kern_condvar.c revision 1.8 1 /* $NetBSD: kern_condvar.c,v 1.8 2007/05/17 14:51:38 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel condition variable implementation, modeled after those found in
41 * Solaris, a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.8 2007/05/17 14:51:38 yamt Exp $");
49
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/sched.h>
53 #include <sys/systm.h>
54 #include <sys/condvar.h>
55 #include <sys/sleepq.h>
56
57 static void cv_unsleep(lwp_t *);
58 static void cv_changepri(lwp_t *, pri_t);
59
60 syncobj_t cv_syncobj = {
61 SOBJ_SLEEPQ_SORTED,
62 cv_unsleep,
63 cv_changepri,
64 sleepq_lendpri,
65 syncobj_noowner,
66 };
67
68 /*
69 * cv_init:
70 *
71 * Initialize a condition variable for use.
72 */
73 void
74 cv_init(kcondvar_t *cv, const char *wmesg)
75 {
76
77 KASSERT(wmesg != NULL);
78
79 cv->cv_wmesg = wmesg;
80 cv->cv_waiters = 0;
81 }
82
83 /*
84 * cv_destroy:
85 *
86 * Tear down a condition variable.
87 */
88 void
89 cv_destroy(kcondvar_t *cv)
90 {
91
92 #ifdef DIAGNOSTIC
93 KASSERT(cv->cv_waiters == 0 && cv->cv_wmesg != NULL);
94 cv->cv_wmesg = NULL;
95 #endif
96 }
97
98 /*
99 * cv_enter:
100 *
101 * Look up and lock the sleep queue corresponding to the given
102 * condition variable, and increment the number of waiters.
103 */
104 static inline sleepq_t *
105 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
106 {
107 sleepq_t *sq;
108
109 KASSERT(cv->cv_wmesg != NULL);
110
111 l->l_cv_signalled = 0;
112 sq = sleeptab_lookup(&sleeptab, cv);
113 cv->cv_waiters++;
114 sleepq_enter(sq, l);
115 sleepq_enqueue(sq, sched_kpri(l), cv, cv->cv_wmesg, &cv_syncobj);
116 mutex_exit(mtx);
117
118 return sq;
119 }
120
121 /*
122 * cv_exit:
123 *
124 * After resuming execution, check to see if we have been restarted
125 * as a result of cv_signal(). If we have, but cannot take the
126 * wakeup (because of eg a pending Unix signal or timeout) then try
127 * to ensure that another LWP sees it. This is necessary because
128 * there may be multiple waiters, and at least one should take the
129 * wakeup if possible.
130 */
131 static inline int
132 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
133 {
134
135 mutex_enter(mtx);
136 if (__predict_false(error != 0) && l->l_cv_signalled != 0)
137 cv_signal(cv);
138
139 return error;
140 }
141
142 /*
143 * cv_unsleep:
144 *
145 * Remove an LWP from the condition variable and sleep queue. This
146 * is called when the LWP has not been awoken normally but instead
147 * interrupted: for example, when a signal is received. Must be
148 * called with the LWP locked, and must return it unlocked.
149 */
150 static void
151 cv_unsleep(lwp_t *l)
152 {
153 uintptr_t addr;
154
155 KASSERT(l->l_wchan != NULL);
156 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
157
158 addr = (uintptr_t)l->l_wchan;
159 ((kcondvar_t *)addr)->cv_waiters--;
160
161 sleepq_unsleep(l);
162 }
163
164 /*
165 * cv_changepri:
166 *
167 * Adjust the real (user) priority of an LWP blocked on a CV.
168 */
169 static void
170 cv_changepri(lwp_t *l, pri_t pri)
171 {
172 sleepq_t *sq = l->l_sleepq;
173 pri_t opri;
174
175 KASSERT(lwp_locked(l, sq->sq_mutex));
176
177 opri = lwp_eprio(l);
178 l->l_usrpri = pri;
179 l->l_priority = sched_kpri(l);
180
181 if (lwp_eprio(l) != opri) {
182 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
183 sleepq_insert(sq, l, l->l_syncobj);
184 }
185 }
186
187 /*
188 * cv_wait:
189 *
190 * Wait non-interruptably on a condition variable until awoken.
191 */
192 void
193 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
194 {
195 lwp_t *l = curlwp;
196 sleepq_t *sq;
197
198 KASSERT(mutex_owned(mtx));
199
200 if (sleepq_dontsleep(l)) {
201 (void)sleepq_abort(mtx, 0);
202 return;
203 }
204
205 sq = cv_enter(cv, mtx, l);
206 (void)sleepq_block(0, false);
207 (void)cv_exit(cv, mtx, l, 0);
208 }
209
210 /*
211 * cv_wait_sig:
212 *
213 * Wait on a condition variable until a awoken or a signal is received.
214 * Will also return early if the process is exiting. Returns zero if
215 * awoken normallly, ERESTART if a signal was received and the system
216 * call is restartable, or EINTR otherwise.
217 */
218 int
219 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
220 {
221 lwp_t *l = curlwp;
222 sleepq_t *sq;
223 int error;
224
225 KASSERT(mutex_owned(mtx));
226
227 if (sleepq_dontsleep(l))
228 return sleepq_abort(mtx, 0);
229
230 sq = cv_enter(cv, mtx, l);
231 error = sleepq_block(0, true);
232 return cv_exit(cv, mtx, l, error);
233 }
234
235 /*
236 * cv_timedwait:
237 *
238 * Wait on a condition variable until awoken or the specified timeout
239 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
240 * timeout expired.
241 */
242 int
243 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
244 {
245 lwp_t *l = curlwp;
246 sleepq_t *sq;
247 int error;
248
249 KASSERT(mutex_owned(mtx));
250
251 if (sleepq_dontsleep(l))
252 return sleepq_abort(mtx, 0);
253
254 sq = cv_enter(cv, mtx, l);
255 error = sleepq_block(timo, false);
256 return cv_exit(cv, mtx, l, error);
257 }
258
259 /*
260 * cv_timedwait_sig:
261 *
262 * Wait on a condition variable until a timeout expires, awoken or a
263 * signal is received. Will also return early if the process is
264 * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
265 * timeout expires, ERESTART if a signal was received and the system
266 * call is restartable, or EINTR otherwise.
267 */
268 int
269 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
270 {
271 lwp_t *l = curlwp;
272 sleepq_t *sq;
273 int error;
274
275 KASSERT(mutex_owned(mtx));
276
277 if (sleepq_dontsleep(l))
278 return sleepq_abort(mtx, 0);
279
280 sq = cv_enter(cv, mtx, l);
281 error = sleepq_block(timo, true);
282 return cv_exit(cv, mtx, l, error);
283 }
284
285 /*
286 * cv_signal:
287 *
288 * Wake the highest priority LWP waiting on a condition variable.
289 * Must be called with the interlocking mutex held.
290 */
291 void
292 cv_signal(kcondvar_t *cv)
293 {
294 lwp_t *l;
295 sleepq_t *sq;
296
297 if (cv->cv_waiters == 0)
298 return;
299
300 /*
301 * cv->cv_waiters may be stale and have dropped to zero, but
302 * while holding the interlock (the mutex passed to cv_wait()
303 * and similar) we will see non-zero values when it matters.
304 */
305
306 sq = sleeptab_lookup(&sleeptab, cv);
307 if (cv->cv_waiters != 0) {
308 cv->cv_waiters--;
309 l = sleepq_wake(sq, cv, 1);
310 l->l_cv_signalled = 1;
311 } else
312 sleepq_unlock(sq);
313 }
314
315 /*
316 * cv_broadcast:
317 *
318 * Wake all LWPs waiting on a condition variable. Must be called
319 * with the interlocking mutex held.
320 */
321 void
322 cv_broadcast(kcondvar_t *cv)
323 {
324 sleepq_t *sq;
325 u_int cnt;
326
327 if (cv->cv_waiters == 0)
328 return;
329
330 sq = sleeptab_lookup(&sleeptab, cv);
331 if ((cnt = cv->cv_waiters) != 0) {
332 cv->cv_waiters = 0;
333 sleepq_wake(sq, cv, cnt);
334 } else
335 sleepq_unlock(sq);
336 }
337
338 /*
339 * cv_has_waiters:
340 *
341 * For diagnostic assertions: return non-zero if a condition
342 * variable has waiters.
343 */
344 bool
345 cv_has_waiters(kcondvar_t *cv)
346 {
347
348 /* No need to interlock here */
349 return cv->cv_waiters != 0;
350 }
351