Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.58
      1 /*	$NetBSD: kern_condvar.c,v 1.58 2023/10/08 13:23:05 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Kernel condition variable implementation.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.58 2023/10/08 13:23:05 ad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/lwp.h>
     43 #include <sys/condvar.h>
     44 #include <sys/sleepq.h>
     45 #include <sys/lockdebug.h>
     46 #include <sys/cpu.h>
     47 #include <sys/kernel.h>
     48 
     49 /*
     50  * Accessors for the private contents of the kcondvar_t data type.
     51  *
     52  *	cv_opaque[0]	sleepq_t
     53  *	cv_opaque[1]	description for ps(1)
     54  *
     55  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     56  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     57  * and dequeue).
     58  *
     59  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     60  * of the CV.
     61  */
     62 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     63 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     64 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     65 
     66 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     67 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     68 
     69 static void		cv_unsleep(lwp_t *, bool);
     70 static inline void	cv_wakeup_one(kcondvar_t *);
     71 static inline void	cv_wakeup_all(kcondvar_t *);
     72 
     73 syncobj_t cv_syncobj = {
     74 	.sobj_name	= "cv",
     75 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     76 	.sobj_boostpri  = PRI_KERNEL,
     77 	.sobj_unsleep	= cv_unsleep,
     78 	.sobj_changepri	= sleepq_changepri,
     79 	.sobj_lendpri	= sleepq_lendpri,
     80 	.sobj_owner	= syncobj_noowner,
     81 };
     82 
     83 static const char deadcv[] = "deadcv";
     84 
     85 /*
     86  * cv_init:
     87  *
     88  *	Initialize a condition variable for use.
     89  */
     90 void
     91 cv_init(kcondvar_t *cv, const char *wmesg)
     92 {
     93 
     94 	KASSERT(wmesg != NULL);
     95 	CV_SET_WMESG(cv, wmesg);
     96 	sleepq_init(CV_SLEEPQ(cv));
     97 }
     98 
     99 /*
    100  * cv_destroy:
    101  *
    102  *	Tear down a condition variable.
    103  */
    104 void
    105 cv_destroy(kcondvar_t *cv)
    106 {
    107 
    108 	sleepq_destroy(CV_SLEEPQ(cv));
    109 #ifdef DIAGNOSTIC
    110 	KASSERT(cv_is_valid(cv));
    111 	KASSERT(!cv_has_waiters(cv));
    112 	CV_SET_WMESG(cv, deadcv);
    113 #endif
    114 }
    115 
    116 /*
    117  * cv_enter:
    118  *
    119  *	Look up and lock the sleep queue corresponding to the given
    120  *	condition variable, and increment the number of waiters.
    121  */
    122 static inline int
    123 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    124 {
    125 	sleepq_t *sq;
    126 	kmutex_t *mp;
    127 	int nlocks;
    128 
    129 	KASSERT(cv_is_valid(cv));
    130 	KASSERT(!cpu_intr_p());
    131 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    132 
    133 	mp = sleepq_hashlock(cv);
    134 	sq = CV_SLEEPQ(cv);
    135 	nlocks = sleepq_enter(sq, l, mp);
    136 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    137 	mutex_exit(mtx);
    138 	KASSERT(cv_has_waiters(cv));
    139 	return nlocks;
    140 }
    141 
    142 /*
    143  * cv_unsleep:
    144  *
    145  *	Remove an LWP from the condition variable and sleep queue.  This
    146  *	is called when the LWP has not been awoken normally but instead
    147  *	interrupted: for example, when a signal is received.  Must be
    148  *	called with the LWP locked.  Will unlock if "unlock" is true.
    149  */
    150 static void
    151 cv_unsleep(lwp_t *l, bool unlock)
    152 {
    153 	kcondvar_t *cv __diagused;
    154 
    155 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    156 
    157 	KASSERT(l->l_wchan == (wchan_t)cv);
    158 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    159 	KASSERT(cv_is_valid(cv));
    160 	KASSERT(cv_has_waiters(cv));
    161 
    162 	sleepq_unsleep(l, unlock);
    163 }
    164 
    165 /*
    166  * cv_wait:
    167  *
    168  *	Wait non-interruptably on a condition variable until awoken.
    169  */
    170 void
    171 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    172 {
    173 	lwp_t *l = curlwp;
    174 	int nlocks;
    175 
    176 	KASSERT(mutex_owned(mtx));
    177 
    178 	nlocks = cv_enter(cv, mtx, l, false);
    179 	(void)sleepq_block(0, false, &cv_syncobj, nlocks);
    180 	mutex_enter(mtx);
    181 }
    182 
    183 /*
    184  * cv_wait_sig:
    185  *
    186  *	Wait on a condition variable until a awoken or a signal is received.
    187  *	Will also return early if the process is exiting.  Returns zero if
    188  *	awoken normally, ERESTART if a signal was received and the system
    189  *	call is restartable, or EINTR otherwise.
    190  */
    191 int
    192 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    193 {
    194 	lwp_t *l = curlwp;
    195 	int error, nlocks;
    196 
    197 	KASSERT(mutex_owned(mtx));
    198 
    199 	nlocks = cv_enter(cv, mtx, l, true);
    200 	error = sleepq_block(0, true, &cv_syncobj, nlocks);
    201 	mutex_enter(mtx);
    202 	return error;
    203 }
    204 
    205 /*
    206  * cv_timedwait:
    207  *
    208  *	Wait on a condition variable until awoken or the specified timeout
    209  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    210  *	timeout expired.
    211  *
    212  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    213  */
    214 int
    215 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    216 {
    217 	lwp_t *l = curlwp;
    218 	int error, nlocks;
    219 
    220 	KASSERT(mutex_owned(mtx));
    221 
    222 	nlocks = cv_enter(cv, mtx, l, false);
    223 	error = sleepq_block(timo, false, &cv_syncobj, nlocks);
    224 	mutex_enter(mtx);
    225 	return error;
    226 }
    227 
    228 /*
    229  * cv_timedwait_sig:
    230  *
    231  *	Wait on a condition variable until a timeout expires, awoken or a
    232  *	signal is received.  Will also return early if the process is
    233  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    234  *	timeout expires, ERESTART if a signal was received and the system
    235  *	call is restartable, or EINTR otherwise.
    236  *
    237  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    238  */
    239 int
    240 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    241 {
    242 	lwp_t *l = curlwp;
    243 	int error, nlocks;
    244 
    245 	KASSERT(mutex_owned(mtx));
    246 
    247 	nlocks = cv_enter(cv, mtx, l, true);
    248 	error = sleepq_block(timo, true, &cv_syncobj, nlocks);
    249 	mutex_enter(mtx);
    250 	return error;
    251 }
    252 
    253 /*
    254  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    255  * want a number of ticks for a timeout:
    256  *
    257  *	timo = hz*(sec + frac/2^64)
    258  *	     = hz*sec + hz*frac/2^64
    259  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    260  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    261  *
    262  * where frachi is the high 32 bits of frac and fraclo is the
    263  * low 32 bits.
    264  *
    265  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    266  *
    267  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    268  *
    269  * since fraclo < 2^32.
    270  *
    271  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    272  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    273  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    274  * because we compute end - start in ticks in order to compute the
    275  * remaining timeout, and that difference cannot wrap around, so we use
    276  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    277  * margin for paranoia and will exceed most waits in practice by far.
    278  */
    279 static unsigned
    280 bintime2timo(const struct bintime *bt)
    281 {
    282 
    283 	KASSERT(hz < INT_MAX/2);
    284 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    285 	if (bt->sec > ((INT_MAX/2)/hz))
    286 		return INT_MAX/2;
    287 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    288 		return INT_MAX/2;
    289 
    290 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    291 }
    292 
    293 /*
    294  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    295  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    296  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    297  * second)/tick.  So for the fractional part, we compute
    298  *
    299  *	frac = rem * 2^64 / hz
    300  *	     = ((rem * 2^32) / hz) * 2^32
    301  *
    302  * Using truncating integer division instead of real division will
    303  * leave us with only about 32 bits of precision, which means about
    304  * 1/4-nanosecond resolution, which is good enough for our purposes.
    305  */
    306 static struct bintime
    307 timo2bintime(unsigned timo)
    308 {
    309 
    310 	return (struct bintime) {
    311 		.sec = timo / hz,
    312 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    313 	};
    314 }
    315 
    316 /*
    317  * cv_timedwaitbt:
    318  *
    319  *	Wait on a condition variable until awoken or the specified
    320  *	timeout expires.  Returns zero if awoken normally or
    321  *	EWOULDBLOCK if the timeout expires.
    322  *
    323  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    324  *	the time slept, so on exit, bt is the time remaining after
    325  *	sleeping, possibly negative if the complete time has elapsed.
    326  *	No infinite timeout; use cv_wait_sig instead.
    327  *
    328  *	epsilon is a requested maximum error in timeout (excluding
    329  *	spurious wakeups).  Currently not used, will be used in the
    330  *	future to choose between low- and high-resolution timers.
    331  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    332  *	where r is the finest resolution of clock available and s is
    333  *	scheduling delays for scheduler overhead and competing threads.
    334  *	Time is measured by the interrupt source implementing the
    335  *	timeout, not by another timecounter.
    336  */
    337 int
    338 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    339     const struct bintime *epsilon __diagused)
    340 {
    341 	struct bintime slept;
    342 	unsigned start, end;
    343 	int timo;
    344 	int error;
    345 
    346 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    347 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    348 
    349 	/* If there's nothing left to wait, time out.  */
    350 	if (bt->sec == 0 && bt->frac == 0)
    351 		return EWOULDBLOCK;
    352 
    353 	/* Convert to ticks, but clamp to be >=1.  */
    354 	timo = bintime2timo(bt);
    355 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    356 	if (timo == 0)
    357 		timo = 1;
    358 
    359 	/*
    360 	 * getticks() is technically int, but nothing special
    361 	 * happens instead of overflow, so we assume two's-complement
    362 	 * wraparound and just treat it as unsigned.
    363 	 */
    364 	start = getticks();
    365 	error = cv_timedwait(cv, mtx, timo);
    366 	end = getticks();
    367 
    368 	/*
    369 	 * Set it to the time left, or zero, whichever is larger.  We
    370 	 * do not fail with EWOULDBLOCK here because this may have been
    371 	 * an explicit wakeup, so the caller needs to check before they
    372 	 * give up or else cv_signal would be lost.
    373 	 */
    374 	slept = timo2bintime(end - start);
    375 	if (bintimecmp(bt, &slept, <=)) {
    376 		bt->sec = 0;
    377 		bt->frac = 0;
    378 	} else {
    379 		/* bt := bt - slept */
    380 		bintime_sub(bt, &slept);
    381 	}
    382 
    383 	return error;
    384 }
    385 
    386 /*
    387  * cv_timedwaitbt_sig:
    388  *
    389  *	Wait on a condition variable until awoken, the specified
    390  *	timeout expires, or interrupted by a signal.  Returns zero if
    391  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    392  *	EINTR/ERESTART if interrupted by a signal.
    393  *
    394  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    395  *	subtracts the time slept, so on exit, bt is the time remaining
    396  *	after sleeping.  No infinite timeout; use cv_wait instead.
    397  *
    398  *	epsilon is a requested maximum error in timeout (excluding
    399  *	spurious wakeups).  Currently not used, will be used in the
    400  *	future to choose between low- and high-resolution timers.
    401  */
    402 int
    403 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    404     const struct bintime *epsilon __diagused)
    405 {
    406 	struct bintime slept;
    407 	unsigned start, end;
    408 	int timo;
    409 	int error;
    410 
    411 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    412 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    413 
    414 	/* If there's nothing left to wait, time out.  */
    415 	if (bt->sec == 0 && bt->frac == 0)
    416 		return EWOULDBLOCK;
    417 
    418 	/* Convert to ticks, but clamp to be >=1.  */
    419 	timo = bintime2timo(bt);
    420 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    421 	if (timo == 0)
    422 		timo = 1;
    423 
    424 	/*
    425 	 * getticks() is technically int, but nothing special
    426 	 * happens instead of overflow, so we assume two's-complement
    427 	 * wraparound and just treat it as unsigned.
    428 	 */
    429 	start = getticks();
    430 	error = cv_timedwait_sig(cv, mtx, timo);
    431 	end = getticks();
    432 
    433 	/*
    434 	 * Set it to the time left, or zero, whichever is larger.  We
    435 	 * do not fail with EWOULDBLOCK here because this may have been
    436 	 * an explicit wakeup, so the caller needs to check before they
    437 	 * give up or else cv_signal would be lost.
    438 	 */
    439 	slept = timo2bintime(end - start);
    440 	if (bintimecmp(bt, &slept, <=)) {
    441 		bt->sec = 0;
    442 		bt->frac = 0;
    443 	} else {
    444 		/* bt := bt - slept */
    445 		bintime_sub(bt, &slept);
    446 	}
    447 
    448 	return error;
    449 }
    450 
    451 /*
    452  * cv_signal:
    453  *
    454  *	Wake the highest priority LWP waiting on a condition variable.
    455  *	Must be called with the interlocking mutex held.
    456  */
    457 void
    458 cv_signal(kcondvar_t *cv)
    459 {
    460 
    461 	KASSERT(cv_is_valid(cv));
    462 
    463 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    464 		cv_wakeup_one(cv);
    465 }
    466 
    467 /*
    468  * cv_wakeup_one:
    469  *
    470  *	Slow path for cv_signal().  Deliberately marked __noinline to
    471  *	prevent the compiler pulling it in to cv_signal(), which adds
    472  *	extra prologue and epilogue code.
    473  */
    474 static __noinline void
    475 cv_wakeup_one(kcondvar_t *cv)
    476 {
    477 	sleepq_t *sq;
    478 	kmutex_t *mp;
    479 	lwp_t *l;
    480 
    481 	mp = sleepq_hashlock(cv);
    482 	sq = CV_SLEEPQ(cv);
    483 	if (__predict_true((l = LIST_FIRST(sq)) != NULL)) {
    484 		KASSERT(l->l_sleepq == sq);
    485 		KASSERT(l->l_mutex == mp);
    486 		KASSERT(l->l_wchan == cv);
    487 		sleepq_remove(sq, l, true);
    488 	}
    489 	mutex_spin_exit(mp);
    490 }
    491 
    492 /*
    493  * cv_broadcast:
    494  *
    495  *	Wake all LWPs waiting on a condition variable.  Must be called
    496  *	with the interlocking mutex held.
    497  */
    498 void
    499 cv_broadcast(kcondvar_t *cv)
    500 {
    501 
    502 	KASSERT(cv_is_valid(cv));
    503 
    504 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
    505 		cv_wakeup_all(cv);
    506 }
    507 
    508 /*
    509  * cv_wakeup_all:
    510  *
    511  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    512  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    513  *	extra prologue and epilogue code.
    514  */
    515 static __noinline void
    516 cv_wakeup_all(kcondvar_t *cv)
    517 {
    518 	sleepq_t *sq;
    519 	kmutex_t *mp;
    520 	lwp_t *l;
    521 
    522 	mp = sleepq_hashlock(cv);
    523 	sq = CV_SLEEPQ(cv);
    524 	while ((l = LIST_FIRST(sq)) != NULL) {
    525 		KASSERT(l->l_sleepq == sq);
    526 		KASSERT(l->l_mutex == mp);
    527 		KASSERT(l->l_wchan == cv);
    528 		sleepq_remove(sq, l, true);
    529 	}
    530 	mutex_spin_exit(mp);
    531 }
    532 
    533 /*
    534  * cv_has_waiters:
    535  *
    536  *	For diagnostic assertions: return non-zero if a condition
    537  *	variable has waiters.
    538  */
    539 bool
    540 cv_has_waiters(kcondvar_t *cv)
    541 {
    542 
    543 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    544 }
    545 
    546 /*
    547  * cv_is_valid:
    548  *
    549  *	For diagnostic assertions: return non-zero if a condition
    550  *	variable appears to be valid.  No locks need be held.
    551  */
    552 bool
    553 cv_is_valid(kcondvar_t *cv)
    554 {
    555 
    556 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    557 }
    558