kern_condvar.c revision 1.6 1 /* $NetBSD: kern_condvar.c,v 1.6 2007/03/29 17:34:39 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel condition variable implementation, modeled after those found in
41 * Solaris, a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.6 2007/03/29 17:34:39 ad Exp $");
49
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/sched.h>
53 #include <sys/systm.h>
54 #include <sys/condvar.h>
55 #include <sys/sleepq.h>
56
57 static void cv_unsleep(lwp_t *);
58 static void cv_changepri(lwp_t *, pri_t);
59
60 syncobj_t cv_syncobj = {
61 SOBJ_SLEEPQ_SORTED,
62 cv_unsleep,
63 cv_changepri,
64 sleepq_lendpri,
65 syncobj_noowner,
66 };
67
68 /*
69 * cv_init:
70 *
71 * Initialize a condition variable for use.
72 */
73 void
74 cv_init(kcondvar_t *cv, const char *wmesg)
75 {
76
77 KASSERT(wmesg != NULL);
78
79 cv->cv_wmesg = wmesg;
80 cv->cv_waiters = 0;
81 }
82
83 /*
84 * cv_destroy:
85 *
86 * Tear down a condition variable.
87 */
88 void
89 cv_destroy(kcondvar_t *cv)
90 {
91
92 #ifdef DIAGNOSTIC
93 KASSERT(cv->cv_waiters == 0 && cv->cv_wmesg != NULL);
94 cv->cv_wmesg = NULL;
95 #endif
96 }
97
98 /*
99 * cv_enter:
100 *
101 * Look up and lock the sleep queue corresponding to the given
102 * condition variable, and increment the number of waiters.
103 */
104 static inline sleepq_t *
105 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
106 {
107 sleepq_t *sq;
108
109 KASSERT(cv->cv_wmesg != NULL);
110
111 l->l_cv_signalled = 0;
112 sq = sleeptab_lookup(&sleeptab, cv);
113 cv->cv_waiters++;
114 sleepq_enter(sq, l);
115 mutex_exit(mtx);
116
117 return sq;
118 }
119
120 /*
121 * cv_exit:
122 *
123 * After resuming execution, check to see if we have been restarted
124 * as a result of cv_signal(). If we have, but cannot take the
125 * wakeup (because of eg a pending Unix signal or timeout) then try
126 * to ensure that another LWP sees it. This is necessary because
127 * there may be multiple waiters, and at least one should take the
128 * wakeup if possible.
129 */
130 static inline int
131 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
132 {
133
134 mutex_enter(mtx);
135 if (__predict_false(error != 0) && l->l_cv_signalled != 0)
136 cv_signal(cv);
137
138 return error;
139 }
140
141 /*
142 * cv_unsleep:
143 *
144 * Remove an LWP from the condition variable and sleep queue. This
145 * is called when the LWP has not been awoken normally but instead
146 * interrupted: for example, when a signal is received. Must be
147 * called with the LWP locked, and must return it unlocked.
148 */
149 static void
150 cv_unsleep(lwp_t *l)
151 {
152 uintptr_t addr;
153
154 KASSERT(l->l_wchan != NULL);
155 LOCK_ASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
156
157 addr = (uintptr_t)l->l_wchan;
158 ((kcondvar_t *)addr)->cv_waiters--;
159
160 sleepq_unsleep(l);
161 }
162
163 /*
164 * cv_changepri:
165 *
166 * Adjust the real (user) priority of an LWP blocked on a CV.
167 */
168 static void
169 cv_changepri(lwp_t *l, pri_t pri)
170 {
171 sleepq_t *sq = l->l_sleepq;
172 pri_t opri;
173
174 KASSERT(lwp_locked(l, sq->sq_mutex));
175
176 opri = lwp_eprio(l);
177 l->l_usrpri = pri;
178 l->l_priority = sched_kpri(l);
179
180 if (lwp_eprio(l) != opri) {
181 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
182 sleepq_insert(sq, l, l->l_syncobj);
183 }
184 }
185
186 /*
187 * cv_wait:
188 *
189 * Wait non-interruptably on a condition variable until awoken.
190 */
191 void
192 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
193 {
194 lwp_t *l = curlwp;
195 sleepq_t *sq;
196
197 LOCK_ASSERT(mutex_owned(mtx));
198
199 if (sleepq_dontsleep(l)) {
200 (void)sleepq_abort(mtx, 0);
201 return;
202 }
203
204 sq = cv_enter(cv, mtx, l);
205 sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, 0, 0, &cv_syncobj);
206 (void)sleepq_unblock(0, 0);
207 (void)cv_exit(cv, mtx, l, 0);
208 }
209
210 /*
211 * cv_wait_sig:
212 *
213 * Wait on a condition variable until a awoken or a signal is received.
214 * Will also return early if the process is exiting. Returns zero if
215 * awoken normallly, ERESTART if a signal was received and the system
216 * call is restartable, or EINTR otherwise.
217 */
218 int
219 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
220 {
221 lwp_t *l = curlwp;
222 sleepq_t *sq;
223 int error;
224
225 LOCK_ASSERT(mutex_owned(mtx));
226
227 if (sleepq_dontsleep(l))
228 return sleepq_abort(mtx, 0);
229
230 sq = cv_enter(cv, mtx, l);
231 sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, 0, 1, &cv_syncobj);
232 error = sleepq_unblock(0, 1);
233 return cv_exit(cv, mtx, l, error);
234 }
235
236 /*
237 * cv_timedwait:
238 *
239 * Wait on a condition variable until awoken or the specified timeout
240 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
241 * timeout expired.
242 */
243 int
244 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
245 {
246 lwp_t *l = curlwp;
247 sleepq_t *sq;
248 int error;
249
250 LOCK_ASSERT(mutex_owned(mtx));
251
252 if (sleepq_dontsleep(l))
253 return sleepq_abort(mtx, 0);
254
255 sq = cv_enter(cv, mtx, l);
256 sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, timo, 0, &cv_syncobj);
257 error = sleepq_unblock(timo, 0);
258 return cv_exit(cv, mtx, l, error);
259 }
260
261 /*
262 * cv_timedwait_sig:
263 *
264 * Wait on a condition variable until a timeout expires, awoken or a
265 * signal is received. Will also return early if the process is
266 * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
267 * timeout expires, ERESTART if a signal was received and the system
268 * call is restartable, or EINTR otherwise.
269 */
270 int
271 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
272 {
273 lwp_t *l = curlwp;
274 sleepq_t *sq;
275 int error;
276
277 LOCK_ASSERT(mutex_owned(mtx));
278
279 if (sleepq_dontsleep(l))
280 return sleepq_abort(mtx, 0);
281
282 sq = cv_enter(cv, mtx, l);
283 sleepq_block(sq, sched_kpri(l), cv, cv->cv_wmesg, timo, 1, &cv_syncobj);
284 error = sleepq_unblock(timo, 1);
285 return cv_exit(cv, mtx, l, error);
286 }
287
288 /*
289 * cv_signal:
290 *
291 * Wake the highest priority LWP waiting on a condition variable.
292 * Must be called with the interlocking mutex held.
293 */
294 void
295 cv_signal(kcondvar_t *cv)
296 {
297 lwp_t *l;
298 sleepq_t *sq;
299
300 if (cv->cv_waiters == 0)
301 return;
302
303 /*
304 * cv->cv_waiters may be stale and have dropped to zero, but
305 * while holding the interlock (the mutex passed to cv_wait()
306 * and similar) we will see non-zero values when it matters.
307 */
308
309 sq = sleeptab_lookup(&sleeptab, cv);
310 if (cv->cv_waiters != 0) {
311 cv->cv_waiters--;
312 l = sleepq_wake(sq, cv, 1);
313 l->l_cv_signalled = 1;
314 } else
315 sleepq_unlock(sq);
316 }
317
318 /*
319 * cv_broadcast:
320 *
321 * Wake all LWPs waiting on a condition variable. Must be called
322 * with the interlocking mutex held.
323 */
324 void
325 cv_broadcast(kcondvar_t *cv)
326 {
327 sleepq_t *sq;
328 u_int cnt;
329
330 if (cv->cv_waiters == 0)
331 return;
332
333 sq = sleeptab_lookup(&sleeptab, cv);
334 if ((cnt = cv->cv_waiters) != 0) {
335 cv->cv_waiters = 0;
336 sleepq_wake(sq, cv, cnt);
337 } else
338 sleepq_unlock(sq);
339 }
340
341 /*
342 * cv_has_waiters:
343 *
344 * For diagnostic assertions: return non-zero if a condition
345 * variable has waiters.
346 */
347 int
348 cv_has_waiters(kcondvar_t *cv)
349 {
350
351 /* No need to interlock here */
352 return (int)cv->cv_waiters;
353 }
354