
    296 int
    297 cv_timedwaitclock_sig(kcondvar_t *cv, kmutex_t *mtx, struct timespec *timeout,
    298     clockid_t clockid, int flags, const struct bintime *epsilon)
    299 {
    300 	struct timedwaitclock T;
    301 	int timo;
    302 	int error;
    303 
    304 	if (timeout == NULL)
    305 		return cv_wait_sig(cv, mtx);
    306 
    307 	timedwaitclock_setup(&T, timeout, clockid, flags, epsilon);
    308 	error = timedwaitclock_begin(&T, &timo);
    309 	if (error)
    310 		return error;
    311 	error = cv_timedwait_sig(cv, mtx, timo);
    312 	timedwaitclock_end(&T);
    313 	return error;
    314 }
    315 
    316 /*
    317  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    318  * want a number of ticks for a timeout:
    319  *
    320  *	timo = hz*(sec + frac/2^64)
    321  *	     = hz*sec + hz*frac/2^64
    322  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    323  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    324  *
    325  * where frachi is the high 32 bits of frac and fraclo is the
    326  * low 32 bits.
    327  *
    328  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    329  *
    330  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    331  *
    332  * since fraclo < 2^32.
    333  *
    334  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    335  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    336  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    337  * because we compute end - start in ticks in order to compute the
    338  * remaining timeout, and that difference cannot wrap around, so we use
    339  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    340  * margin for paranoia and will exceed most waits in practice by far.
    341  */
    342 static unsigned
    343 bintime2timo(const struct bintime *bt)
    344 {
    345 
    346 	KASSERT(hz < INT_MAX/2);
    347 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    348 	if (bt->sec > ((INT_MAX/2)/hz))
    349 		return INT_MAX/2;
    350 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    351 		return INT_MAX/2;
    352 
    353 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    354 }
    355 
    356 /*
    357  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    358  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    359  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    360  * second)/tick.  So for the fractional part, we compute
    361  *
    362  *	frac = rem * 2^64 / hz
    363  *	     = ((rem * 2^32) / hz) * 2^32
    364  *
    365  * Using truncating integer division instead of real division will
    366  * leave us with only about 32 bits of precision, which means about
    367  * 1/4-nanosecond resolution, which is good enough for our purposes.
    368  */
    369 static struct bintime
    370 timo2bintime(unsigned timo)
    371 {
    372 
    373 	return (struct bintime) {
    374 		.sec = timo / hz,
    375 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    376 	};
    377 }
    378 
    379 /*
    380  * cv_timedwaitbt:
    381  *
    382  *	Wait on a condition variable until awoken or the specified
    383  *	timeout expires.  Returns zero if awoken normally or
    384  *	EWOULDBLOCK if the timeout expires.
    385  *
    386  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    387  *	the time slept, so on exit, bt is the time remaining after
    388  *	sleeping, possibly negative if the complete time has elapsed.
    389  *	No infinite timeout; use cv_wait_sig instead.
    390  *
    391  *	epsilon is a requested maximum error in timeout (excluding
    392  *	spurious wakeups).  Currently not used, will be used in the
    393  *	future to choose between low- and high-resolution timers.
    394  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    395  *	where r is the finest resolution of clock available and s is
    396  *	scheduling delays for scheduler overhead and competing threads.
    397  *	Time is measured by the interrupt source implementing the
    398  *	timeout, not by another timecounter.
    399  */
    400 int
    401 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    402     const struct bintime *epsilon __diagused)
    403 {
    404 	struct bintime slept;
    405 	unsigned start, end;
    406 	int timo;
    407 	int error;
    408 
    409 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    410 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    411 
    412 	/* If there's nothing left to wait, time out.  */
    413 	if (bt->sec == 0 && bt->frac == 0)
    414 		return EWOULDBLOCK;
    415 
    416 	/* Convert to ticks, but clamp to be >=1.  */
    417 	timo = bintime2timo(bt);
    418 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    419 	if (timo == 0)
    420 		timo = 1;
    421 
    422 	/*
    423 	 * getticks() is technically int, but nothing special
    424 	 * happens instead of overflow, so we assume two's-complement
    425 	 * wraparound and just treat it as unsigned.
    426 	 */
    427 	start = getticks();
    428 	error = cv_timedwait(cv, mtx, timo);
    429 	end = getticks();
    430 
    431 	/*
    432 	 * Set it to the time left, or zero, whichever is larger.  We
    433 	 * do not fail with EWOULDBLOCK here because this may have been
    434 	 * an explicit wakeup, so the caller needs to check before they
    435 	 * give up or else cv_signal would be lost.
    436 	 */
    437 	slept = timo2bintime(end - start);
    438 	if (bintimecmp(bt, &slept, <=)) {
    439 		bt->sec = 0;
    440 		bt->frac = 0;
    441 	} else {
    442 		/* bt := bt - slept */
    443 		bintime_sub(bt, &slept);
    444 	}
    445 
    446 	return error;
    447 }
    448 
    449 /*
    450  * cv_timedwaitbt_sig:
    451  *
    452  *	Wait on a condition variable until awoken, the specified
    453  *	timeout expires, or interrupted by a signal.  Returns zero if
    454  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    455  *	EINTR/ERESTART if interrupted by a signal.
    456  *
    457  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    458  *	subtracts the time slept, so on exit, bt is the time remaining
    459  *	after sleeping.  No infinite timeout; use cv_wait instead.
    460  *
    461  *	epsilon is a requested maximum error in timeout (excluding
    462  *	spurious wakeups).  Currently not used, will be used in the
    463  *	future to choose between low- and high-resolution timers.
    464  */
    465 int
    466 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    467     const struct bintime *epsilon __diagused)
    468 {
    469 	struct bintime slept;
    470 	unsigned start, end;
    471 	int timo;
    472 	int error;
    473 
    474 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    475 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    476 
    477 	/* If there's nothing left to wait, time out.  */
    478 	if (bt->sec == 0 && bt->frac == 0)
    479 		return EWOULDBLOCK;
    480 
    481 	/* Convert to ticks, but clamp to be >=1.  */
    482 	timo = bintime2timo(bt);
    483 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    484 	if (timo == 0)
    485 		timo = 1;
    486 
    487 	/*
    488 	 * getticks() is technically int, but nothing special
    489 	 * happens instead of overflow, so we assume two's-complement
    490 	 * wraparound and just treat it as unsigned.
    491 	 */
    492 	start = getticks();
    493 	error = cv_timedwait_sig(cv, mtx, timo);
    494 	end = getticks();
    495 
    496 	/*
    497 	 * Set it to the time left, or zero, whichever is larger.  We
    498 	 * do not fail with EWOULDBLOCK here because this may have been
    499 	 * an explicit wakeup, so the caller needs to check before they
    500 	 * give up or else cv_signal would be lost.
    501 	 */
    502 	slept = timo2bintime(end - start);
    503 	if (bintimecmp(bt, &slept, <=)) {
    504 		bt->sec = 0;
    505 		bt->frac = 0;
    506 	} else {
    507 		/* bt := bt - slept */
    508 		bintime_sub(bt, &slept);
    509 	}
    510 
    511 	return error;
    512 }
    513 
    514 /*
    515  * cv_signal:
    516  *
    517  *	Wake the highest priority LWP waiting on a condition variable.
    518  *	Must be called with the interlocking mutex held.
    519  */
    520 void
    521 cv_signal(kcondvar_t *cv)
    522 {
    523 
    524 	KASSERT(cv_is_valid(cv));
    525 
    526 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    527 		cv_wakeup_one(cv);
    528 }
    529 
    530 /*
    531  * cv_wakeup_one:
    532  *
    533  *	Slow path for cv_signal().  Deliberately marked __noinline to
    534  *	prevent the compiler pulling it in to cv_signal(), which adds
    535  *	extra prologue and epilogue code.
    536  */
    537 static __noinline void
    538 cv_wakeup_one(kcondvar_t *cv)
    539 {
    540 	sleepq_t *sq;
    541 	kmutex_t *mp;
    542 	lwp_t *l;
    543 
    544 	/*
    545 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
    546 	 * interruptable waiter could fail to do something useful with the
    547 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
    548 	 * caller of cv_signal() may not expect such a scenario.
    549 	 *
    550 	 * This isn't a problem for non-interruptable waits (untimed and
    551 	 * timed), because if such a waiter is woken here it will not return
    552 	 * an error.
    553 	 */
    554 	mp = sleepq_hashlock(cv);
    555 	sq = CV_SLEEPQ(cv);
    556 	while ((l = LIST_FIRST(sq)) != NULL) {
    557 		KASSERT(l->l_sleepq == sq);
    558 		KASSERT(l->l_mutex == mp);
    559 		KASSERT(l->l_wchan == cv);
    560 		if ((l->l_flag & LW_SINTR) == 0) {
    561 			sleepq_remove(sq, l);
    562 			break;
    563 		} else
    564 			sleepq_remove(sq, l);
    565 	}
    566 	mutex_spin_exit(mp);
    567 }
    568 
    569 /*
    570  * cv_broadcast:
    571  *
    572  *	Wake all LWPs waiting on a condition variable.  Must be called
    573  *	with the interlocking mutex held.
    574  */
    575 void
    576 cv_broadcast(kcondvar_t *cv)
    577 {
    578 
    579 	KASSERT(cv_is_valid(cv));
    580 
    581 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    582 		cv_wakeup_all(cv);
    583 }
    584 
    585 /*
    586  * cv_wakeup_all:
    587  *
    588  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    589  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    590  *	extra prologue and epilogue code.
    591  */
    592 static __noinline void
    593 cv_wakeup_all(kcondvar_t *cv)
    594 {
    595 	sleepq_t *sq;
    596 	kmutex_t *mp;
    597 	lwp_t *l;
    598 
    599 	mp = sleepq_hashlock(cv);
    600 	sq = CV_SLEEPQ(cv);
    601 	while ((l = LIST_FIRST(sq)) != NULL) {
    602 		KASSERT(l->l_sleepq == sq);
    603 		KASSERT(l->l_mutex == mp);
    604 		KASSERT(l->l_wchan == cv);
    605 		sleepq_remove(sq, l);
    606 	}
    607 	mutex_spin_exit(mp);
    608 }
    609 
    610 /*
    611  * cv_has_waiters:
    612  *
    613  *	For diagnostic assertions: return non-zero if a condition
    614  *	variable has waiters.
    615  */
    616 bool
    617 cv_has_waiters(kcondvar_t *cv)
    618 {
    619 
    620 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    621 }
    622 
    623 /*
    624  * cv_is_valid:
    625  *
    626  *	For diagnostic assertions: return non-zero if a condition
    627  *	variable appears to be valid.  No locks need be held.
    628  */
    629 bool
    630 cv_is_valid(kcondvar_t *cv)
    631 {
    632 
    633 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    634 }
    635