Home | History | Annotate | Line # | Download | only in kern
kern_condvar.c revision 1.61
      1 /*	$NetBSD: kern_condvar.c,v 1.61 2023/10/15 10:27:11 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Kernel condition variable implementation.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.61 2023/10/15 10:27:11 riastradh Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/lwp.h>
     43 #include <sys/condvar.h>
     44 #include <sys/sleepq.h>
     45 #include <sys/lockdebug.h>
     46 #include <sys/cpu.h>
     47 #include <sys/kernel.h>
     48 #include <sys/syncobj.h>
     49 
     50 /*
     51  * Accessors for the private contents of the kcondvar_t data type.
     52  *
     53  *	cv_opaque[0]	sleepq_t
     54  *	cv_opaque[1]	description for ps(1)
     55  *
     56  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     57  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     58  * and dequeue).
     59  *
     60  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     61  * of the CV.
     62  */
     63 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     64 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     65 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     66 
     67 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     68 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     69 
     70 static void		cv_unsleep(lwp_t *, bool);
     71 static inline void	cv_wakeup_one(kcondvar_t *);
     72 static inline void	cv_wakeup_all(kcondvar_t *);
     73 
     74 syncobj_t cv_syncobj = {
     75 	.sobj_name	= "cv",
     76 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     77 	.sobj_boostpri  = PRI_KERNEL,
     78 	.sobj_unsleep	= cv_unsleep,
     79 	.sobj_changepri	= sleepq_changepri,
     80 	.sobj_lendpri	= sleepq_lendpri,
     81 	.sobj_owner	= syncobj_noowner,
     82 };
     83 
     84 static const char deadcv[] = "deadcv";
     85 
     86 /*
     87  * cv_init:
     88  *
     89  *	Initialize a condition variable for use.
     90  */
     91 void
     92 cv_init(kcondvar_t *cv, const char *wmesg)
     93 {
     94 
     95 	KASSERT(wmesg != NULL);
     96 	CV_SET_WMESG(cv, wmesg);
     97 	sleepq_init(CV_SLEEPQ(cv));
     98 }
     99 
    100 /*
    101  * cv_destroy:
    102  *
    103  *	Tear down a condition variable.
    104  */
    105 void
    106 cv_destroy(kcondvar_t *cv)
    107 {
    108 
    109 	sleepq_destroy(CV_SLEEPQ(cv));
    110 #ifdef DIAGNOSTIC
    111 	KASSERT(cv_is_valid(cv));
    112 	KASSERT(!cv_has_waiters(cv));
    113 	CV_SET_WMESG(cv, deadcv);
    114 #endif
    115 }
    116 
    117 /*
    118  * cv_enter:
    119  *
    120  *	Look up and lock the sleep queue corresponding to the given
    121  *	condition variable, and increment the number of waiters.
    122  */
    123 static inline int
    124 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    125 {
    126 	sleepq_t *sq;
    127 	kmutex_t *mp;
    128 	int nlocks;
    129 
    130 	KASSERT(cv_is_valid(cv));
    131 	KASSERT(!cpu_intr_p());
    132 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    133 
    134 	mp = sleepq_hashlock(cv);
    135 	sq = CV_SLEEPQ(cv);
    136 	nlocks = sleepq_enter(sq, l, mp);
    137 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    138 	mutex_exit(mtx);
    139 	KASSERT(cv_has_waiters(cv));
    140 	return nlocks;
    141 }
    142 
    143 /*
    144  * cv_unsleep:
    145  *
    146  *	Remove an LWP from the condition variable and sleep queue.  This
    147  *	is called when the LWP has not been awoken normally but instead
    148  *	interrupted: for example, when a signal is received.  Must be
    149  *	called with the LWP locked.  Will unlock if "unlock" is true.
    150  */
    151 static void
    152 cv_unsleep(lwp_t *l, bool unlock)
    153 {
    154 	kcondvar_t *cv __diagused;
    155 
    156 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    157 
    158 	KASSERT(l->l_wchan == (wchan_t)cv);
    159 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    160 	KASSERT(cv_is_valid(cv));
    161 	KASSERT(cv_has_waiters(cv));
    162 
    163 	sleepq_unsleep(l, unlock);
    164 }
    165 
    166 /*
    167  * cv_wait:
    168  *
    169  *	Wait non-interruptably on a condition variable until awoken.
    170  */
    171 void
    172 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    173 {
    174 	lwp_t *l = curlwp;
    175 	int nlocks;
    176 
    177 	KASSERT(mutex_owned(mtx));
    178 
    179 	nlocks = cv_enter(cv, mtx, l, false);
    180 	(void)sleepq_block(0, false, &cv_syncobj, nlocks);
    181 	mutex_enter(mtx);
    182 }
    183 
    184 /*
    185  * cv_wait_sig:
    186  *
    187  *	Wait on a condition variable until a awoken or a signal is received.
    188  *	Will also return early if the process is exiting.  Returns zero if
    189  *	awoken normally, ERESTART if a signal was received and the system
    190  *	call is restartable, or EINTR otherwise.
    191  */
    192 int
    193 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    194 {
    195 	lwp_t *l = curlwp;
    196 	int error, nlocks;
    197 
    198 	KASSERT(mutex_owned(mtx));
    199 
    200 	nlocks = cv_enter(cv, mtx, l, true);
    201 	error = sleepq_block(0, true, &cv_syncobj, nlocks);
    202 	mutex_enter(mtx);
    203 	return error;
    204 }
    205 
    206 /*
    207  * cv_timedwait:
    208  *
    209  *	Wait on a condition variable until awoken or the specified timeout
    210  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    211  *	timeout expired.
    212  *
    213  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    214  */
    215 int
    216 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    217 {
    218 	lwp_t *l = curlwp;
    219 	int error, nlocks;
    220 
    221 	KASSERT(mutex_owned(mtx));
    222 
    223 	nlocks = cv_enter(cv, mtx, l, false);
    224 	error = sleepq_block(timo, false, &cv_syncobj, nlocks);
    225 	mutex_enter(mtx);
    226 	return error;
    227 }
    228 
    229 /*
    230  * cv_timedwait_sig:
    231  *
    232  *	Wait on a condition variable until a timeout expires, awoken or a
    233  *	signal is received.  Will also return early if the process is
    234  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    235  *	timeout expires, ERESTART if a signal was received and the system
    236  *	call is restartable, or EINTR otherwise.
    237  *
    238  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    239  */
    240 int
    241 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    242 {
    243 	lwp_t *l = curlwp;
    244 	int error, nlocks;
    245 
    246 	KASSERT(mutex_owned(mtx));
    247 
    248 	nlocks = cv_enter(cv, mtx, l, true);
    249 	error = sleepq_block(timo, true, &cv_syncobj, nlocks);
    250 	mutex_enter(mtx);
    251 	return error;
    252 }
    253 
    254 /*
    255  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    256  * want a number of ticks for a timeout:
    257  *
    258  *	timo = hz*(sec + frac/2^64)
    259  *	     = hz*sec + hz*frac/2^64
    260  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    261  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    262  *
    263  * where frachi is the high 32 bits of frac and fraclo is the
    264  * low 32 bits.
    265  *
    266  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    267  *
    268  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    269  *
    270  * since fraclo < 2^32.
    271  *
    272  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    273  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    274  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    275  * because we compute end - start in ticks in order to compute the
    276  * remaining timeout, and that difference cannot wrap around, so we use
    277  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    278  * margin for paranoia and will exceed most waits in practice by far.
    279  */
    280 static unsigned
    281 bintime2timo(const struct bintime *bt)
    282 {
    283 
    284 	KASSERT(hz < INT_MAX/2);
    285 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    286 	if (bt->sec > ((INT_MAX/2)/hz))
    287 		return INT_MAX/2;
    288 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    289 		return INT_MAX/2;
    290 
    291 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    292 }
    293 
    294 /*
    295  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    296  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    297  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    298  * second)/tick.  So for the fractional part, we compute
    299  *
    300  *	frac = rem * 2^64 / hz
    301  *	     = ((rem * 2^32) / hz) * 2^32
    302  *
    303  * Using truncating integer division instead of real division will
    304  * leave us with only about 32 bits of precision, which means about
    305  * 1/4-nanosecond resolution, which is good enough for our purposes.
    306  */
    307 static struct bintime
    308 timo2bintime(unsigned timo)
    309 {
    310 
    311 	return (struct bintime) {
    312 		.sec = timo / hz,
    313 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    314 	};
    315 }
    316 
    317 /*
    318  * cv_timedwaitbt:
    319  *
    320  *	Wait on a condition variable until awoken or the specified
    321  *	timeout expires.  Returns zero if awoken normally or
    322  *	EWOULDBLOCK if the timeout expires.
    323  *
    324  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    325  *	the time slept, so on exit, bt is the time remaining after
    326  *	sleeping, possibly negative if the complete time has elapsed.
    327  *	No infinite timeout; use cv_wait_sig instead.
    328  *
    329  *	epsilon is a requested maximum error in timeout (excluding
    330  *	spurious wakeups).  Currently not used, will be used in the
    331  *	future to choose between low- and high-resolution timers.
    332  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    333  *	where r is the finest resolution of clock available and s is
    334  *	scheduling delays for scheduler overhead and competing threads.
    335  *	Time is measured by the interrupt source implementing the
    336  *	timeout, not by another timecounter.
    337  */
    338 int
    339 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    340     const struct bintime *epsilon __diagused)
    341 {
    342 	struct bintime slept;
    343 	unsigned start, end;
    344 	int timo;
    345 	int error;
    346 
    347 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    348 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    349 
    350 	/* If there's nothing left to wait, time out.  */
    351 	if (bt->sec == 0 && bt->frac == 0)
    352 		return EWOULDBLOCK;
    353 
    354 	/* Convert to ticks, but clamp to be >=1.  */
    355 	timo = bintime2timo(bt);
    356 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    357 	if (timo == 0)
    358 		timo = 1;
    359 
    360 	/*
    361 	 * getticks() is technically int, but nothing special
    362 	 * happens instead of overflow, so we assume two's-complement
    363 	 * wraparound and just treat it as unsigned.
    364 	 */
    365 	start = getticks();
    366 	error = cv_timedwait(cv, mtx, timo);
    367 	end = getticks();
    368 
    369 	/*
    370 	 * Set it to the time left, or zero, whichever is larger.  We
    371 	 * do not fail with EWOULDBLOCK here because this may have been
    372 	 * an explicit wakeup, so the caller needs to check before they
    373 	 * give up or else cv_signal would be lost.
    374 	 */
    375 	slept = timo2bintime(end - start);
    376 	if (bintimecmp(bt, &slept, <=)) {
    377 		bt->sec = 0;
    378 		bt->frac = 0;
    379 	} else {
    380 		/* bt := bt - slept */
    381 		bintime_sub(bt, &slept);
    382 	}
    383 
    384 	return error;
    385 }
    386 
    387 /*
    388  * cv_timedwaitbt_sig:
    389  *
    390  *	Wait on a condition variable until awoken, the specified
    391  *	timeout expires, or interrupted by a signal.  Returns zero if
    392  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    393  *	EINTR/ERESTART if interrupted by a signal.
    394  *
    395  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    396  *	subtracts the time slept, so on exit, bt is the time remaining
    397  *	after sleeping.  No infinite timeout; use cv_wait instead.
    398  *
    399  *	epsilon is a requested maximum error in timeout (excluding
    400  *	spurious wakeups).  Currently not used, will be used in the
    401  *	future to choose between low- and high-resolution timers.
    402  */
    403 int
    404 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    405     const struct bintime *epsilon __diagused)
    406 {
    407 	struct bintime slept;
    408 	unsigned start, end;
    409 	int timo;
    410 	int error;
    411 
    412 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    413 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    414 
    415 	/* If there's nothing left to wait, time out.  */
    416 	if (bt->sec == 0 && bt->frac == 0)
    417 		return EWOULDBLOCK;
    418 
    419 	/* Convert to ticks, but clamp to be >=1.  */
    420 	timo = bintime2timo(bt);
    421 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    422 	if (timo == 0)
    423 		timo = 1;
    424 
    425 	/*
    426 	 * getticks() is technically int, but nothing special
    427 	 * happens instead of overflow, so we assume two's-complement
    428 	 * wraparound and just treat it as unsigned.
    429 	 */
    430 	start = getticks();
    431 	error = cv_timedwait_sig(cv, mtx, timo);
    432 	end = getticks();
    433 
    434 	/*
    435 	 * Set it to the time left, or zero, whichever is larger.  We
    436 	 * do not fail with EWOULDBLOCK here because this may have been
    437 	 * an explicit wakeup, so the caller needs to check before they
    438 	 * give up or else cv_signal would be lost.
    439 	 */
    440 	slept = timo2bintime(end - start);
    441 	if (bintimecmp(bt, &slept, <=)) {
    442 		bt->sec = 0;
    443 		bt->frac = 0;
    444 	} else {
    445 		/* bt := bt - slept */
    446 		bintime_sub(bt, &slept);
    447 	}
    448 
    449 	return error;
    450 }
    451 
    452 /*
    453  * cv_signal:
    454  *
    455  *	Wake the highest priority LWP waiting on a condition variable.  Must
    456  *	be called with the interlocking mutex held or just after it has been
    457  *	released (so the awoken LWP will see the changed condition).
    458  */
    459 void
    460 cv_signal(kcondvar_t *cv)
    461 {
    462 
    463 	KASSERT(cv_is_valid(cv));
    464 
    465 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
    466 		/*
    467 		 * Compiler turns into a tail call usually, i.e. jmp,
    468 		 * because the arguments are the same and no locals.
    469 		 */
    470 		cv_wakeup_one(cv);
    471 	}
    472 }
    473 
    474 /*
    475  * cv_wakeup_one:
    476  *
    477  *	Slow path for cv_signal().  Deliberately marked __noinline to
    478  *	prevent the compiler pulling it in to cv_signal(), which adds
    479  *	extra prologue and epilogue code.
    480  */
    481 static __noinline void
    482 cv_wakeup_one(kcondvar_t *cv)
    483 {
    484 	sleepq_t *sq;
    485 	kmutex_t *mp;
    486 	lwp_t *l;
    487 
    488 	mp = sleepq_hashlock(cv);
    489 	sq = CV_SLEEPQ(cv);
    490 	if (__predict_true((l = LIST_FIRST(sq)) != NULL)) {
    491 		KASSERT(l->l_sleepq == sq);
    492 		KASSERT(l->l_mutex == mp);
    493 		KASSERT(l->l_wchan == cv);
    494 		sleepq_remove(sq, l, true);
    495 	}
    496 	mutex_spin_exit(mp);
    497 }
    498 
    499 /*
    500  * cv_broadcast:
    501  *
    502  *	Wake all LWPs waiting on a condition variable.  Must be called with
    503  *	the interlocking mutex held or just after it has been released (so
    504  *	the awoken LWP will see the changed condition).
    505  */
    506 void
    507 cv_broadcast(kcondvar_t *cv)
    508 {
    509 
    510 	KASSERT(cv_is_valid(cv));
    511 
    512 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
    513 		/*
    514 		 * Compiler turns into a tail call usually, i.e. jmp,
    515 		 * because the arguments are the same and no locals.
    516 		 */
    517 		cv_wakeup_all(cv);
    518 	}
    519 }
    520 
    521 /*
    522  * cv_wakeup_all:
    523  *
    524  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    525  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    526  *	extra prologue and epilogue code.
    527  */
    528 static __noinline void
    529 cv_wakeup_all(kcondvar_t *cv)
    530 {
    531 	sleepq_t *sq;
    532 	kmutex_t *mp;
    533 	lwp_t *l;
    534 
    535 	mp = sleepq_hashlock(cv);
    536 	sq = CV_SLEEPQ(cv);
    537 	while ((l = LIST_FIRST(sq)) != NULL) {
    538 		KASSERT(l->l_sleepq == sq);
    539 		KASSERT(l->l_mutex == mp);
    540 		KASSERT(l->l_wchan == cv);
    541 		sleepq_remove(sq, l, true);
    542 	}
    543 	mutex_spin_exit(mp);
    544 }
    545 
    546 /*
    547  * cv_fdrestart:
    548  *
    549  *	Like cv_broadcast(), but make any LWPs that share the same file
    550  *	descriptor table as the caller return ERESTART when resuming.  Used
    551  *	to dislodge LWPs waiting for I/O that prevent a file descriptor from
    552  *	being closed, without upsetting access to the file (not descriptor)
    553  *	made from another direction.  Rarely used thus no fast path
    554  *	provided.
    555  */
    556 void
    557 cv_fdrestart(kcondvar_t *cv)
    558 {
    559 	sleepq_t *sq;
    560 	kmutex_t *mp;
    561 	lwp_t *l;
    562 
    563 	KASSERT(cv_is_valid(cv));
    564 
    565 	if (LIST_EMPTY(CV_SLEEPQ(cv)))
    566 		return;
    567 
    568 	mp = sleepq_hashlock(cv);
    569 	sq = CV_SLEEPQ(cv);
    570 	while ((l = LIST_FIRST(sq)) != NULL) {
    571 		KASSERT(l->l_sleepq == sq);
    572 		KASSERT(l->l_mutex == mp);
    573 		KASSERT(l->l_wchan == cv);
    574 		/* l_fd stable at this point so no special locking needed. */
    575 		if (l->l_fd == curlwp->l_fd) {
    576 			l->l_flag |= LW_RESTART;
    577 			sleepq_remove(sq, l, false);
    578 		}
    579 	}
    580 	mutex_spin_exit(mp);
    581 }
    582 
    583 /*
    584  * cv_has_waiters:
    585  *
    586  *	For diagnostic assertions: return non-zero if a condition
    587  *	variable has waiters.
    588  */
    589 bool
    590 cv_has_waiters(kcondvar_t *cv)
    591 {
    592 
    593 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    594 }
    595 
    596 /*
    597  * cv_is_valid:
    598  *
    599  *	For diagnostic assertions: return non-zero if a condition
    600  *	variable appears to be valid.  No locks need be held.
    601  */
    602 bool
    603 cv_is_valid(kcondvar_t *cv)
    604 {
    605 
    606 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    607 }
    608