Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.52.2.1
      1 /*	$NetBSD: kern_condvar.c,v 1.52.2.1 2020/12/14 14:38:13 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel condition variable implementation.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.52.2.1 2020/12/14 14:38:13 thorpej Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/lwp.h>
     42 #include <sys/condvar.h>
     43 #include <sys/sleepq.h>
     44 #include <sys/lockdebug.h>
     45 #include <sys/cpu.h>
     46 #include <sys/kernel.h>
     47 
     48 /*
     49  * Accessors for the private contents of the kcondvar_t data type.
     50  *
     51  *	cv_opaque[0]	sleepq_t
     52  *	cv_opaque[1]	description for ps(1)
     53  *
     54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     56  * and dequeue).
     57  *
     58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     59  * of the CV.
     60  */
     61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     64 
     65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     67 
     68 static void		cv_unsleep(lwp_t *, bool);
     69 static inline void	cv_wakeup_one(kcondvar_t *);
     70 static inline void	cv_wakeup_all(kcondvar_t *);
     71 
     72 syncobj_t cv_syncobj = {
     73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     74 	.sobj_unsleep	= cv_unsleep,
     75 	.sobj_changepri	= sleepq_changepri,
     76 	.sobj_lendpri	= sleepq_lendpri,
     77 	.sobj_owner	= syncobj_noowner,
     78 };
     79 
     80 static const char deadcv[] = "deadcv";
     81 
     82 /*
     83  * cv_init:
     84  *
     85  *	Initialize a condition variable for use.
     86  */
     87 void
     88 cv_init(kcondvar_t *cv, const char *wmesg)
     89 {
     90 
     91 	KASSERT(wmesg != NULL);
     92 	CV_SET_WMESG(cv, wmesg);
     93 	sleepq_init(CV_SLEEPQ(cv));
     94 }
     95 
     96 /*
     97  * cv_destroy:
     98  *
     99  *	Tear down a condition variable.
    100  */
    101 void
    102 cv_destroy(kcondvar_t *cv)
    103 {
    104 
    105 	sleepq_destroy(CV_SLEEPQ(cv));
    106 #ifdef DIAGNOSTIC
    107 	KASSERT(cv_is_valid(cv));
    108 	KASSERT(!cv_has_waiters(cv));
    109 	CV_SET_WMESG(cv, deadcv);
    110 #endif
    111 }
    112 
    113 /*
    114  * cv_enter:
    115  *
    116  *	Look up and lock the sleep queue corresponding to the given
    117  *	condition variable, and increment the number of waiters.
    118  */
    119 static inline void
    120 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    121 {
    122 	sleepq_t *sq;
    123 	kmutex_t *mp;
    124 
    125 	KASSERT(cv_is_valid(cv));
    126 	KASSERT(!cpu_intr_p());
    127 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    128 
    129 	l->l_kpriority = true;
    130 	mp = sleepq_hashlock(cv);
    131 	sq = CV_SLEEPQ(cv);
    132 	sleepq_enter(sq, l, mp);
    133 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    134 	mutex_exit(mtx);
    135 	KASSERT(cv_has_waiters(cv));
    136 }
    137 
    138 /*
    139  * cv_unsleep:
    140  *
    141  *	Remove an LWP from the condition variable and sleep queue.  This
    142  *	is called when the LWP has not been awoken normally but instead
    143  *	interrupted: for example, when a signal is received.  Must be
    144  *	called with the LWP locked.  Will unlock if "unlock" is true.
    145  */
    146 static void
    147 cv_unsleep(lwp_t *l, bool unlock)
    148 {
    149 	kcondvar_t *cv __diagused;
    150 
    151 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    152 
    153 	KASSERT(l->l_wchan == (wchan_t)cv);
    154 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    155 	KASSERT(cv_is_valid(cv));
    156 	KASSERT(cv_has_waiters(cv));
    157 
    158 	sleepq_unsleep(l, unlock);
    159 }
    160 
    161 /*
    162  * cv_wait:
    163  *
    164  *	Wait non-interruptably on a condition variable until awoken.
    165  */
    166 void
    167 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    168 {
    169 	lwp_t *l = curlwp;
    170 
    171 	KASSERT(mutex_owned(mtx));
    172 
    173 	cv_enter(cv, mtx, l, false);
    174 	(void)sleepq_block(0, false);
    175 	mutex_enter(mtx);
    176 }
    177 
    178 /*
    179  * cv_wait_sig:
    180  *
    181  *	Wait on a condition variable until a awoken or a signal is received.
    182  *	Will also return early if the process is exiting.  Returns zero if
    183  *	awoken normally, ERESTART if a signal was received and the system
    184  *	call is restartable, or EINTR otherwise.
    185  */
    186 int
    187 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    188 {
    189 	lwp_t *l = curlwp;
    190 	int error;
    191 
    192 	KASSERT(mutex_owned(mtx));
    193 
    194 	cv_enter(cv, mtx, l, true);
    195 	error = sleepq_block(0, true);
    196 	mutex_enter(mtx);
    197 	return error;
    198 }
    199 
    200 /*
    201  * cv_timedwait:
    202  *
    203  *	Wait on a condition variable until awoken or the specified timeout
    204  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    205  *	timeout expired.
    206  *
    207  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    208  */
    209 int
    210 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    211 {
    212 	lwp_t *l = curlwp;
    213 	int error;
    214 
    215 	KASSERT(mutex_owned(mtx));
    216 
    217 	cv_enter(cv, mtx, l, false);
    218 	error = sleepq_block(timo, false);
    219 	mutex_enter(mtx);
    220 	return error;
    221 }
    222 
    223 /*
    224  * cv_timedwait_sig:
    225  *
    226  *	Wait on a condition variable until a timeout expires, awoken or a
    227  *	signal is received.  Will also return early if the process is
    228  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    229  *	timeout expires, ERESTART if a signal was received and the system
    230  *	call is restartable, or EINTR otherwise.
    231  *
    232  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    233  */
    234 int
    235 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    236 {
    237 	lwp_t *l = curlwp;
    238 	int error;
    239 
    240 	KASSERT(mutex_owned(mtx));
    241 
    242 	cv_enter(cv, mtx, l, true);
    243 	error = sleepq_block(timo, true);
    244 	mutex_enter(mtx);
    245 	return error;
    246 }
    247 
    248 /*
    249  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    250  * want a number of ticks for a timeout:
    251  *
    252  *	timo = hz*(sec + frac/2^64)
    253  *	     = hz*sec + hz*frac/2^64
    254  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    255  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    256  *
    257  * where frachi is the high 32 bits of frac and fraclo is the
    258  * low 32 bits.
    259  *
    260  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    261  *
    262  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    263  *
    264  * since fraclo < 2^32.
    265  *
    266  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    267  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    268  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    269  * because we compute end - start in ticks in order to compute the
    270  * remaining timeout, and that difference cannot wrap around, so we use
    271  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    272  * margin for paranoia and will exceed most waits in practice by far.
    273  */
    274 static unsigned
    275 bintime2timo(const struct bintime *bt)
    276 {
    277 
    278 	KASSERT(hz < INT_MAX/2);
    279 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    280 	if (bt->sec > ((INT_MAX/2)/hz))
    281 		return INT_MAX/2;
    282 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    283 		return INT_MAX/2;
    284 
    285 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    286 }
    287 
    288 /*
    289  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    290  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    291  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    292  * second)/tick.  So for the fractional part, we compute
    293  *
    294  *	frac = rem * 2^64 / hz
    295  *	     = ((rem * 2^32) / hz) * 2^32
    296  *
    297  * Using truncating integer division instead of real division will
    298  * leave us with only about 32 bits of precision, which means about
    299  * 1/4-nanosecond resolution, which is good enough for our purposes.
    300  */
    301 static struct bintime
    302 timo2bintime(unsigned timo)
    303 {
    304 
    305 	return (struct bintime) {
    306 		.sec = timo / hz,
    307 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    308 	};
    309 }
    310 
    311 /*
    312  * cv_timedwaitbt:
    313  *
    314  *	Wait on a condition variable until awoken or the specified
    315  *	timeout expires.  Returns zero if awoken normally or
    316  *	EWOULDBLOCK if the timeout expires.
    317  *
    318  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    319  *	the time slept, so on exit, bt is the time remaining after
    320  *	sleeping, possibly negative if the complete time has elapsed.
    321  *	No infinite timeout; use cv_wait_sig instead.
    322  *
    323  *	epsilon is a requested maximum error in timeout (excluding
    324  *	spurious wakeups).  Currently not used, will be used in the
    325  *	future to choose between low- and high-resolution timers.
    326  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    327  *	where r is the finest resolution of clock available and s is
    328  *	scheduling delays for scheduler overhead and competing threads.
    329  *	Time is measured by the interrupt source implementing the
    330  *	timeout, not by another timecounter.
    331  */
    332 int
    333 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    334     const struct bintime *epsilon __diagused)
    335 {
    336 	struct bintime slept;
    337 	unsigned start, end;
    338 	int timo;
    339 	int error;
    340 
    341 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    342 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    343 
    344 	/* If there's nothing left to wait, time out.  */
    345 	if (bt->sec == 0 && bt->frac == 0)
    346 		return EWOULDBLOCK;
    347 
    348 	/* Convert to ticks, but clamp to be >=1.  */
    349 	timo = bintime2timo(bt);
    350 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    351 	if (timo == 0)
    352 		timo = 1;
    353 
    354 	/*
    355 	 * getticks() is technically int, but nothing special
    356 	 * happens instead of overflow, so we assume two's-complement
    357 	 * wraparound and just treat it as unsigned.
    358 	 */
    359 	start = getticks();
    360 	error = cv_timedwait(cv, mtx, timo);
    361 	end = getticks();
    362 
    363 	/*
    364 	 * Set it to the time left, or zero, whichever is larger.  We
    365 	 * do not fail with EWOULDBLOCK here because this may have been
    366 	 * an explicit wakeup, so the caller needs to check before they
    367 	 * give up or else cv_signal would be lost.
    368 	 */
    369 	slept = timo2bintime(end - start);
    370 	if (bintimecmp(bt, &slept, <=)) {
    371 		bt->sec = 0;
    372 		bt->frac = 0;
    373 	} else {
    374 		/* bt := bt - slept */
    375 		bintime_sub(bt, &slept);
    376 	}
    377 
    378 	return error;
    379 }
    380 
    381 /*
    382  * cv_timedwaitbt_sig:
    383  *
    384  *	Wait on a condition variable until awoken, the specified
    385  *	timeout expires, or interrupted by a signal.  Returns zero if
    386  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    387  *	EINTR/ERESTART if interrupted by a signal.
    388  *
    389  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    390  *	subtracts the time slept, so on exit, bt is the time remaining
    391  *	after sleeping.  No infinite timeout; use cv_wait instead.
    392  *
    393  *	epsilon is a requested maximum error in timeout (excluding
    394  *	spurious wakeups).  Currently not used, will be used in the
    395  *	future to choose between low- and high-resolution timers.
    396  */
    397 int
    398 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    399     const struct bintime *epsilon __diagused)
    400 {
    401 	struct bintime slept;
    402 	unsigned start, end;
    403 	int timo;
    404 	int error;
    405 
    406 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    407 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    408 
    409 	/* If there's nothing left to wait, time out.  */
    410 	if (bt->sec == 0 && bt->frac == 0)
    411 		return EWOULDBLOCK;
    412 
    413 	/* Convert to ticks, but clamp to be >=1.  */
    414 	timo = bintime2timo(bt);
    415 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    416 	if (timo == 0)
    417 		timo = 1;
    418 
    419 	/*
    420 	 * getticks() is technically int, but nothing special
    421 	 * happens instead of overflow, so we assume two's-complement
    422 	 * wraparound and just treat it as unsigned.
    423 	 */
    424 	start = getticks();
    425 	error = cv_timedwait_sig(cv, mtx, timo);
    426 	end = getticks();
    427 
    428 	/*
    429 	 * Set it to the time left, or zero, whichever is larger.  We
    430 	 * do not fail with EWOULDBLOCK here because this may have been
    431 	 * an explicit wakeup, so the caller needs to check before they
    432 	 * give up or else cv_signal would be lost.
    433 	 */
    434 	slept = timo2bintime(end - start);
    435 	if (bintimecmp(bt, &slept, <=)) {
    436 		bt->sec = 0;
    437 		bt->frac = 0;
    438 	} else {
    439 		/* bt := bt - slept */
    440 		bintime_sub(bt, &slept);
    441 	}
    442 
    443 	return error;
    444 }
    445 
    446 /*
    447  * cv_signal:
    448  *
    449  *	Wake the highest priority LWP waiting on a condition variable.
    450  *	Must be called with the interlocking mutex held.
    451  */
    452 void
    453 cv_signal(kcondvar_t *cv)
    454 {
    455 
    456 	KASSERT(cv_is_valid(cv));
    457 
    458 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    459 		cv_wakeup_one(cv);
    460 }
    461 
    462 /*
    463  * cv_wakeup_one:
    464  *
    465  *	Slow path for cv_signal().  Deliberately marked __noinline to
    466  *	prevent the compiler pulling it in to cv_signal(), which adds
    467  *	extra prologue and epilogue code.
    468  */
    469 static __noinline void
    470 cv_wakeup_one(kcondvar_t *cv)
    471 {
    472 	sleepq_t *sq;
    473 	kmutex_t *mp;
    474 	lwp_t *l;
    475 
    476 	/*
    477 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
    478 	 * interruptable waiter could fail to do something useful with the
    479 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
    480 	 * caller of cv_signal() may not expect such a scenario.
    481 	 *
    482 	 * This isn't a problem for non-interruptable waits (untimed and
    483 	 * timed), because if such a waiter is woken here it will not return
    484 	 * an error.
    485 	 */
    486 	mp = sleepq_hashlock(cv);
    487 	sq = CV_SLEEPQ(cv);
    488 	while ((l = LIST_FIRST(sq)) != NULL) {
    489 		KASSERT(l->l_sleepq == sq);
    490 		KASSERT(l->l_mutex == mp);
    491 		KASSERT(l->l_wchan == cv);
    492 		if ((l->l_flag & LW_SINTR) == 0) {
    493 			sleepq_remove(sq, l);
    494 			break;
    495 		} else
    496 			sleepq_remove(sq, l);
    497 	}
    498 	mutex_spin_exit(mp);
    499 }
    500 
    501 /*
    502  * cv_broadcast:
    503  *
    504  *	Wake all LWPs waiting on a condition variable.  Must be called
    505  *	with the interlocking mutex held.
    506  */
    507 void
    508 cv_broadcast(kcondvar_t *cv)
    509 {
    510 
    511 	KASSERT(cv_is_valid(cv));
    512 
    513 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    514 		cv_wakeup_all(cv);
    515 }
    516 
    517 /*
    518  * cv_wakeup_all:
    519  *
    520  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    521  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    522  *	extra prologue and epilogue code.
    523  */
    524 static __noinline void
    525 cv_wakeup_all(kcondvar_t *cv)
    526 {
    527 	sleepq_t *sq;
    528 	kmutex_t *mp;
    529 	lwp_t *l;
    530 
    531 	mp = sleepq_hashlock(cv);
    532 	sq = CV_SLEEPQ(cv);
    533 	while ((l = LIST_FIRST(sq)) != NULL) {
    534 		KASSERT(l->l_sleepq == sq);
    535 		KASSERT(l->l_mutex == mp);
    536 		KASSERT(l->l_wchan == cv);
    537 		sleepq_remove(sq, l);
    538 	}
    539 	mutex_spin_exit(mp);
    540 }
    541 
    542 /*
    543  * cv_has_waiters:
    544  *
    545  *	For diagnostic assertions: return non-zero if a condition
    546  *	variable has waiters.
    547  */
    548 bool
    549 cv_has_waiters(kcondvar_t *cv)
    550 {
    551 
    552 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    553 }
    554 
    555 /*
    556  * cv_is_valid:
    557  *
    558  *	For diagnostic assertions: return non-zero if a condition
    559  *	variable appears to be valid.  No locks need be held.
    560  */
    561 bool
    562 cv_is_valid(kcondvar_t *cv)
    563 {
    564 
    565 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    566 }
    567