kern_condvar.c revision 1.56 1 /* $NetBSD: kern_condvar.c,v 1.56 2023/09/23 18:48:04 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Kernel condition variable implementation.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.56 2023/09/23 18:48:04 ad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/lwp.h>
43 #include <sys/condvar.h>
44 #include <sys/sleepq.h>
45 #include <sys/lockdebug.h>
46 #include <sys/cpu.h>
47 #include <sys/kernel.h>
48
49 /*
50 * Accessors for the private contents of the kcondvar_t data type.
51 *
52 * cv_opaque[0] sleepq_t
53 * cv_opaque[1] description for ps(1)
54 *
55 * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
56 * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
57 * and dequeue).
58 *
59 * cv_opaque[1] (the wmesg) is static and does not change throughout the life
60 * of the CV.
61 */
62 #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
63 #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
64 #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
65
66 #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
67 #define CV_RA ((uintptr_t)__builtin_return_address(0))
68
69 static void cv_unsleep(lwp_t *, bool);
70 static inline void cv_wakeup_one(kcondvar_t *);
71 static inline void cv_wakeup_all(kcondvar_t *);
72
73 syncobj_t cv_syncobj = {
74 .sobj_name = "cv",
75 .sobj_flag = SOBJ_SLEEPQ_SORTED,
76 .sobj_boostpri = PRI_KERNEL,
77 .sobj_unsleep = cv_unsleep,
78 .sobj_changepri = sleepq_changepri,
79 .sobj_lendpri = sleepq_lendpri,
80 .sobj_owner = syncobj_noowner,
81 };
82
83 static const char deadcv[] = "deadcv";
84
85 /*
86 * cv_init:
87 *
88 * Initialize a condition variable for use.
89 */
90 void
91 cv_init(kcondvar_t *cv, const char *wmesg)
92 {
93
94 KASSERT(wmesg != NULL);
95 CV_SET_WMESG(cv, wmesg);
96 sleepq_init(CV_SLEEPQ(cv));
97 }
98
99 /*
100 * cv_destroy:
101 *
102 * Tear down a condition variable.
103 */
104 void
105 cv_destroy(kcondvar_t *cv)
106 {
107
108 sleepq_destroy(CV_SLEEPQ(cv));
109 #ifdef DIAGNOSTIC
110 KASSERT(cv_is_valid(cv));
111 KASSERT(!cv_has_waiters(cv));
112 CV_SET_WMESG(cv, deadcv);
113 #endif
114 }
115
116 /*
117 * cv_enter:
118 *
119 * Look up and lock the sleep queue corresponding to the given
120 * condition variable, and increment the number of waiters.
121 */
122 static inline void
123 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
124 {
125 sleepq_t *sq;
126 kmutex_t *mp;
127
128 KASSERT(cv_is_valid(cv));
129 KASSERT(!cpu_intr_p());
130 KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
131
132 mp = sleepq_hashlock(cv);
133 sq = CV_SLEEPQ(cv);
134 sleepq_enter(sq, l, mp);
135 sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
136 mutex_exit(mtx);
137 KASSERT(cv_has_waiters(cv));
138 }
139
140 /*
141 * cv_unsleep:
142 *
143 * Remove an LWP from the condition variable and sleep queue. This
144 * is called when the LWP has not been awoken normally but instead
145 * interrupted: for example, when a signal is received. Must be
146 * called with the LWP locked. Will unlock if "unlock" is true.
147 */
148 static void
149 cv_unsleep(lwp_t *l, bool unlock)
150 {
151 kcondvar_t *cv __diagused;
152
153 cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
154
155 KASSERT(l->l_wchan == (wchan_t)cv);
156 KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
157 KASSERT(cv_is_valid(cv));
158 KASSERT(cv_has_waiters(cv));
159
160 sleepq_unsleep(l, unlock);
161 }
162
163 /*
164 * cv_wait:
165 *
166 * Wait non-interruptably on a condition variable until awoken.
167 */
168 void
169 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
170 {
171 lwp_t *l = curlwp;
172
173 KASSERT(mutex_owned(mtx));
174
175 cv_enter(cv, mtx, l, false);
176 (void)sleepq_block(0, false, &cv_syncobj);
177 mutex_enter(mtx);
178 }
179
180 /*
181 * cv_wait_sig:
182 *
183 * Wait on a condition variable until a awoken or a signal is received.
184 * Will also return early if the process is exiting. Returns zero if
185 * awoken normally, ERESTART if a signal was received and the system
186 * call is restartable, or EINTR otherwise.
187 */
188 int
189 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
190 {
191 lwp_t *l = curlwp;
192 int error;
193
194 KASSERT(mutex_owned(mtx));
195
196 cv_enter(cv, mtx, l, true);
197 error = sleepq_block(0, true, &cv_syncobj);
198 mutex_enter(mtx);
199 return error;
200 }
201
202 /*
203 * cv_timedwait:
204 *
205 * Wait on a condition variable until awoken or the specified timeout
206 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
207 * timeout expired.
208 *
209 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
210 */
211 int
212 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
213 {
214 lwp_t *l = curlwp;
215 int error;
216
217 KASSERT(mutex_owned(mtx));
218
219 cv_enter(cv, mtx, l, false);
220 error = sleepq_block(timo, false, &cv_syncobj);
221 mutex_enter(mtx);
222 return error;
223 }
224
225 /*
226 * cv_timedwait_sig:
227 *
228 * Wait on a condition variable until a timeout expires, awoken or a
229 * signal is received. Will also return early if the process is
230 * exiting. Returns zero if awoken normally, EWOULDBLOCK if the
231 * timeout expires, ERESTART if a signal was received and the system
232 * call is restartable, or EINTR otherwise.
233 *
234 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
235 */
236 int
237 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
238 {
239 lwp_t *l = curlwp;
240 int error;
241
242 KASSERT(mutex_owned(mtx));
243
244 cv_enter(cv, mtx, l, true);
245 error = sleepq_block(timo, true, &cv_syncobj);
246 mutex_enter(mtx);
247 return error;
248 }
249
250 /*
251 * Given a number of seconds, sec, and 2^64ths of a second, frac, we
252 * want a number of ticks for a timeout:
253 *
254 * timo = hz*(sec + frac/2^64)
255 * = hz*sec + hz*frac/2^64
256 * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
257 * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
258 *
259 * where frachi is the high 32 bits of frac and fraclo is the
260 * low 32 bits.
261 *
262 * We assume hz < INT_MAX/2 < UINT32_MAX, so
263 *
264 * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
265 *
266 * since fraclo < 2^32.
267 *
268 * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
269 * can't represent timeouts higher than INT_MAX in cv_timedwait, and
270 * spurious wakeup is OK. Moreover, we don't want to wrap around,
271 * because we compute end - start in ticks in order to compute the
272 * remaining timeout, and that difference cannot wrap around, so we use
273 * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
274 * margin for paranoia and will exceed most waits in practice by far.
275 */
276 static unsigned
277 bintime2timo(const struct bintime *bt)
278 {
279
280 KASSERT(hz < INT_MAX/2);
281 CTASSERT(INT_MAX/2 < UINT32_MAX);
282 if (bt->sec > ((INT_MAX/2)/hz))
283 return INT_MAX/2;
284 if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
285 return INT_MAX/2;
286
287 return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
288 }
289
290 /*
291 * timo is in units of ticks. We want units of seconds and 2^64ths of
292 * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
293 * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
294 * second)/tick. So for the fractional part, we compute
295 *
296 * frac = rem * 2^64 / hz
297 * = ((rem * 2^32) / hz) * 2^32
298 *
299 * Using truncating integer division instead of real division will
300 * leave us with only about 32 bits of precision, which means about
301 * 1/4-nanosecond resolution, which is good enough for our purposes.
302 */
303 static struct bintime
304 timo2bintime(unsigned timo)
305 {
306
307 return (struct bintime) {
308 .sec = timo / hz,
309 .frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
310 };
311 }
312
313 /*
314 * cv_timedwaitbt:
315 *
316 * Wait on a condition variable until awoken or the specified
317 * timeout expires. Returns zero if awoken normally or
318 * EWOULDBLOCK if the timeout expires.
319 *
320 * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
321 * the time slept, so on exit, bt is the time remaining after
322 * sleeping, possibly negative if the complete time has elapsed.
323 * No infinite timeout; use cv_wait_sig instead.
324 *
325 * epsilon is a requested maximum error in timeout (excluding
326 * spurious wakeups). Currently not used, will be used in the
327 * future to choose between low- and high-resolution timers.
328 * Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
329 * where r is the finest resolution of clock available and s is
330 * scheduling delays for scheduler overhead and competing threads.
331 * Time is measured by the interrupt source implementing the
332 * timeout, not by another timecounter.
333 */
334 int
335 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
336 const struct bintime *epsilon __diagused)
337 {
338 struct bintime slept;
339 unsigned start, end;
340 int timo;
341 int error;
342
343 KASSERTMSG(bt->sec >= 0, "negative timeout");
344 KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
345
346 /* If there's nothing left to wait, time out. */
347 if (bt->sec == 0 && bt->frac == 0)
348 return EWOULDBLOCK;
349
350 /* Convert to ticks, but clamp to be >=1. */
351 timo = bintime2timo(bt);
352 KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
353 if (timo == 0)
354 timo = 1;
355
356 /*
357 * getticks() is technically int, but nothing special
358 * happens instead of overflow, so we assume two's-complement
359 * wraparound and just treat it as unsigned.
360 */
361 start = getticks();
362 error = cv_timedwait(cv, mtx, timo);
363 end = getticks();
364
365 /*
366 * Set it to the time left, or zero, whichever is larger. We
367 * do not fail with EWOULDBLOCK here because this may have been
368 * an explicit wakeup, so the caller needs to check before they
369 * give up or else cv_signal would be lost.
370 */
371 slept = timo2bintime(end - start);
372 if (bintimecmp(bt, &slept, <=)) {
373 bt->sec = 0;
374 bt->frac = 0;
375 } else {
376 /* bt := bt - slept */
377 bintime_sub(bt, &slept);
378 }
379
380 return error;
381 }
382
383 /*
384 * cv_timedwaitbt_sig:
385 *
386 * Wait on a condition variable until awoken, the specified
387 * timeout expires, or interrupted by a signal. Returns zero if
388 * awoken normally, EWOULDBLOCK if the timeout expires, or
389 * EINTR/ERESTART if interrupted by a signal.
390 *
391 * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
392 * subtracts the time slept, so on exit, bt is the time remaining
393 * after sleeping. No infinite timeout; use cv_wait instead.
394 *
395 * epsilon is a requested maximum error in timeout (excluding
396 * spurious wakeups). Currently not used, will be used in the
397 * future to choose between low- and high-resolution timers.
398 */
399 int
400 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
401 const struct bintime *epsilon __diagused)
402 {
403 struct bintime slept;
404 unsigned start, end;
405 int timo;
406 int error;
407
408 KASSERTMSG(bt->sec >= 0, "negative timeout");
409 KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
410
411 /* If there's nothing left to wait, time out. */
412 if (bt->sec == 0 && bt->frac == 0)
413 return EWOULDBLOCK;
414
415 /* Convert to ticks, but clamp to be >=1. */
416 timo = bintime2timo(bt);
417 KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
418 if (timo == 0)
419 timo = 1;
420
421 /*
422 * getticks() is technically int, but nothing special
423 * happens instead of overflow, so we assume two's-complement
424 * wraparound and just treat it as unsigned.
425 */
426 start = getticks();
427 error = cv_timedwait_sig(cv, mtx, timo);
428 end = getticks();
429
430 /*
431 * Set it to the time left, or zero, whichever is larger. We
432 * do not fail with EWOULDBLOCK here because this may have been
433 * an explicit wakeup, so the caller needs to check before they
434 * give up or else cv_signal would be lost.
435 */
436 slept = timo2bintime(end - start);
437 if (bintimecmp(bt, &slept, <=)) {
438 bt->sec = 0;
439 bt->frac = 0;
440 } else {
441 /* bt := bt - slept */
442 bintime_sub(bt, &slept);
443 }
444
445 return error;
446 }
447
448 /*
449 * cv_signal:
450 *
451 * Wake the highest priority LWP waiting on a condition variable.
452 * Must be called with the interlocking mutex held.
453 */
454 void
455 cv_signal(kcondvar_t *cv)
456 {
457
458 KASSERT(cv_is_valid(cv));
459
460 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
461 cv_wakeup_one(cv);
462 }
463
464 /*
465 * cv_wakeup_one:
466 *
467 * Slow path for cv_signal(). Deliberately marked __noinline to
468 * prevent the compiler pulling it in to cv_signal(), which adds
469 * extra prologue and epilogue code.
470 */
471 static __noinline void
472 cv_wakeup_one(kcondvar_t *cv)
473 {
474 sleepq_t *sq;
475 kmutex_t *mp;
476 lwp_t *l;
477
478 /*
479 * Keep waking LWPs until a non-interruptable waiter is found. An
480 * interruptable waiter could fail to do something useful with the
481 * wakeup due to an error return from cv_[timed]wait_sig(), and the
482 * caller of cv_signal() may not expect such a scenario.
483 *
484 * This isn't a problem for non-interruptable waits (untimed and
485 * timed), because if such a waiter is woken here it will not return
486 * an error.
487 */
488 mp = sleepq_hashlock(cv);
489 sq = CV_SLEEPQ(cv);
490 while ((l = LIST_FIRST(sq)) != NULL) {
491 KASSERT(l->l_sleepq == sq);
492 KASSERT(l->l_mutex == mp);
493 KASSERT(l->l_wchan == cv);
494 if ((l->l_flag & LW_SINTR) == 0) {
495 sleepq_remove(sq, l);
496 break;
497 } else
498 sleepq_remove(sq, l);
499 }
500 mutex_spin_exit(mp);
501 }
502
503 /*
504 * cv_broadcast:
505 *
506 * Wake all LWPs waiting on a condition variable. Must be called
507 * with the interlocking mutex held.
508 */
509 void
510 cv_broadcast(kcondvar_t *cv)
511 {
512
513 KASSERT(cv_is_valid(cv));
514
515 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
516 cv_wakeup_all(cv);
517 }
518
519 /*
520 * cv_wakeup_all:
521 *
522 * Slow path for cv_broadcast(). Deliberately marked __noinline to
523 * prevent the compiler pulling it in to cv_broadcast(), which adds
524 * extra prologue and epilogue code.
525 */
526 static __noinline void
527 cv_wakeup_all(kcondvar_t *cv)
528 {
529 sleepq_t *sq;
530 kmutex_t *mp;
531 lwp_t *l;
532
533 mp = sleepq_hashlock(cv);
534 sq = CV_SLEEPQ(cv);
535 while ((l = LIST_FIRST(sq)) != NULL) {
536 KASSERT(l->l_sleepq == sq);
537 KASSERT(l->l_mutex == mp);
538 KASSERT(l->l_wchan == cv);
539 sleepq_remove(sq, l);
540 }
541 mutex_spin_exit(mp);
542 }
543
544 /*
545 * cv_has_waiters:
546 *
547 * For diagnostic assertions: return non-zero if a condition
548 * variable has waiters.
549 */
550 bool
551 cv_has_waiters(kcondvar_t *cv)
552 {
553
554 return !LIST_EMPTY(CV_SLEEPQ(cv));
555 }
556
557 /*
558 * cv_is_valid:
559 *
560 * For diagnostic assertions: return non-zero if a condition
561 * variable appears to be valid. No locks need be held.
562 */
563 bool
564 cv_is_valid(kcondvar_t *cv)
565 {
566
567 return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
568 }
569