kern_condvar.c revision 1.9 1 /* $NetBSD: kern_condvar.c,v 1.9 2007/07/09 21:10:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel condition variable implementation, modeled after those found in
41 * Solaris, a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.9 2007/07/09 21:10:51 ad Exp $");
49
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/sched.h>
53 #include <sys/systm.h>
54 #include <sys/condvar.h>
55 #include <sys/sleepq.h>
56
57 static void cv_unsleep(lwp_t *);
58 static void cv_changepri(lwp_t *, pri_t);
59
60 syncobj_t cv_syncobj = {
61 SOBJ_SLEEPQ_SORTED,
62 cv_unsleep,
63 cv_changepri,
64 sleepq_lendpri,
65 syncobj_noowner,
66 };
67
68 /*
69 * cv_init:
70 *
71 * Initialize a condition variable for use.
72 */
73 void
74 cv_init(kcondvar_t *cv, const char *wmesg)
75 {
76
77 KASSERT(wmesg != NULL);
78
79 cv->cv_wmesg = wmesg;
80 cv->cv_waiters = 0;
81 }
82
83 /*
84 * cv_destroy:
85 *
86 * Tear down a condition variable.
87 */
88 void
89 cv_destroy(kcondvar_t *cv)
90 {
91
92 #ifdef DIAGNOSTIC
93 KASSERT(cv->cv_waiters == 0 && cv->cv_wmesg != NULL);
94 cv->cv_wmesg = NULL;
95 #endif
96 }
97
98 /*
99 * cv_enter:
100 *
101 * Look up and lock the sleep queue corresponding to the given
102 * condition variable, and increment the number of waiters.
103 */
104 static inline sleepq_t *
105 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
106 {
107 sleepq_t *sq;
108
109 KASSERT(cv->cv_wmesg != NULL);
110 KASSERT((l->l_flag & LW_INTR) == 0);
111
112 l->l_cv_signalled = 0;
113 sq = sleeptab_lookup(&sleeptab, cv);
114 cv->cv_waiters++;
115 sleepq_enter(sq, l);
116 sleepq_enqueue(sq, sched_kpri(l), cv, cv->cv_wmesg, &cv_syncobj);
117 mutex_exit(mtx);
118
119 return sq;
120 }
121
122 /*
123 * cv_exit:
124 *
125 * After resuming execution, check to see if we have been restarted
126 * as a result of cv_signal(). If we have, but cannot take the
127 * wakeup (because of eg a pending Unix signal or timeout) then try
128 * to ensure that another LWP sees it. This is necessary because
129 * there may be multiple waiters, and at least one should take the
130 * wakeup if possible.
131 */
132 static inline int
133 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
134 {
135
136 mutex_enter(mtx);
137 if (__predict_false(error != 0) && l->l_cv_signalled != 0)
138 cv_signal(cv);
139
140 return error;
141 }
142
143 /*
144 * cv_unsleep:
145 *
146 * Remove an LWP from the condition variable and sleep queue. This
147 * is called when the LWP has not been awoken normally but instead
148 * interrupted: for example, when a signal is received. Must be
149 * called with the LWP locked, and must return it unlocked.
150 */
151 static void
152 cv_unsleep(lwp_t *l)
153 {
154 uintptr_t addr;
155
156 KASSERT(l->l_wchan != NULL);
157 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
158
159 addr = (uintptr_t)l->l_wchan;
160 ((kcondvar_t *)addr)->cv_waiters--;
161
162 sleepq_unsleep(l);
163 }
164
165 /*
166 * cv_changepri:
167 *
168 * Adjust the real (user) priority of an LWP blocked on a CV.
169 */
170 static void
171 cv_changepri(lwp_t *l, pri_t pri)
172 {
173 sleepq_t *sq = l->l_sleepq;
174 pri_t opri;
175
176 KASSERT(lwp_locked(l, sq->sq_mutex));
177
178 opri = lwp_eprio(l);
179 l->l_usrpri = pri;
180 l->l_priority = sched_kpri(l);
181
182 if (lwp_eprio(l) != opri) {
183 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
184 sleepq_insert(sq, l, l->l_syncobj);
185 }
186 }
187
188 /*
189 * cv_wait:
190 *
191 * Wait non-interruptably on a condition variable until awoken.
192 */
193 void
194 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
195 {
196 lwp_t *l = curlwp;
197 sleepq_t *sq;
198
199 KASSERT(mutex_owned(mtx));
200
201 if (sleepq_dontsleep(l)) {
202 (void)sleepq_abort(mtx, 0);
203 return;
204 }
205
206 sq = cv_enter(cv, mtx, l);
207 (void)sleepq_block(0, false);
208 (void)cv_exit(cv, mtx, l, 0);
209 }
210
211 /*
212 * cv_wait_sig:
213 *
214 * Wait on a condition variable until a awoken or a signal is received.
215 * Will also return early if the process is exiting. Returns zero if
216 * awoken normallly, ERESTART if a signal was received and the system
217 * call is restartable, or EINTR otherwise.
218 */
219 int
220 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
221 {
222 lwp_t *l = curlwp;
223 sleepq_t *sq;
224 int error;
225
226 KASSERT(mutex_owned(mtx));
227
228 if (sleepq_dontsleep(l))
229 return sleepq_abort(mtx, 0);
230
231 sq = cv_enter(cv, mtx, l);
232 error = sleepq_block(0, true);
233 return cv_exit(cv, mtx, l, error);
234 }
235
236 /*
237 * cv_timedwait:
238 *
239 * Wait on a condition variable until awoken or the specified timeout
240 * expires. Returns zero if awoken normally or EWOULDBLOCK if the
241 * timeout expired.
242 */
243 int
244 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
245 {
246 lwp_t *l = curlwp;
247 sleepq_t *sq;
248 int error;
249
250 KASSERT(mutex_owned(mtx));
251
252 if (sleepq_dontsleep(l))
253 return sleepq_abort(mtx, 0);
254
255 sq = cv_enter(cv, mtx, l);
256 error = sleepq_block(timo, false);
257 return cv_exit(cv, mtx, l, error);
258 }
259
260 /*
261 * cv_timedwait_sig:
262 *
263 * Wait on a condition variable until a timeout expires, awoken or a
264 * signal is received. Will also return early if the process is
265 * exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
266 * timeout expires, ERESTART if a signal was received and the system
267 * call is restartable, or EINTR otherwise.
268 */
269 int
270 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
271 {
272 lwp_t *l = curlwp;
273 sleepq_t *sq;
274 int error;
275
276 KASSERT(mutex_owned(mtx));
277
278 if (sleepq_dontsleep(l))
279 return sleepq_abort(mtx, 0);
280
281 sq = cv_enter(cv, mtx, l);
282 error = sleepq_block(timo, true);
283 return cv_exit(cv, mtx, l, error);
284 }
285
286 /*
287 * cv_signal:
288 *
289 * Wake the highest priority LWP waiting on a condition variable.
290 * Must be called with the interlocking mutex held.
291 */
292 void
293 cv_signal(kcondvar_t *cv)
294 {
295 lwp_t *l;
296 sleepq_t *sq;
297
298 if (cv->cv_waiters == 0)
299 return;
300
301 /*
302 * cv->cv_waiters may be stale and have dropped to zero, but
303 * while holding the interlock (the mutex passed to cv_wait()
304 * and similar) we will see non-zero values when it matters.
305 */
306
307 sq = sleeptab_lookup(&sleeptab, cv);
308 if (cv->cv_waiters != 0) {
309 cv->cv_waiters--;
310 l = sleepq_wake(sq, cv, 1);
311 l->l_cv_signalled = 1;
312 } else
313 sleepq_unlock(sq);
314 }
315
316 /*
317 * cv_broadcast:
318 *
319 * Wake all LWPs waiting on a condition variable. Must be called
320 * with the interlocking mutex held.
321 */
322 void
323 cv_broadcast(kcondvar_t *cv)
324 {
325 sleepq_t *sq;
326 u_int cnt;
327
328 if (cv->cv_waiters == 0)
329 return;
330
331 sq = sleeptab_lookup(&sleeptab, cv);
332 if ((cnt = cv->cv_waiters) != 0) {
333 cv->cv_waiters = 0;
334 sleepq_wake(sq, cv, cnt);
335 } else
336 sleepq_unlock(sq);
337 }
338
339 /*
340 * cv_has_waiters:
341 *
342 * For diagnostic assertions: return non-zero if a condition
343 * variable has waiters.
344 */
345 bool
346 cv_has_waiters(kcondvar_t *cv)
347 {
348
349 /* No need to interlock here */
350 return cv->cv_waiters != 0;
351 }
352